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Abstract: Preparation and formulation of amorphous solid dispersions (ASDs) are becoming more
and more popular in the pharmaceutical field because the dissolution of poorly water-soluble
drugs can be effectively improved this way, which can lead to increased bioavailability in many
cases. During downstream processing of ASDs, technologists need to keep in mind both traditional
challenges and the newest trends. In the last decade, the pharmaceutical industry began to display
considerable interest in continuous processing, which can be explained with their potential advantages
such as smaller footprint, easier scale-up, and more consistent product, better quality and quality
assurance. Continuous downstream processing of drug-loaded ASDs opens new ways for automatic
operation. Therefore, the formulation of poorly water-soluble drugs may be more effective and safe.
However, developments can be challenging due to the poor flowability and feeding properties of
ASDs. Consequently, this review pays special attention to these characteristics since the feeding
of the components greatly influences the content uniformity in the final dosage form. The main
purpose of this paper is to summarize the most important steps of the possible ASD-based continuous
downstream processes in order to give a clear overview of current course lines and future perspectives.

Keywords: amorphous solid dispersions; formulation; powder characterization; feeding;
continuous manufacturing

1. Introduction

With the increasing number of poorly water-soluble drug candidates [1], the importance of new
formulation technologies and the product development of the so-obtained materials has enhanced [2,3].
Among several strategies, applying amorphous solid dispersions (ASDs) is getting to reach more
interest owing to advantageous dissolution properties of the products [4]. ASDs can significantly
increase the dissolution rate and extent while in most cases the thermodynamic solubility of the active
pharmaceutical ingredients (APIs) is not or just slightly changed by the matrix of the ASDs. This way
the degree of supersaturation can be increased effectively, which is the main driving force of passive
membrane transport [5], resulting in increased bioavailability [6,7]. However, achieving stabile forms
and scaling-up of the preparation technologies may be challenging, thus these drawbacks make it
more difficult to bring ASD-containing medicines to the market [8,9]. In spite of these difficulties,
14 ASD products have been approved by the Food and Drug Administration (FDA) until 2012 and
further 10 ASD-loaded medicines were accepted by the FDA until 2017. Therefore, the still-growing
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tendency indicates a promising future of this formulation method [10]. With this in mind, the next
question is whether ASDs fit into the most important recent trend of the pharmaceutical industry,
continuous manufacturing.

In contrast with most fields of industry, batch technologies are prevailing in the pharmaceutical
field due to the strict quality requirements and the Good Manufacturing Practice guidelines [11].
Lately, a number of experts and companies pay special attention to the continuous opportunities in
the pharmaceutical manufacturing owing to the plenty of benefits such as robustness, environmental
aspects, time and cost-effectiveness [12,13]. The FDA also sees great potential in the continuous
processes because these methods can open new ways to the manufacturing of high-quality drug
products [14]. Although only a few specific examples have appeared in the pharmaceutical market
so far, continuous systems seem to be excellently applicable both in the manufacturing of active
pharmaceutical ingredients and the preparation of final dosage form [15]. Among the marketed
medicines manufactured with continuous technologies, OrkambiTM and SymdekoTM are especially
interesting in the context of this review, since one of the APIs (Ivacaftor) in Vertex’s combination
drug products possesses relatively weak dissolution properties and bioavailability in crystalline form;
therefore, preparation of an ASD form by spray drying was applied to eliminate the above-mentioned
disadvantages [4,16]. As a conclusion, advancements regarding ASDs are getting to play an important
role in continuous processes as well. Nevertheless, there should be some cornerstones established
if the ASD production technologies are attempted to fit into a continuous system. That is why an
in-depth understanding of this topic may be of utmost importance.

The first part of the continuous manufacturing process of ASD-loaded formulations does not cause
complications in general because the majority of the ASD preparation methods are continuous such as
spray-drying or hot-melt extrusion (HME). However, challenges often appear after the production
of ASD powders since the flow properties of these materials are quite poor in many cases. As a
consequence, the feeding performance deteriorates, which could lead to drug content variation in
the blends and also in the tablets or capsules [17]. These errors result in poor quality products in
a batch process but even more in continuous technologies. Instead of accurate static weighing at
batch production, precise determination of the mass flow needs to be achieved during continuous
manufacturing. However, adjusting exact mass flows and controlling the mass flow ratio on the
different feeders can mean huge challenges, especially in the case of powders with poor flowability.
For this reason, improving the flowability of ASDs and enhancing the efficiency of the feeding is
indispensable during continuous manufacturing to avoid the variation in the content uniformity.

A widely used method to increase the flow properties is granulation where it is important to
bear in mind that ASDs are very sensitive to mechanical activation, high temperature and moisture,
which can all cause the separation of the amorphous phases and possibly the crystallization of the
API [18]. To prevent these, another solution could be the application of diverse excipients that ensure
good flowability. Nonetheless, the selection of these materials is not so clear due to the possible
incompatibility between APIs and excipients or bad flow properties of the blends. All of these have
stimulated the technologists to be more engaged in the development of the feeders. Some recently
published articles discuss the main issues and obstacles of continuous feeding, which draw special
attention to the importance of the appropriate in-line monitoring and control systems as well [19].
During the feeding steps, the exploration of the relationship between material flow properties,
feeder performance, and critical quality attributes could mean the basis for a suitable control system.
Hence, investigating the effect of powder flow properties on the quality of the final product can be
considered crucial.

