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Abstract 

Background:  Functional connectivity (FC) studies are often performed to discern different patterns of brain connec-
tivity networks between healthy and patient groups. Since many neuropsychiatric disorders are related to the change 
in these patterns, accurate modelling of FC data can provide useful information about disease pathologies. However, 
analysing functional connectivity data faces several challenges, including the correlations of the connectivity edges 
associated with network topological characteristics, the large number of parameters in the covariance matrix, and tak-
ing into account the heterogeneity across subjects.

Methods:  This study provides a new statistical approach to compare the FC networks between subgroups that con-
sider the network topological structure of brain regions and subject heterogeneity.

Results:  The power based on the heterogeneity structure of identity scaled in a sample size of 25 exhibited values 
greater than 0.90 without influencing the degree of correlation, heterogeneity, and the number of regions. This index 
had values above 0.80 in the small sample size and high correlation. In most scenarios, the type I error was close to 
0.05. Moreover, the application of this model on real data related to autism was also investigated, which indicated no 
significant difference in FC networks between healthy and patient individuals.

Conclusions:  The results from simulation data indicated that the proposed model has high power and near-nominal 
type I error rates in most scenarios.
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Background
The non-invasive method of functional magnetic reso-
nance imaging (fMRI) identifies the changes of functional 
connectivity (FC) patterns between healthy and patient 
individuals by measuring blood-oxygen-level-depend-
ent (BOLD) [1]. Studies indicated that altered topologi-
cal patterns of brain connectivity are related to many 
neurological disorders, including autism, Parkinson’s 
disease, and Alzheimer’s disease. Therefore, functional 

connectivity analysis is performed to investigate the con-
nectivity patterns among the brain regions of patients to 
determine the biomarkers of neurodegenerative disor-
ders [2–4].

Group comparison of brain connectivity patterns is 
usually performed using two graph theory-based tech-
niques. In these methods, the network is represented by 
a graph so that the brain regions are defined as nodes, 
and the correlation between them is defined as the edge 
[5–7]. The first method is based on comparing the edges 
individually. In this approach, the correlation coefficient 
across time series of all-region pairs is calculated to esti-
mate the edges, then the hypothesis of equal FC patterns 
between healthy and patient groups is assessed using a 
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group-level statistic. Since there are a large number of 
pairwise edge comparisons, multiple testing procedures 
such as false discovery rate (FDR) are required to con-
trol false positive noise [8, 9]. In the second method, the 
comparison of brain connectivity is based on the network 
of edges. Some models investigate the changes in the FC 
patterns as a subnetwork of the edges, and others investi-
gate them as an entire network of the edges. However, fit-
ting a proper model to determine differentially expressed 
FC characteristics between subgroups faces some prob-
lems due to the high dimension of connectivity data and 
their complex correlation structure [10–12].

Generally, the fit of the FC model based on the edge 
requires estimating the covariance matrix among the 
edges. Since the structure of dependency between the 
edges is related to the network topological structure of 
brain regions, considering this feature can accurately 
estimate the model parameters. In conventional statisti-
cal models, the structure of parameters dependency is 
often determined by the distance between brain regions. 
For example, spatial dependencies are defined based on 
the distance of voxels that belong to the same region of 
interest (ROI) [13–16].

However, because the dependency among the edges is 
defined based on the network topological structure and 
is not necessarily limited to spatial adjacency, the results 
of these models may not be appropriate. On the other 
hand, because of the high-dimensional FC data, it is dif-
ficult to estimate a large number of parameters in the 
sample covariance matrix between edges, especially if 
the number of regions in the brain is large. In this regard, 
there are several optimization techniques for estimating 
parameters when the number of variables is more than 
the sample size [17–21]; however, these methods may 
overlook the network topological features to control false 
positive and false negative noises [22, 23].