Looking at the literature and the pharmaceutical market, both the development of ASD-based
formulations and application of continuous technologies are emerging trends. Consequently, this review
intends to collect the newest researches and the arising barriers connected with these two hot topics.
Appraising the different ASD preparation methods, whilst taking into account the flow properties of



Pharmaceutics 2019, 11, 654 3 of 23

the product, is an important part of this paper. Furthermore, feeder performances and the connected
analytical and evaluation methods are also discussed.

2. Preparation of Polymer-Based Amorphous Solid Dispersions

Preparation and formulation of ASDs have evolved a lot since then not only concerning research
and development but also in practical application. It can be stated that numerous pharmaceutical
formulation publications are relating to drug-loaded, polymer-based amorphous systems due to their
advantageous properties compared to the crystalline form (Figure 1). Although several impediments
can be excluded by forming ASDs other, hitherto unknown pitfalls can emerge. One of the major
troubles is that physical instability might turn up; therefore, recrystallization of the amorphous system
befalls during storage [20,21]. This can be avoided for instance by choosing an appropriate polymer as
a matrix that “antiplasticizes” the drug (raising its glass transition temperature) and/or forms intense
interaction with the drug [9]. However, not only does the polymer influence the stability but the
physicochemical characteristics of the drug, the ratio of the components and preparation methods
also have an impact on the quality [22]. In conclusion, developers have to consider all of these factors
during designing applicable ASDs.
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ASD manufacturing techniques are divisible into two chief groups, namely solvent methods and
melt or fusion methods. Versatile and applied-in-practice technologies can be listed in these two classes,
which are compared and specified in many articles [4,23]. Spray drying and HME stand out all of the
known ASD preparation methods because most of the commercially available ASD-based products are
manufactured with these techniques. Their success can be explained with scale-up possibilities and by
the fact that the process parameters are well-known and adjustable. Furthermore, spray drying and
HME are both continuous technologies. Consequently, special attention is paid to these techniques in
this review.

The most common solvent method is spray drying during which the solution is fed into a nozzle.
After leaving the nozzle, the droplets are dried by counter- or co-flowing warm gas in the drying
chamber. Then, the spray-dried form is collected through a cyclone into a collection bin [24]. In general,
a powder of small particle size is obtained as the product at the end of this continuous technology [25].
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One of the major advantages of this formulation is that faster dissolution can be achieved because of
the enhanced surface area. In addition, there is no need for milling due to the fine powder products,
which can also be considered beneficial. Although the poor flow properties of the spray-dried samples
can be a significant drawback resulting in challenges in course of other continuous steps like feeding,
blending, or tableting. At last, residual solvents could mean problems during scaling up thus their
amount needs to be decreased as much as possible due to the strict quality requirements. In summary,
many spray-dried products containing medicines can be found on the market and plenty of publications
are referring to spray drying as a continuous process but a full continuous formulation of spray-dried
products may have been examined only in case of the OrkambiTM and the SymdekoTM up to now.

Among the melt methods, the most prominent is HME adapted from the plastic industry [26].
During this process, the drug–polymer mixture is heated while the melt is transported through the
extruder by one or two rotating screws (usually co-rotating screws). After leaving the equipment,
the extrudates are arriving on a conveyor belt where the hot materials can solidify. Afterwards,
the glassy product can be forwarded for cutting or grinding. This technique is also continuous and
it has some benefits against spray drying such as solvent-free operation or better flow properties of
the extruded powders [27]. However, only thermostable drugs can be formulated by HME, which is
the greatest limitation of this method. Moreover, the poor compressibility of the products signifies
a challenge in many instances; therefore, it also needs to apply fillers and other excipients if the
tablet formulation is planned to be prepared by continuous manufacturing. Despite these detriments,
many drug products consisting of extruded samples have been approved so far and continuous
downstream processing systems, where HME is coupled with injection molding or 3D printing,
have appeared in the literature recently [28,29].

During the years, some of the other ASD preparation methods were also investigated with
regards to the generation of the final dosage form [18]. For instance, more examples have been
published relating to tablets containing freeze-dried samples for improving the dissolution rate of
poorly water-soluble APIs [30,31]. An alternative of conventional solvent evaporation methods can be
the supercritical fluid processing where the quick evaporation can lead to residual solvent-free and
free-flowing end product [32]. Based on the powder properties, tableting of the products can be fulfilled
easily and this technique also can be implemented into a continuous line. Furthermore, electrospinning,
a relatively novel technique for ASD preparation, also has to be mentioned as it seems to be a
promising technology in the future based on the numerous publications in this field [33]. Related to the
downstream processing of electrospun material, tableting was successfully performed from protein-type
drug-loaded [34] and from acetaminophen-loaded electrospun fibers [35]. Since then, a minitablet
formulation from electrospun nanofibers has been published in the literature [36], and tableting of
itraconazole containing electrospun ASDs with other excipients also was scrutinized [37]. The latter
one seems to be curiously promising in the industrial application because a scaled-up electrospinning
method with high productivity and a rotary tablet machine were applied during the experiments.
In addition, filling the fibrous materials into capsules is also a widely investigated area since it allows
dissolution comparison between the novel formulation and marketed products [38,39]. However,
most of the times the filling process or the tableting is accomplished manually due to the poor flow
properties of electrospun materials. Consequently, the role of particle engineering and formulation
steps is growing rapidly to achieve real industrial relevance of the electrospinning technology.

3. Continuous Pharmaceutical Manufacturing

3.1. The Current State of Continuous Production

From the beginning of the 2000s, some publications, crossing the batch-centered systems, started to
deal with the possibilities of continuous technologies during pharmaceutical manufacturing [40,41].
After the first International Symposium on Continuous Manufacturing of Pharmaceuticals (ISCMP) [42],
the researches and results related to this topic have become more and more popular, and the first FDA
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approved drug product (OrkambiTM) demonstrated the success of the new trend. The renovation of
regulatory aspects became timely, which was one of the main topics on the second ISCMP in 2016 [43].
The white paper of the conference follows the previously accepted FDA and International Conference
on Harmonization (ICH) guidelines [44–47] and on that basis, process monitoring and control have
been emphasized peculiarly on the conference [43]. Summing up, batch technologies still dominate in
the pharmaceutical industry but changing the mindset and opening towards continuous opportunities
could denote significant advantages during the production of medicines [48].

As tablets are the most common final products, the majority of continuous downstream processing
consists of feeding, blending, and tableting. Several companies came to the market with their
continuous formulation line until today such as the GEA, Glatt, Lodige, LBBohle, Gericke/Gertise,
and Bosch [49–51]. In the academic area, Simonaho et al., presented continuous manufacturing of
tablets with the so-called PROMIS-line, which is a research and development continuous formulation
approach established at the University of Eastern Finland [52]. This construction was tested in case
of three different operations. The results demonstrated the applicability of all three configurations
that can be implemented in a normal laboratory room. Nonetheless, the introduced system can be
the basis of formulation studies, process parameter examinations and process analytical technology
(PAT) measurements. Singh et al., studied continuous direct compaction of acetyl-para-aminophenol,
silicified microcrystalline cellulose and magnesium stearate [53]. Since feeding has a high impact
on the quality of tablets, the major influence factor, bulk density, was investigated. Near-infrared
(NIR) spectroscopy was applied for real-time monitoring of powder bulk density by collecting spectra
of the blends. For developing a NIR calibration model, powders with different bulk densities were
measured. Afterwards, a control system was created using information from NIR spectra. This research
proves that knowledge of critical quality attributes and those influencing factors are very important to
obtain high-quality products. Experiments of Taipale-Kovalainen et al., also confirm the importance
of crucial parameters [54]. Two different, long continuous manufacturing runs were tested during
their research where the investigated technological set-up consisted of feeding, mixing, and tableting
steps, these processes were connected by vacuum conveyors. The results present the intentional and
unintentional deviations during long-term operation of continuous tableting.

Finally, it is worth mentioning in this section the end-to-end continuous manufacturing of
pharmaceuticals. Its essence is to connect the synthesis of the APIs and formulation steps thereby
a fully continuous system can be accomplished without human intervention. The first publication
in this field, the work of the MIT’s researchers who achieved the synthesis and the purification of
aliskiren-hemifumarate, then it was formulated to tablet form in a completely continuous manufacturing
line in 2013 [15]. Later, four further APIs have been synthesized and formulated by using this technology
to evidence its capabilities and success [55].

3.2. Continuous Formulation of ASDs

Numerous research papers exist in the literature with respect to continuous effectuation of the
different formulation steps. Although the number of publications is limited relating to fully continuous
preparation of ASD-based final drug products, it seems to be a quickly developing area.

Among the ASD formulation methods, HME is one of the most common techniques, which is
basically a continuous technology. HME was used successfully several times to make amorphous
drug-loaded pellets, granules or tablets [56,57]. Baronsky-Probst et al., studied twin-screw HME
as an auspicious method for continuous production of pharmaceutical tamper-resistant tablets [58].
Potential critical process parameters of HME and their relationship with the critical quality attributes
were investigated during their work. Fourier-transform NIR was applied as a PAT tool for detecting
and controlling the influencing factors in real-time. Based on the results, the optimization of the HME
technology could be facilitated by analyzing the process data and by using design of experiments (DoE).
Interestingly, not only solid dosage forms can be prepared via HME but also gel formation, which
prove the wide-range applicability of the technology. Pawar et al., investigated HME as a continuous
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opportunity for preparing topical diclofenac sodium gel [59]. In their research, the applied API was
dissolved in water with other excipients and this solvent was injected into the extruder with a peristaltic
pump. The other phase of the system was fed with a twin-screw volumetric feeder. These processes
can be transformed into other continuous techniques as well. If the feeding of the pure, solid API
seems to be difficult it might be worth feeding a “liquid masterbatch” while excipients with good
flow properties can be fed with the commercially available feeders. In this way, the drug release was
enhanced successfully and HME was used for continuous manufacturing of gel formulation at first.

Some publications in context to downstream processing present continuous systems where
novel methods such as injection molding or 3D printing are connected to the HME for generating
the final dosage form. Application of integrated HME-injection molding (IM) manufacturing
platform was successfully developed for preparing sustained-release or immediate-release matrix
tablets [28,60]. Although the dissolution properties of these drug-polymer systems seemed to be
well controllable, the APIs were in the crystalline state in most cases where HME and IM were
coupled. However, innovative 3D printing is another viable way to produce tablets after the HME
process. Zhang et al., investigated the differences among 3D-printed tablets, directly compressed
tablets from milled extrudates and tablets prepared from physical mixtures [29]. 3D printing is one of
the state-of-the-art methods in formulation fields, which enables the design of complex dosage forms,
thereby the production of personalized-dose medicines and immediate consumption products can
be achieved. Linking HME and 3D printing resulted in extended acetaminophen release for every
tested polymer. Furthermore, this article punctuates that combination of HME and 3D printing is
considered advantageous for both bioavailability enhancement of the API and from the more effective
production point of view. Similar conclusions were drawn in case of carvedilol-loaded 3D-printed
floating tablets where four configurations were examined with different in vitro dissolution testing
methods [61]. The major limitation of the 3D printing-based and integrated HME-IM formulation
processes is that productivity is not comparable to the traditional tableting methods. HME coupled
with 3D printing or IM seems to be an innovative and promising way of the personalized treatment
but currently, it cannot be applied for mass production.