Another feature of FC data is the heterogeneity, which 
indicates the existence of differences in the connectivity 
structure of brain regions across subjects within the same 
group. By considering the heterogeneity in the model, 
the power of tests can be increased to diagnose neuro-
degenerative disorders associated with brain connectiv-
ity correctly [24]. The heterogeneity across subjects can 
indicate the changes in the performance of cognitive and 
behavioural domains in healthy individuals, as well as the 
severity of symptoms and different responses to clinical 
interventions in patients [25–28]. In this regard, using 
the penalized model-based clustering, DiLernia et  al. 
(2020) reported distinct FC patterns for each individual 
in the healthy and patient [29].

Many studies have been conducted on FC modelling, 
which has considered some of the FC data properties. For 
example, Fiecas et  al. (2017) accounted the heterogeneity 

across subjects by introducing a variance component 
model. However, in addition to ignoring the spatial fea-
tures of the brain network, their proposed model cannot 
estimate the parameters of the edges when the number of 
ROIs is large. Furthermore, given the large number of ROIs 
in many brain atlases, applying this model for more than 
20 ROIs faces computational challenges [24]. On the other 
hand, Chen et al. (2020) proposed a nonparametric Bayes-
ian model to estimate the massive parameters of the covari-
ance matrix among edges, which takes the spatial network 
feature in terms of its topological structure. However, the 
effect of between-subject heterogeneity is not considered 
in this model, and equalization of the whole FC network 
is not examined [23]. Given these challenges, the present 
study proposes a more comprehensive model for examin-
ing differentially expressed FC characteristics between sub-
groups by considering the network topological structure 
and the heterogeneity across subjects.

Materials and methods
Estimating covariance matrix between edges
Connectivity data for each subject (n = 1, …, N) is formu-
lated by a matrix Mn

v×v = Mn
i,j  so that the elements of 

Mn
i,j represents the Fisher’s Z-transformed correlations 

between brain regions i and j. The entire brain connectiv-
ity network can be displayed by a graph Mn = {V, E}, 
where V is the set of nodes and E = V(1 − V)/2 is the set 
of edges. In this setting, the degree is determined by the 
number of edges, and the correlation coefficient is deter-
mined by the edges. The corrections have been made. 
The matrix Mn is transformed into a vector Y n

1×E . Sup-
pose that the vector Y follows a normal multivariate dis-
tribution Y n

1×E ∼ MVN
(

XT
n βp×E ,

∑

E×E

)

 , which XT
n  

indicates the design matrix with p covariates, βp × E is the 
effect of covariates on the vector Y, and ∑E × E is the 
covariance matrix. The model has the following form:

where Ro
N × E is the residual matrix. In the nonpara-

metric Bayesian model, Ro
N × E is used as input data to 

estimate the covariance matrix by considering the char-
acteristics of the network topological structure.

Let Rn
1 × E ∣ ΛE × E~MVN(0, ΛE × E). The edges correla-

tion matrix ΛE × E = f(G, ρ) is a function of the unknown 
network structure G and the correlation factors 
ρ = (ρ0, ρ1, …, ρk). G is a probability measurement of the 
latent K networks that follows a Dirichlet process, with 
parameters Go and α:

The correlation matrix based on the network topologi-
cal structure is given by the equation:

(1)YN×E = XT
N×pβ̂p×E + Ro

N×E

(2)G ∼ DP(α,Go)
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Λei,j×ei′ ,j′ is indeed an element of the matrix ΛE × E which 
is determined by the correlation between the edges ei, j 
and ei′,j′ . Let ei, j denote connectivity between regions  i 
and j, i ≠ j. Based on whether region i belongs to the 
cluster k or not, the term ωi = Ck is used as an indicator 
variable. If two edges are in the same cluster, it can be 
supposed that:

The nonparametric Bayesian model is used to detect 
neighbourhood networks based on the input data and cor-
relation structure in Eq. (3).

A discrete distribution is employed to assign each region 
in the K networks with probability π = (π1, …, πk).