Formulation of amorphous drug delivery systems via spray drying is considered to be a continuous
technology as well. The final dosage form of spray-dried samples can be inhalable dry powders [62] or
oral solid dosage forms [63–65]. However, a totally continuous formulation line needs to start with
the solution preparation and should take until the formulation of final dosage form, usually tablets.
Consequently, technologists have to face similar challenges than in the case of HME, especially in the
field of feeding. Cayli et al., prepared inhalation dry powders via spray drying where the API was
fed in a suspension form while the mucolytic agent was added to it right before the ASD preparation
process [66]. Continuous feeding of the API into the process seems straightforward if the API comes
from flow synthesis and continuous purification (e.g., end-to-end manufacturing) [67,68]. However,
continuous preparation of a feed solution from API powder using gravimetric feeding, separate solvent
feeding and continuous mixing is much more challenging [69].

A continuous formulation strategy was investigated in our earlier research article as well where
ASD of spironolactone and polyvinylpyrrolidone-vinyl acetate copolymer was prepared with pilot-scale
electrospinning [70]. Different part steps of a possible electrospinning-based continuous downstream
processing seemed to be feasible such as the continuous collection of fibers, grinding, feeding,
and tableting (Figure 2). Development of real-time analytical methods was also examined whereby
detection of crystalline traces was efficiently implemented. This research highlights that both NIR
and Raman spectroscopy can be applied for determining the absence of crystallinity. Nevertheless,
the Raman-based models showed better predictability of crystalline traces, especially in case of powder
blends. Therefore, it is worth examining the ‘amorphicity’ right after the electrospinning or after
the homogenization.
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Balogh et al., published a research paper in which continuous end-to-end production of an
ASD-based solid form was accomplished [68]. During this work, electrospinning was introduced as an
advanced linking technology between the synthesis of acetylsalicylic acid and its formulation into
orally dissolving webs. Continuous preparation of the solution for electrospinning means the key step
of connection flow reaction and electrospinning. If the polymer has no chemical interaction with the
reactants, it can be added to the API solution during the synthesis. Otherwise, the polymer needs to
be added right after the synthesis. Electrospinning allows the simple and quick removal of reaction
solvents via fast evaporation. Therefore, crystallization, filtration, and drying can be excluded this way.
In addition, continuous cutting and collection of the layered fibrous webs were successfully achieved
by coupling Raman spectroscopy to the system.

Nevertheless, continuous preparation of tablets or capsules, the most popular solid dosage forms,
could be important if the current batch systems are planned to be replaced. GlaxoSmithKline also
developed their own continuous manufacturing method for preparing tablets where the process was
approached from another side [71]. The speciality of the so-called liquid dispensing technology is that
the tablets are pressed at first and then these placebo tablets are covered by the solution of the API and
polymer or other excipients. This method is suitable to prepare low dose drug products in which the
API is concentrated on the tablet surface. To confirm the exact amount of the dry dose, the surface
of the tablets was examined by NIR imaging [72]. Although the research of Clarke and Doughty do
not mention the “amorphicity” of the API on the surface of the carrier tablets the dosing solution
contains a polymer and other excipients as well. The published method can consider being a platform
technology for continuous film casting. Consequently, the technique can be applied for preparing
low-dose ASD-loaded tablets in a continuous way if an appropriate drying process is chosen.

Designing the different continuous formulation steps is only one part of continuous manufacturing.
Application of appropriate analytical methods is considered to be as important as the development of
equipment with continuous mode. In the ASDs point of view, the quality control should focus on the
crystalline traces of the API, which can be followed by in-line analytical methods as it was detailed
earlier in case of electrospun samples. Furthermore, the above-mentioned NIR and Raman spectroscopy
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also was successfully applied for investigating the absence of crystallinity in spray-dried samples and
extrudates [73–77]. However, there is another key factor besides the “amorphicity”, namely the amount
of residual solvent, which needs to be determined during solvent-based ASD preparation methods.
The earlier presented in-line spectroscopy methods can be used for this purpose as well. Tewari et al.,
successfully accomplished on-line monitoring of residual solvents during drying with a non-invasive
infrared sensor [78]. Their results highlight that the conventional off-line analytical methods can be
replaced with PAT tools to achieve continuous monitoring of residual solvents. A similar conclusion
was deducted by Fonteyne et al., who investigated the moisture content during fluid bed drying [79].
The monitored drying system was part of a fully continuous from-powder-to-tablets production line
where Raman and NIR spectroscopy is seemed to be effective to examine the fluid bed drying process
in real-time. Consequently, the use of these methods can be satisfying for investigating ASDs as well,
especially because fluid bed drying can be a continuous way for drying of ASDs [80,81]. Therefore,
not only crystalline traces but residual solvents also can be examined with the same analytical technique
with combining the evaluation methods.

4. Feeding as the Key Step During the Continuous Formulation of Solid Dosage Forms

Currently, solid dosage forms including capsules, tablets, and powders are the most frequent
products on the pharmaceutical market [82]. Tablets and capsules are particularly popular products
owing to their numerous advantageous properties such as accurate dosing, great patient compliance,
easy mass production, and adequate storage possibilities. These are the main reasons why technologists
strive to develop the mentioned formulations.

The examples presented above give alternative ways for making ASD-loaded final drug products
but the implementation of completely continuous formulation lines of ASDs presents many challenges
in the case of the conventional way of tablet production. Figure 3 presents a flowchart of possible
continuous pharmaceutical manufacturing routes for preparing ASD-loaded tablets.
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Since flowability and feedability collectively affect the content uniformity during a continuous
tablet formulation process, defining these two concepts is essential. While flowability has been described
with different measurements for many years, feedability has a more complex character. Feedability was
determined in the field of 3D printing as the mechanical suitability of the filaments for fused-deposit
modeling [83]. The main principle is quite similar in the perspective of the pharmaceutical powders as
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well. As follows, the feedability can be defined as the mechanical aptitude of solid raw materials for
reliable and precise dosing. It means, if the powder is characterized with good feedability, it can be
dosed easily, uniformly and accurately. Although flowability greatly influences the feeding, feedability
also depends on the properties of the applied feeder and the adjusted parameters. Consequently,
feedability has to be described not only with the powder properties but with other factors as well.
For this purpose, data from a catch scale are collected in general to calculate the feed rate, the feed
factor, different moving averages and relative standard deviations, which express the feedability very
well [84]. The so-called catch scale displays the pure gravimetric signal without any pre-treatment thus
it enables the comparison of the feeder performances. This way it can occur that the flowability of the
investigated powder is poor but using a suitable feeder, the feedability will be appropriate according
to the calculated features.

On the other hand, handling of the poorly flowable powders can be facilitated via granulation
or by using excipients with good flow properties. In the context of ASDs, HME can be the most
obvious method to simultaneously increase the dissolution properties and the flowability of APIs [57].
A good opportunity can be the application of other commonly used wet or dry granulation methods.
However, there are some extra challenges during the granulation of ASDs with these widely used
techniques. For instance, mechanical strength during roller compaction or moisture content during
wet granulation has a huge impact on the stability and on the release of the amorphous API; therefore
investigating the trace crystallinity is very important in these cases. Successful roller compaction of
evacetrapib-loaded ASDs and wet granulation of indomethacine-loaded ASDs proves the feasibility
of the granulation processes in this field [85,86]. However, it is important to note that a feeding step
is also needed before continuous granulation thus this kind of flowability enhancement is usually
used before the tableting and not before the blending [87]. The third option can be the pre-blending
of the poor flowable materials with excipients, which usually means a semi-continuous processing
step during tablet manufacturing. For the above-mentioned reasons, granulation and pre-blending are
worth using only in case of powders with extremely critical flow properties. If it is possible, selection
of an appropriate feeder can be the most convenient way.

4.1. Powder Characterization

Powders can be typified with a myriad of descriptors, which are greatly related to their behavior
and these values can provide useful information for designing the formulation steps [88,89]. Hlinak et al.,
made a really clear overview of the critical material properties and their effect on the product attributes
and the processing behavior [90]. Based on their overview, Table 1 highlights the possible critical
attributes connected to the flow. Moreover, it includes the effects of the listed parameters on the powder
flow and it reveals the possible measuring methods as well. If characteristics of the materials get clear
by using the appropriate analysis techniques, the next outstanding point is to find the correlation
between the measured properties and feedability for building up a continuous system of good quality.
Since more companies deal with the fabrication of different feeders [91,92], knowledge of material
flow properties could be especially handy when choosing the appropriate feeder peculiarities. This is
supported by the research of Wang and co-workers who predicted feeder performance based on
material flow properties [93]. Ultimately, it can be claimed that investigating the impact of all the
above-noted variables on the diverse processing steps needs a high amount of the given powder,
which is not preferable during the early drug development or in case of costly samples. Recently,
a research article was published about a multivariate raw material property database that can provide
a solution for handling the problem of high powder demand [94]. Fifty five different raw materials
inclusive of APIs and numerous distinct excipients were characterized. As a result, this dataset
can facilitate the development of formulations and pharmaceutical dry powder processes became
designable by building predictive models based on the descriptors. Bostijn et al., gave an excellent
example to the applicability of this database via investigating the feeding of 15 different powders
(including APIs) by low feeding rate [95]. The main conclusion of the article was that less feeding
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experiments would be necessary by following the presented approach and thus, the raw material
consumption would also decrease during new drug development. Furthermore, these datasets can be
easily transported to the continuous formulation of ASDs if their powder characteristics are similar to
one of the included APIs or excipients in the database. Another attractive solution is the simulation
of the different processing steps in order to avoid the wasting of expensive raw materials during the
early development phase. The research of Boukouvala and Ierapetritou demonstrated that the costly
flowsheet models can be simplified via surrogate-based optimization (application of another powder
with similar peculiarities instead of the expensive API) [96].

Table 1. The potential impact of powder properties on flow.

Property Impact Measuring Ref.