The Dirichlet process in Eq. (2) is therefore equivalent to 
the following equations:

The distributions of ρo and ρk are assumed to be normal 
with parameters μo ، μk ، τ 2o  and τ 2k :

The posterior probability of RN × E is calculated by the 
prior distribution ρ, ω and function f:

Where Ho = (Ro)TRo/(N − p) and H = (Diag(Ho))−1/2Ho(D
iag(Ho))−1/2.

Then the sampling of the conditional posterior probabili-
ties ω and ρ is obtained by the Markov chain Monte Carlo 
(MCMC) algorithm:

(3)�ei,j×ei′ ,j′ =
{

ρk if ωi = ωj = ω′
i = ω′

j = Ck

ρ0 otherwise

ei,j ∼= ei′,j′ ∈ Ck

(

ei,j ∈ Ck , ei′,j′ ∈ Ck

)

if and only if ωi = ωj = ωi′ = ωj′ = Ck

ωi = Ck | π ∼ Discrete(π), i = 1, . . . ,V

π | α ∼ Dirichlet
(

α
/

K , . . . , α
/

K

)

, k → ∞

ρo | µo, τ
2
o ∼ N

(

µo, τ
2
o

)

ρk | µk , τ
2
k ∼ N

(

µk , τ
2
k

)

, k = 1, . . . ,K

p
(

RN×E|�E×E ,G,�
)

p(G)p(�) ∝ |

|

2��E×E
|

|

−
N

2 exp

(

−
1

2

∑

s

R
T

n

(

�E×E

)−1
Rn

)

p(G)p(�)

= exp
{

−N∕2

(

log|
|

�E×E
|

|

−1
+ tr

(

H
(

�E×E

)−1
))}

p(G)p(�)

p(ωi = Ck |ω−i, ρ,RN×E)

∝ exp {−N/2( log
(

det
(

f
(

(ω−1,ωi = Ck), ρ
)))

+ tr
(

H f ((ω−1,ωi = Ck), ρ)
−1

))}

× m−ik

v − 1+ α

The number of nodes within the network k is showed 
by m−ik = ∑j ≠ iI(ωj = Ck).

The Sherman–Morrison formula is used in the compu-
tation of (ΛE × E)−1 [30]:

Finally, given the posterior distributions of ω and ρ, 
the covariance matrix between the edges is estimated. 
A detailed description of the theoretical methods of the 

Bayesian nonparametric model is available in the original 
paper [23].

Estimating between‑subject variability
This section describes the estimation of the covari-
ance matrix Ψ to control subject heterogeneity and the 
estimation of edges parameters β by considering the 

p
(

ωi  = ωj for all j  = i|ω−i, ρ,RN×E

)

∝ exp {−N/2(log
(

det
(

f
((

ω−1,ωi = Ck+1

)

, ρ
)))

+tr
(

H f
((

ω−1,ωi = Ck+1

)

, ρ
)−1

)

)} × α

v − 1+ α

f (�,�)−1 =
�

�
E×E

�−�
=
�

A +
√

�o�E×1

�√

�o�E×1

�T
�−�

= A−1 − ρoA
−1

1E×EA
−1

1+ ρo1
T
E×1A

−11E×1

p
(

ρo|ω,H , ρ−0

)

∝ exp
{

−N∕2
(

log
(

det
(

f
(

�, �o ,�−�

)))

+ tr
(

H f
(

�, �o ,�−�

)−1
))}

× p
(

�o|�o , �
2
o

)

p
(

ρk |ω,H , ρ−k

)

∝ exp
{

−N∕2
(

log
(

det
(

f
(

�, �k ,�−k

)))

+ tr
(

H f
(

�, �o ,�−k

)−1
))}

× p
(

�k |�k , �
2
k

)
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dependence structure between edges ∑E × E. The terms 
ψ1, …,ψN are considered to apply between-subject varia-
bility. It is assumed that ψN(1, …, N) is the scaled diagonal 
identity matrix with E × E dimensions. The Ψ covariance 
is a block-diagonal matrix with ψ1, …,ψN matrices along 
its diagonal. Each entry of ψN indicates the variability 
that can be assigned to subject sampling.