Particle size and shape
distribution

Flowability increases with increase in
particle size;

Spherical shape results in favorable
flow properties

Sieve tower;
Microscopy and image analysis;
Scanning electron microscopy;

Laser diffraction

[97–99]

Bulk density

Hausner ratio and Carr’s index can be
determined based on bulk and tapped densities;

With increasing Hausner ratio, the
flowability decreases;

Decreasing Carr’s index means an increase in
the flow

Tapping machine;
Dynamical tap density tester;

Powder rheometer
[100,101]

Surface area With increasing specific surface area, the
flowability decreases in general Pycnometer; [102,103]

Surface energy Increased surface energy leads to
poor flowability

Inverse gas chromatography for separation
and mass spectrometry for detection [104,105]

Flow Higher flow rate indicates higher flowability Flow through an orifice [106]

Cohesiveness

High cohesiveness allows the powder bed to be
compressed easily and the flowability is poor;

The cohesive index quantifies the extent of
deviation from an ideal conically shaped heap

Powder rheometer;
Granular material heap analyzer [107,108]

Internal and wall friction

Effective angle of internal friction influences
many aspects related to flow behavior, e.g., risk

of arching and risk of segregation due to
unwanted flow patterns;

The higher the wall friction angle the more
difficult it is to move the powder along the wall

surface (the worse the flowability)

Shear cells [109,110]

Static charge Static charge compromises the free-flowing of
the powders

Charging device;
Faraday cup;

Granular material electric charge analyzer
[111,112]

Hygroscopicity Lower hygroscopicity results in
better flowability

Dynamic vapor sorption;
Loss on drying [113–115]

4.2. Flowability of ASDs

Powder flow properties have an impact on downstream processing of polymer-based ASDs as well.
Inadequate flowability can cause bridging, arching, or rat-holing during tableting, which deteriorate the
processing time and the efficiency of die filling [116]. Furthermore, powder behavior also influences the
feeding in case of continuous manufacturing and thus, successful implementation of this step strongly
depends on the physical properties of the ASDs and on the external variables such as consolidation,
aeration or the applied equipment [89]. ASDs can be characterized with bad powder flow properties
in many instances; therefore, automatic and continuous mass production of ASD-loaded tablets
may encounter obstacles [18]. The major influencing factors of polymer-based ASDs’ flowability
are summarized in Figure 4. As the different preparation methods and process parameters result in
various kinds of products, the flow properties differ accordingly. In addition, to a lesser extent but the
type and amount of the applied raw materials also determine the flow characteristic of the produced
ASD. Finally, flowability can be influenced by adding extra excipients to the composition before the
ASD preparation.
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Davis et al., studied the impacts of spray drying and HME on powder flow, compression and
dissolution in case of itraconazole-containing ASDs [117]. A ternary ratio of API-Soluplus®-HPMCP
30-40-30 (w/w%) was selected for preparation of ASDs. The different samples were analyzed by scanning
electron microscopy and Freeman FT4 powder rheometer to receive information about the particle
size, morphology, and the powder flow, respectively. In terms of powder flow, spray-dried materials
had poorer characteristics than milled extrudates due to the smaller particles sizes, more complex
morphology, and cohesiveness. Decreasing the particle size of extrudates is possible too, by different
intensive milling processes [118]. Although the dissolution properties of the extruded materials
can be improved with reducing the size ranges then the same flowability problems can occur as by
the spray-dried samples in general [119]. Poor flowability of spray-dried samples has industrial
relevance as well. The flow properties of etravirine-loaded spray-dried ASD needed to be improved
by continuous roller compaction together with microcrystalline cellulose during the downstream
process [120].

In the flowability point of view, fibrous ASDs can be especially disadvantageous since the
longitudinally macroscopic but microscopic width structure results in fluffy, low bulk density (usually
between 0.01 and 0.1 g/mL) powders. For this reason, the grinding of the fibers might be needed to
improve the flow properties of the samples [121]. Furthermore, there are several milling methods,
which are considered to be continuous such as conical milling or oscillating milling. Therefore,
the electrospinning-based formulation steps can be transformed easily into continuous processes if
the electrospun material is grindable. Different sugars turned out to possibly have an impact on the
friability of polyvinyl alcoholnanofibers thus the application of extra excipients can help in case of
electrospun materials as well [122].

4.3. Improvement of the Flowability of ASDs for Continuous Feeding

The morphology of the spray-dried materials and thus the flow properties can vary according to
the adjusted values on the spray dryer (Figure 5) [123]. Regarding this, Vehring et al., highlight in their
experiments that particle formulation during spray drying is strongly influenced by the relationship
between surface recession and diffusion of the solutes [124]. Consequently, changing the components
and therefore the viscosity of the starting solution will have an effect on the morphology of the
products at the same conditions. This observation is also supported by Goddeeris and Van den Mooter
who prepared free-flowing spray-dried samples [125]. The aim of their research was to maximize
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the dissolution extent of a model API, which was successfully performed by adding a surfactant
(d-α-tocopheryl polyethylene glycol succinate 1000) to the polymer–drug composition. However, Carr’s
index and the Hausner ratio decreased with an increasing amount of the surfactant, which indicates
better flowability. This can facilitate the downstream processing later on. Ramesh et al., also added an
extra excipient, microcrystalline cellulose, to the solution before spray drying, which was suitable to
increase the flowability of the spray-dried samples [126]. Another widely-used method for improving
the flow properties of the spray-dried particles is the roller compaction [127]. For instance, Angi et al.,
were applied dry granulation to reach better flowability and reduce the electrostatic charging of the
small particle-size samples prepared by spray drying [128]. The spherical shape of the samples did
not change after the granulation process but large agglomerates were visible in the scanning electron
microscopy images. These agglomerates seemed to be favorable in the flowability point of view
since the granules were characterized with better flow properties according to the Hausner ratios and
Carr’s indices.
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A conclusion similar to the previous examples can be stated in the case of materials prepared
by the electrospraying method [129]. During this research, bulk and tapped densities increased with
higher poly(lactic-co-glycolic acid) concentration. The authors also reveal the importance of process
parameters such as voltage, feeding rate, and the polymer concentration, which are key factors in the
formulation of particles.