Estimation of both  β and Ψ parameters are obtained 
using the iterative method. In this process, an initial 
value of �̂ is replaced in Eq. (4), and then the residuals 
R = Y − Xβ are calculated.

The estimate Ψ̂  to be updated using R. The process is 
repeated until convergence is achieved. To estimate the 
parameter Ψ, the outer product of the E × 1 residual vec-
tor is obtained for each subject, then averaged over these 
vectors to create a residual covariance matrix �̂E×E . For 
ψN, the structures of a scaled identity matrix and com-
pound symmetry with the forms ψN = σ2I and ψN = σ2 + b 
are assumed. Where σ2 is set as the average of all diagonal 
elements of �̂E×E − �̂E×E , I is the identity matrix with 
dimensions of E × E and b is considered as the average of 
the off-diagonal elements of �̂E×E − �̂E×E.

Group‑level statistic to detect differentially expressed FC 
patterns.
The basic hypotheses in this study are examined using 
the following test statistics.

Hypothesis 1: The entire functional connectivity net-
works are significantly different between case and control 
groups. The test statistic is:

Where the contrast matrix of C is the E × E identity 
matrix. The parameters β1 and β2 are estimated according 
to Eq. (4). The covariance matrix for each group is esti-

mated ˆvar
(

β̂
)

=
(

X ′
(

�̂E×E + �̂E×E

)−1
X

)−1

.

Hypothesis 2: The functional connectivity of the ROI 
pairwise is significantly different between the case and 
the control groups. The following test statistic is:

A permutation test has been used to check the hypoth-
eses while controlling type I error. In this regard, with 
each resampling of subjects between two groups, the 
interest parameters are estimated using the iterative 

(4)

�̂ =

(

X
�
(

�̂
E×E + �̂

E×E

)−1

X

)−1

X
�
(

�̂
E×E + �̂

E×E

)−1

Y

(5)
(

C
(

�̂
�
− �̂

�

))�(
C
(

̂var
(

�̂
�

)

+ ̂var
(

�̂
�

))

C
�
)−1(

C
(

�̂
�
− �̂

�

))

(6)
((

β̂1(e)− β̂2(e)
))′((

ˆvar
(

β̂1(e)
)

+ ˆvar
(

β̂2(e)
)))−1((

β̂1(e)− β̂2(e)
))

, e = 1, ..,E

algorithm of section. The values of the statistics for each 
permutation are then derived by replacing them with 
Eq. (5) and (6). In addition, the FDR method was used to 
adjust the p-value of the permutation test since there was 
the high number of multiple comparisons in the second 
hypothesis. In both the simulation and real data assess-
ments, the nominal level of statistical significance was 
set at α = 0.05. Figure 1 shows a process of the proposed 
method to determine differentially expressed FC patterns 
between two groups.

Simulation settings
In this section, simulation data were applied to assess the 
performance of the proposed method in terms of statisti-
cal power and type I error. The number of nodes V= 20, 
25, and 30 with two latent clusters were considered to 
simulate the dependence structure between the edges. 
The correlation of the edges inside the cluster was ρ1 = ρ2 
equal to the values 0.3, 0.5, and 0.7 as well as the corre-
lation of the edges outside the cluster was ρ0 = 0. In the 
next step, the Uniform(−δ, δ) distribution was employed 
to create subject-specific effects. The values for each sub-
ject were separately generated from this distribution and 
were added to the diagonal entries of the edges covariance 
matrix. Given that the δ parameter controls the degree 
of heterogeneity between subjects, δ= 0.15 and 0.3 were 
considered as low and high heterogeneity, respectively.

In the following, connectivity data of each group is gen-
erated using a multivariate normal distribution accord-
ing to the features of the covariance matrix. For example, 
Fisher’s Z-transformed correlation is considered a con-
nectivity metric.