In the case of fibers prepared with electrospinning, grinding is indispensable to handle the
electrospun material in the further formulation steps. Development of grindable fibers improved
the flowability of protein-type drug-loaded electrospun samples and thus it facilitates the tableting
process [121]. However, low bulk density characterizes the electrospun fibers after grinding in the
most cases thus pre-blending with a good flowing excipient, such as large particle size microcrystalline
cellulose, seemed to be necessary to improve the efficiency of continuous feeding of spironolactone
containing fibers [70].

The presented examples point out that designing of reliable feeding with ASDs to a continuous
formulation line could be extremely challenging due to the poor flowability and low bulk density of
the powders (especially in case of solvent techniques). For this reason, it is worth to take an outlook for
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ASDs in context with feeding and surface modification as well. It is important to note that ASD samples
with smaller particle size (usually the ASDs prepared by solvent techniques) have quite similar flow
properties to the micronized APIs in general thus the handling and the downstream processing need
the same considerations as by APIs with poor flowability [130]. Consequently, continuous dry coating,
such as fluid energy milling (FEM) or the use of Comil® for in situ coatings with glidant (for example,
Aerosil®), can be promising surface modification methods to improve the flow properties of ASDs,
too [131,132]. In the literature, only a few examples can be found about surface-modified ASDs among
which in situ surface modification of spray-dried samples seems to be a potential solution [133]. The
research of Elversson and Millqvist-Fureby pointed out that adding suitable excipients in an appropriate
amount to the solution results in products with good flowability. If the in situ way is not feasible
due to solubility differences, the previously mentioned dry-coating methods can be used (Comil®

or FEM) because these techniques are easily insertable into continuous manufacturing processes.
In addition, these systems are suitable not only by spray-dried products but in the case of other
solvent-method prepared ASDs. For instance, electrospinning could be an alternative to freeze-drying
while the continuous collection of fibers also seems to be feasible using a cyclone [134]. However,
powder properties of the electrospun samples are fairly weak, which can make the formulation process
difficult. Therefore, the milling of these products might be needed if tablet forms are planned to be
achieved [37]. On the other hand, other formulation strategies such as dry coating or granulation also
may be appropriate to increase the flow properties of the fiber-based powders.

In addition, surface modification is also applicable for decreasing the electrostatic charging of the
powders to avoid the charge generation during the formulation processes. Jallo et al., investigated
magnetically assisted impaction coating as a potential method to improve the flow and decrease the
electrostatic charging of micronized acetaminophen [135]. During their research, a clear correlation was
observed between the flow and the electrostatic charging of the uncoated and dry-coated micronized
API. Electrostatic charging can also occur with ASDs due to the micro- or nano-size particles or if the
applied polymer easily charges electrostatically. The powders can stick to the wall or to the screw of the
feeder in case of these kinds of ASDs, which cause high relative standard deviation in the feeding rate.

Taking together, these methods would seem to suggest that increasing the flowability of bulk
powders could be accomplished without using the well-known granulation, too. Nevertheless,
a feeding step should always be inserted before the granulation during continuous manufacturing
lines and thus, particle engineering and surface modification are especially significant by designing
continuous formulation lines of ASDs.

4.4. Considerations Related to the Feeders

4.4.1. Feeder Peculiarities

Another side of the feeding efficiency is feeder characteristics that can be modified to enable
faster feed rates and more reliable weight variation. Different evolving, shape, and size of the feeders
offer a variety of applicability to weigh continuously the diverse pharmaceutical blends. For instance,
Coperion K-Tron, Brabender Technologie, or Técnicas de Alimentación Dinámica (TAD) fabricate
manifold pharmaceutical and other feeders for handling most bulk materials in a wide range of
applications [136–138]. To overview the opportunities, Table 2 presents different Coperion K-Tron
feeders and suggestions in connection with the selection of the feeders for various powder types. It can
be stated that many feeding considerations apply to the designing of the tableting process, application
of powders with various bulk densities, or feeding between the downstream processing steps. In light
of this, a large number of variables can arise that is why understanding the material behavior and the
capability of the feeders are very important.
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Table 2. Application opportunities of Coperion K-Tron feeders [106].

Feeder Type Powders

Loss-in-Weight Belt Feeders Fragile products;
Powders with special characteristics

Vibratory Feeders

Fragile ingredients;
Fibers;

Glass fibers;
Rough-grained powders;

Granules

Bulk Solids Pump Feeders

Free-flowing pellets;
Granules;

Flakes;
Friable products

Twin Screw Feeders
Sticky, bridging or flooding powders;

Fibers;
Glass fibers

Single Screw Feeders Pellets;
Other free-flowing bulk materials

Smart Weight Belt Feeders Large volume of powders with different flow characteristics