The d vector reflects the differentially expressed FC 
network between groups so that an E × 1 zero vector is 
considered, and then d = 0.8 is randomly replaced for 
about 5% of zero values.

The results of simulation data were based on 100 iterations 
for each setting to estimate power and type I errors under 
the null hypothesis. For all tests, the permutation number 

was 500. The model performance was evaluated based on 
the amount of correlation between edges, heterogeneity, and 
the dimensions of communication data in the sample size of 
10 and 25. The proposed methods were implemented with R 

YN×E ∼

⎧

⎪

⎨

⎪

⎩

MVN
�

0,
∑

E×E + Ψ
�

+ d Control group

MVN
�

0,
∑

E×E + Ψ
�

Case group
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software version 4.0.5 and MATLAB R2021b. The codes of 
the method are available upon request.

Application to autism data
Subjects
This study examined resting-state fMRI data of 25 men 
with autism)7.29–15.66 years old) and 25 healthy men 
(7.26–14.66 years old) with a full intelligence quotient 
(FIQ) score above 87. The data were matched on age 
(p = 0.272) and FIQ score (p = 0.659).

Data acquisition
The resting-state fMRI data of subjects were obtained from 
the ABIDE database gathered by NYU Langone Medical 
Center [31]. fMRI images were collected using a 3 T Siemens 
Allegra scanner for 6 minutes. Participants were asked to 
relax and stare at the white cross displayed in the middle of 
a screen with a black background. The following is the scan 
acquiring procedure: TR = 2000 ms, TE = 15 ms, 33 slices 
with thickness = 4.0 mm, FOV = 240 mm, flip angle = 90.

Data processing
The pre-processed data were selected from the ABIDE 
dataset at http://fcon_1000.projects.nitrc.org/indi/abide/ 

[32]. Pre-processing of fMRI scans was performed using 
SPM8 software. The first ten values of each time series 
were eliminated due to the correction of the initial scan 
heterogeneity and the adaptability of individuals to the 
surrounding states; hence, a total number of 170 values 
per individual was considered. Normalization of scans 
was performed to the MNI (Montreal Neurological Insti-
tute) space with a resolution of 3 × 3 × 3 mm3 and correc-
tion of head movement according to Friston 24-parameter 
model [33] .According to the AAl (automated anatomical 
labelling) atlas, the pre-processed data were partitioned 
into 116 regions. [34]. The number of regions V = 30 
affected by autism, including regions in the default mode 
network (DMN), were selected to compare data charac-
teristics with simulation scenarios [35, 36].

Results
Simulation data
Table  1 displays the results of the simulation scenarios 
with ρ = 0.3. Based on the identity scaled structure, the 
power was above 0.90 in sample size N= 25, regardless 
of the heterogeneity amount and the number of regions. 
In the number of regions above 20 and the sample size of 

Fig. 1  Process of the proposed approach to determine differentially expressed FC patterns between case and control groups
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10 and 25, the type I error rates formed on identities scaled 
and compound symmetry structures were close to 0.05. 
Based on the compound symmetry structure, the model 
had acceptable power values without affecting the degree 
of heterogeneity in the sample size N=25 and V > 20.

Table  2 shows the results of the simulation scenarios 
with ρ = 0.5. In a sample size N=25, the power based on 
both structures of between-subject variability was greater 
than 0.8, regardless of the number of regions and hetero-
geneity. The model demonstrated acceptable values of 

power in the identity scaled structure when N=10 and 
V = 30. The type I error was close to 0.05 in most scenarios 
for the region numbers of 20 and 25.

Table  3 shows the results of the simulation scenarios 
with ρ = 0.7. Based on the identity scaled structure, the 
power was above 0.80, regardless of the number of regions, 
heterogeneity, and sample size. However, according to 
the compound symmetry structure, the model had lower 
power in most scenarios. In more than half of the simula-
tion items, the type I error was less than or equal to 0.05.

Table 1  Type I error and power of the model to check differentially expressed FC patterns between two groups in term of simulation 
setting: sample size N, structure of between-subject variability, number of regions V, degree of heterogeneity and dependence among 
the edges ρ = 0.3

p = 0.3 Compound Symmetry Scaled

Heterogeneity Heterogeneity

V N Low High Low High

Type
 I 
Error

20 10 0.090 0.060 0.090 0.090

25 0.050 0.050 0.030 0.050

25 10 0.020 0.000 0.050 0.050

25 0.050 0.010 0.040 0.040

30 10 0.060 0.060 0.050 0.050

25 0.070 0.060 0.070 0.070

Power 20 10 0.290 0.280 0.510 0.510

25 0.550 0.500 0.980 0.960

25 10 0.470 0.480 0.610 0.590

25 0.920 0.890 1.000 1.000

30 10 0.650 0.650 0.760 0.750

25 0.990 0.960 1.000 1.000

Table 2  Type I error and power of the model to check differentially expressed FC patterns between two groups in term of simulation 
setting: sample size N, structure of between-subject variability, number of regions V, degree of heterogeneity and dependence among 
the edges ρ = 0.5

p = 0.5 Compound Symmetry Scaled

Heterogeneity Heterogeneity

V N Low High Low High

Type
 I 
Error

20 10 0.050 0.020 0.050 0.070

25 0.070 0.050 0.040 0.040

25 10 0.030 0.030 0.050 0.050

25 0.020 0.030 0.040 0.040

30 10 0.050 0.060 0.050 0.050

25 0.100 0.090 0.070 0.070

Power 20 10 0.340 0.340 0.660 0.650

25 0.870 0.960 0.990 0.990

25 10 0.420 0.430 0.750 0.730

25 0.980 0.990 1.000 1.000

30 10 0.640 0.680 0.900 0.880

25 0.990 1.000 1.000 1.000
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In summary, the power based on identity scaled struc-
ture in a sample size of 25 exhibited values greater than 
0.90 without influencing the degree of correlation, het-
erogeneity, and the number of regions. This index had 
values above 0.80 in the small sample size and ρ = 0.7. In 
most scenarios, the type I error was near to the nominal 
level. With increasing the number of regions in the sam-
ple N = 25 and ρ= 0.3,0.5, the power based on compound 
symmetry structure was greater than 0.80. When there 
was a high correlation and a small sample size, however, 
the model yielded lower power. In most simulation items 
with high heterogeneity, the type I error based on com-
pound symmetry structure was near to the nominal level.

Autism data
The proposed model in the current study was used to 
compare brain connectivity patterns between healthy 
individuals and patients with autism. Firstly, the estima-
tion correlation coefficient and clustering of brain regions 
were calculated using the nonparametric Bayesian 
method to consider the network topological features. In 
this method, the brain network regions were divided into 
four clusters, K = 4, which the largest cluster consisted of 
14 regions. Then the covariance matrix with dimensions 
of 435 × 435 was obtained using the dependency struc-
ture of clusters. Following that, the FC patterns between 
the patient and healthy groups were compared by con-
sidering the effect of heterogeneity. Based on compound 
symmetry and identity scaled structures, the test statistic 
values were 20.28(p = 0.517) and 21.68(p = 0.457), respec-
tively. These results indicate no significant difference in 

entire FC networks between patients and healthy individ-
uals. Additionally, the Pard algorithm proposed by Chen 
et al. (2015) and the aSPU method proposed by Pan et al. 
(2014) were used to examine the differences in FC pat-
terns [10, 37]. These models also displayed no significant 
FC networks between the two groups.