Most commonly used pharmaceutical feeders operate on the principle of loss-in-weight (LIW)
and mostly consist of one or two screws (Figure 6). Weighing platform (load cell) is the inherent part
of this type of feeders because it ensures the ability to control the feed rate. Basically, LIW feeders
can be used in two different modes. The simpler operation is the volumetric mode whereby the
moving elements have constant rotation speed. In contrast, the gravimetric method applies the signal
of the load cell to control the rotation of the screws based on the mass flow. This unit operation
can handle flow variability caused by bulk density changes relating to the emptying of the feeding
hopper [139,140]. As a consequence, gravimetric feeding is a promising method in case of ASDs as
well since the bulk densities can vary in a wide range, especially if different size agglomerates are
prepared during granulation processes. In addition, a catch scale is usually utilized to gain data from
the outlet of the feeder, which give useful information about the feedability and it could also have a
significant contribution to the feedback control [84].Pharmaceutics 2019, 11, x FOR PEER REVIEW 15 of 23 
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Variations of the LIW systems differ in the type of the moving element, which can be a screw,
rotating cell, belt, or vibratory channel. The latter three were not too widespread in the pharmaceutical
field so far for dosing APIs, excipients or blends. For instance, a vibratory feeder was rather applied for
measuring powder flow by using a small amount of the materials [141]. However, vibration systems
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are more common in the food and agro-industry for feeding bulk solids accurately. Ola and Popescu
published a quite handy article relating to the adjustable parameters during vibratory feeding [142].
According to their results, the vibrations’ amplitude, the amount of the dosed powder from the hopper
and the material thickness on the vibrating tray has a great impact on the precision of the feeding.
Furthermore, vibratory feeding was found to be describable with virtual models as well, which may
be very helpful in the design of new equipment with high accuracy for continuous processes [143].
The presented considerations can be translated into pharmaceutical powders for dosing reliably
both at high and low performance even for problematic materials. The most common way in the
pharmaceutical industry is to use twin-screw feeders where it is worth changing the type of the screw
according to the applied material [92]. Since a lot of polymer-based ASD prepared by solvents method
can be described as a sticky powder, a fine concave screw would be the best choice for precise feeding.
Based on Table 2, vibratory feeders can be applied in case of most types of powders thus these devices
seem to be promising in case of ASDs as well.

4.4.2. Importance of Feeder Selection

Polymer-based ASDs can be quite sticky or fluffy materials, which is why the selection of a good
feeder may mean a solution to handle the bad powder characteristics of these samples. Engisch and
Muzzio published several papers in connection with loss-in-weight feeders. One of their work
introduces the characterization of a K-Tron KT35 loss-in-weight feeder with different screws by using
three distinct powders [84]. Both volumetric and gravimetric modes of the feeders were examined
while the feed rate was monitored. Feeder tooling, powder, and speed had a significant impact on
feeder performance according to the analysis of variance of the feeder characterization. Eventually, the
authors suggested that predictive models could be developed if a database of feeder performance and
powder behavior was prepared. Similarly, the LIW feeding of a poorly flowing API from the aspect of
twin-screw granulation process was studied [91]. Different LIW gravimetric feeders were tested during
these experiments to achieve 75% API content in the granules. The results evidenced that the rational
selection of the feeder determines the success of the continuous twin-screw granulation. In another
study of Engisch and Muzzio, various powders including an API, excipients, and a lubricant were fed
by suitable types of feeders for the given materials. Different screws and screens were tested in case of
each feeder and feeding performance was typified by the feed rate. This research presents a possible
way for the proper feeder selection in case of different powders [92]. Although continuous feeding
of poorly flowable, usually micronized APIs means a challenge in itself but the feeding of low-dose
APIs is even more difficult. A vibratory feeder proved to be suitable for micro-dosing of two powders
while the periodicity of the fluctuation was changed [144]. Besenhard et al., not only investigated the
micro-feeding but also studied the micro-mixing via a computational simulation method.

Besides the material flow properties, the feed rate deviations caused by hopper refill are also fairly
important in a practical application point of view [145]. During a continuous process, hopper refill has
to be solved while the feeder is operating. Type of refill method or its frequency can strongly influence
the feed rate deviation. According to the scheduling of the refill, the lowest standard deviation was
observed when the hopper was refilled from 60% to 80% level. Furthermore, the applied material also
has an effect on the feed rate deviation, which was investigated by comparison of acetaminophen and
zinc oxide.

The next step in this area is the control of the feeder, which was successfully accomplished by
Joshua Hanson [146]. During this research, three feeding failures (excessive mass flow variability at
steady operation, inaccurate feeding relative to set point and special cause transient disturbances)
were investigated in loss-in-weight feeding. Based on the results, the use of ratio control was found to
be an effective approach to improve feeder performances. In this way, there is no need to precisely
adjust the mass flow of the poorly flowable APIs or other powders. Monitoring the ratio of each mass
flow allows the feedback-control of the feeder of the well flowable excipients. Since the feedability
of powders with good flowability is easier, the controlling could be simpler and faster. In the case of
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ASDs, the above-detailed methods would be especially useful because the blending process could be
predictable and controllable based on a well-monitored feeding step. In addition, feeding failures also
have a higher chance due to the poor flowability and feedability of ASDs.

5. Conclusions

Increased interest in continuous technologies and a growing number of ASD-loaded drug products
raise the issue of the joint examination of the two areas. ASDs enable the development of poorly
water-soluble drug candidates into final dosage forms while the dissolution of the API improves
and thus, greater bioavailability could be achieved in many cases. Downstream processing of these
materials is getting more attention not only in the academic area but also in the industry. However,
published articles relating to the continuous formulation of ASDs confirm that it is quite a new aspect
in the pharmaceutical field. The majority of the research groups attempt to find alternative ways
instead of the conventional formulation process of tablets such as combination HME with IM or
3D printing. Although these solutions avoid the barriers caused by the poor flowability of ASDs,
the scalability is limited in most cases. In contrast, the traditional formulation line is more suitable for
mass production thus improving the flow properties is a hot topic at present. As it was presented in
this review, flowability can be enhanced by various methods and feeder marketed companies offer
more and more expedient equipment as well. Considering all this, continuous downstream processing
of ASD is worth investigating closer in the future to get more reliable processes and products.
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