The FC comparisons of the pair ROIs were performed 
using test statistics of Eq. (6). Figure 2 depicts the differ-
ent edges between the healthy and patient groups in three 
forms: axial, coronal, and sagittal views. In this chart, the 
increase of functional relationship of the healthy indi-
viduals compared to autism patients is manifested with 
a green edge, and the decrease of functional relationship 
is manifested with a yellow edge. The results showed out 
of 435, 18 edges were significant using both structures of 
variability. However, due to the high number of multiple 
comparisons, the p-value was corrected using the FDR 
approach. Therefore, after p-values adjustment, there 
was no substantial difference in connectivity between the 
two groups. Table 4 provides more details of connectivity 
changes between brain regions.

Discussion
Simulation data
To perform statistical inference on FC data, it seems 
necessary to consider the properties of heterogene-
ity between subjects and the dependency structure 
among edges. In previous studies, the spatial close-
ness between the regions defines the spatial struc-
ture [13–16, 38]. Accordingly, given that four regions 
define a pair of edges, it is difficult to consider the 

Table 3  Type I error and power of the model to check differentially expressed FC patterns between two groups in term of simulation 
setting: sample size N, structure of between-subject variability, number of regions V, degree of heterogeneity and dependence among 
the edges ρ = 0.7

p = 0.7 Compound Symmetry Scaled

Heterogeneity Heterogeneity

V N Low High Low High

Type
 I 
Error

20 10 0.050 0.020 0.070 0.070

25 0.040 0.010 0.040 0.030

25 10 0.030 0.060 0.050 0.050

25 0.080 0.060 0.040 0.040

30 10 0.030 0.050 0.070 0.080

25 0.080 0.050 0.070 0.070

Power 20 10 0.070 0.050 0.910 0.900

25 0.150 0.250 1.000 1.000

25 10 0.100 0.110 0.880 0.870

25 0.190 0.400 1.000 1.000

30 10 0.200 0.260 1.000 1.000

25 0.600 0.770 1.000 1.000
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distance between the edges in statistical models. On 
the other hand, the dependency between the edges is 
not necessarily limited to the spatial adjacency of the 
four regions. It can be related to the network topologi-
cal structure. Recently, Chen et  al. (2020) proposed a 
nonparametric Bayesian model based on network 
topological features to model the dependency struc-
ture of edges. However, this model does not include 
the heterogeneity effect between subjects which leads 
to accurate estimation of the parameters. The sta-
tistical model proposed in the present study inves-
tigates the FC network equality between the patient 
and healthy groups by combining the nonparametric 
Bayesian model for estimating the dependency struc-
ture between the edges and the algorithm proposed by 
Fiecas et al. (2017) for considering the heterogeneity of 
subjects [23, 24].

Simulation data showed that the power improves by 
increasing the correlation between the edges, based on 
identity scaled matrix structure. Accordingly, the Bayes-
ian model proposed by Chen et al. (2020) had high accu-
racy when the correlation was above 0.3 [23]. These 
results indicate that model performance increases when 
detecting the network topological structure at higher 
correlations.

In the compound symmetry structure, the power was 
affected by the number of regions, sample size, and the 
edges correlation. Based on compound symmetry and 
identity scaled structures, the type I error was near to the 
nominal level when data dimensions and heterogeneity 
were high. In this regard, Fiecas et  al. (2017) presented 
a variance component model by applying heterogene-
ity between subjects and temporal dependency, whose 
performance was similar to the proposed model based 
on compound symmetry structure in terms of statistical 

power and type I error. However, in the proposed model, 
the power based on identity scaled structure yielded a 
higher value than the variance component model study 
without limiting the amount of heterogeneity and the 
number of regions in the sample size of 25 [24]. Accord-
ingly, correct modelling of the dependency structure 
between the edges can improve the accuracy of estimat-
ing the model parameters and the power of the statistical 
test.

In FC studies, the scale of inference (i.e., at the edge, 
cluster or network scale) can significantly affect the 
results of statistical tests. It was recently shown that 
network-based analysis improves the power to capture 
average-size effects [39]. Consequently, it is important 
that the proposed model includes levels of inference from 
both the network and individual edges.

Another advantage of the proposed model compared 
to Fiecas et  al.’s (2017) model is the improvement of 
computational power from 190 to 435 edges. How-
ever, since the interactions between the brain regions 
in high dimensions often show network topological 
features, applying more than 30 regions is one of the 
model’s limitations due to the high computational 
cost and time. Figure  3 shows the computational time 
of the permutation test in different dimensions and 
the sample size of 10 and 25 on a computer with an i8 
CPU and 16G RAM. In order to avoid computing dif-
ficulties, structures with a small number of parameters, 
including the identity scaled and compound symmetry, 
were used in this study to estimate the between-subject 
covariance. Therefore, any covariates were not consid-
ered in the model. On the other hand, Pard and aSPU 
models are some of the existing methods for evaluat-
ing FC networks, with no limitations in the dimensions 
of connectivity data [10, 37]. Since there are different 

Fig. 2  Differentially expressed edges by proposed method: green edges show a connectivity increase between regions of the brain of healthy 
individuals compared to the patient group, and yellow edges show a connectivity decrease
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patterns of functional connectivity for each subject 
[29], the heterogeneity effect between subjects is not 
included in these models.

Autism data
Estimating the FC patterns can provide a better under-
standing of the pathologies related to neurodegenerative 
diseases such as autism, and thus is essential in clinical 
research. The proposed statistical model in the current 
study was applied to resting-state fMRI data obtained 
on 25 patients with autism and 25 healthy individuals. 
There was no substantial difference in entire FC networks 

between the patient and healthy groups, which was con-
sistent with the findings of the models proposed by Pan 
et al. (2014) and Chen et al. (2015) [10, 37]. These results 
contradict the results of previous studies examining the 
functional connectivity patterns of autistic patients com-
pared to healthy individuals, which could be due to a 
large number of regions and the high sample size inves-
tigated in these studies [35, 40, 41]. The proposed model 
is applicable to the analysis of whole-brain connectivity 
data in practice. However, when there were more than 30 
regions, the model’s only shortcoming was the high com-
putation time (Fig. 3). The model can be used with large 

Table 4  Differentially expressed edges by proposed method; the    symbol shows a connectivity increase between brain regions in 
healthy individuals compared to the patients group. The   symbol shows a connectivity decrease.

* Parameter estimation of the edges between regions in patient and healthy group

Further details on the full names of the regions are available in the appendix.
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sample sizes as well. Nevertheless, in order to compare 
real data characteristics with the simulated scenarios, a 
sample size of 25 was considered for each patient and 
healthy group.

Another hypothesis in the proposed statistical model is 
the FC comparisons of pair regions. In this regard, the per-
mutation test showed the difference in the functional con-
nectivity of several regions between patients and healthy 
groups regardless of p-value adjustment. Most of these 
changes were related to DMN network regions, including 
frontal superior medial, cingulum (anterior and posterior), 
praecuneus, and angular. For example, in the patient group, 
there was a connectivity decrease of the right posterior cin-
gulate region with the left superior frontal (dorsolateral), 
left middle frontal regions, and the right anterior cingu-
late region with the left middle frontal (orbital part). On 
the other hand, there was an increase in the dependency 
amount of the right frontal superior medial with the left 
superior frontal gyrus (medial orbital), and the left angu-
lar with the left rectus. Accordingly, several studies have 
reported functional connectivity changes of DMN regions 
in autism patients. [42–44]. DMN is one of the most 
important brain networks whose function changes under 
the influence of neurological disorders such as autism. 
These functional changes have a substantial impact on cog-
nitive functions. [45].

Conclusion
This study presents a new approach for determining dif-
ferentially expressed FC patterns between two groups, 
in which heterogeneity between subjects and the struc-
ture of dependency among edges are simultaneously 
considered. Simulation data indicated the high power 
and near-nominal type I error rates in the proposed 
model. Additionally, the application of the model on 

real data related to autism was also evaluated, and there 
was no significant difference in the functional connec-
tivity network between the patient and healthy groups.
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