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The molecular landscape of high-risk early breast cancer:
comprehensive biomarker analysis of a phase III adjuvant
population
Timothy R Wilson1, Jianjun Yu2, Xuyang Lu2, Jill M Spoerke1, Yuanyuan Xiao2, Carol O’Brien1, Heidi M Savage1, Ling-Yuh Huw1,
Wei Zou2, Hartmut Koeppen3, William F Forrest4, Jane Fridlyand2, Ling Fu1, Rachel Tam1, Erica B Schleifman1, Teiko Sumiyoshi1,
Luciana Molinero1, Garret M Hampton1, Joyce A O’Shaughnessy5,6,7 and Mark R Lackner1

Breast cancer is a heterogeneous disease and patients are managed clinically based on ER, PR, HER2 expression, and key risk factors.
We sought to characterize the molecular landscape of high-risk breast cancer patients enrolled onto an adjuvant chemotherapy
study to understand how disease subsets and tumor immune status impact survival. DNA and RNA were extracted from 861 breast
cancer samples from patients enrolled onto the United States Oncology trial 01062. Samples were characterized using multiplex
gene expression, copy number, and qPCR mutation assays. HR+ patients with a PIK3CA mutant tumor had a favorable disease-free
survival (DFS; HR 0.66, P= 0.05), however, the prognostic effect was specific to luminal A patients (Luminal A: HR 0.67, P= 0.1;
Luminal B: HR 1.01, P= 0.98). Molecular subtyping of triple-negative breast cancers (TNBCs) suggested that the mesenchymal
subtype had the worst DFS, whereas the immunomodulatory subtype had the best DFS. Profiling of immunologic genes revealed
that TNBC tumors (n= 280) displaying an activated T-cell signature had a longer DFS following adjuvant chemotherapy (HR 0.59,
P= 0.04), while a distinct set of immune genes was associated with DFS in HR+ cancers. Utilizing a discovery approach, we identified
genes associated with a high risk of recurrence in HR+ patients, which were validated in an independent data set. Molecular
classification based on PAM50 and TNBC subtyping stratified clinical high-risk patients into distinct prognostic subsets. Patients
with high expression of immune-related genes showed superior DFS in both HR+ and TNBC. These results may inform patient
management and drug development in early breast cancer.
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INTRODUCTION
Breast cancer is a heterogeneous disease that is categorized
clinically by immunohistochemical (IHC) staining of the three
receptors; estrogen receptor (ER), progesterone receptor (PR), and
the human epidermal growth factor receptor-2 (ERBB2/HER2).1

Seminal studies in the early 2000s demonstrated that gene
expression signatures could classify breast cancers into distinct
and reproducible molecular subgroups.2–5 In essence, breast
cancer can be molecularly classified into luminal A and luminal
B subgroups that are mostly comprised of hormone-receptor-
positive (HR+) breast cancers; a basal-like subgroup that is
mostly comprised of triple-negative breast cancers (TNBC); a
HER2-enriched subgroup that is mostly comprised of HER2+ breast
cancers and a normal-like subgroup that has been proposed to
be mostly comprised of the contaminating tumor-surrounding
stroma.6 PAM50 predicted subtypes within a defined IHC
subgroup have prognostic implications, in that the luminal A
subgroup has a better prognosis than the luminal B subtype.
More recently, Prat et al. demonstrated that the HER2-enriched
subgroup within HER2+ patients had a better outcome to
trastuzumab-based therapy when compared with the non-HER2-
enriched subgroup.7

Large genomic analyses have provided crucial insights into the
genetic landscape of breast cancer.8–14 For example, a high
prevalence of PIK3CA mutations and cyclin D1 amplification are
observed in the luminal subtypes, whereas a high prevalence of
mutation in TP53 and alterations in DNA repair enzymes are
observed in the basal-like subtype of breast cancer. These findings
suggest that breast cancer is a complex and heterogeneous
disease wherein distinct subtypes have diverse biological drivers.
Recently, Curtis et al.8 demonstrated that breast cancer can be
further subdivided into 10 subtypes based on the composite DNA
copy number and RNA gene expression signatures, each of which
have prognostic implications. Furthermore, using microarray data,
Lehmann et al.15 were able to identify six molecular subtypes
within TNBC, each with prognostic implications. These obser-
vations highlight the heterogeneity that exists even within IHC-
defined breast cancer subtypes. Interestingly, in the study by
Lehmann, clinically actionable targets could be identified within
each molecular subtype, suggesting that future therapeutic studies
in TNBC should be conducted in biomarker-defined populations.
Finally, recent advances in the area of cancer immunotherapy have
shown that tumors with tumor infiltrating lymphocytes (TILs) have
a higher pathological complete response (pCR) rate in the
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neoadjuvant setting, especially in TNBC and HER2+ cancers,16–19

suggesting that immunologically active tumors are more likely to
achieve an optimal clinical response to anti-cancer therapies.
Clinical studies that assess the efficacy of experimental agents

commonly characterize patients based on ER, PR, and HER2 IHC
status and generally do not incorporate molecular subtype
information into treatment decisions. In addition, most of the
large-scale genomic profiling efforts published to date have
focused on heterogeneous patient populations rather than the
defined patient subsets that are often enrolled in clinical trials.
The USO1062 phase III trial enrolled 2,611 high-risk early breast
cancer patients defined by tumor size, nodal status and/or
negativity for hormone receptors (T1–3, N1–2, M0; or T42 cm,
N0, M0; or T41 cm, N0, M0 and both ER- and PR-negative), who
were randomized to standard anthracycline/taxane chemotherapy
with or without the addition of capecitabine. After a median
follow-up of 6.4 years, 346 disease-free survival (DFS) events were
observed and no improvement in DFS was observed (hazard ratio
(HR), 0.84; 95% confidence interval, 0.68 to 1.04; P=0.1136).20 Little
is known about the molecular landscape in a clinically defined
high-risk population, therefore we aimed to define the impact of
tumor heterogeneity on therapeutic benefit and overall prognosis
in this patient population. We molecularly profiled 861 patients’
primary breast cancers using an 800-gene expression panel, a
35-gene copy-number alteration (CNA) panel and a PIK3CA
mutation assay. We found that molecularly defined patient subsets
showed differences in outcome following treatment with adjuvant
chemotherapy and that the breast cancer subtypes contain
genomic alterations that provide new therapeutic hypotheses.

RESULTS
Molecular profiling of the USO 01062 patient population
To profile the molecular heterogeneity of patients enrolled onto
this study, we developed a custom 800-gene expression panel

that is comprised of various gene and pathway signatures relevant
to breast cancer biology, a 35-gene CNA panel and a targeted
mutation panel. Of the 2611 intent to treat population (ITT)
enrolled onto the study, 1,539 patients had tissue available for
exploratory biomarker analysis (biomarker evaluable population,
BM). No prognostic imbalances or differences in clinicopatholo-
gical features were observed between the ITT and BM populations
(Supplementary Figure 1 and Supplementary Table 1). Of the 1539
BM samples, nucleic acid was successfully extracted from 1181
tissue samples and subsequently profiled on the custom designed
800-gene expression panel. Eight hundred and sixty one samples
had gene detection rate 475% (Supplementary Figure 2). Among
861 samples, 816 samples could be categorized into PAM50 sub-
types with reasonable prediction confidence (prediction prob-
ability40.4, Supplementary Figure 3). We identified 327 (40%)
tumors as luminal A, 124 (15%) as luminal B, 69 (8%) as HER2-
enrichded and 296 (36%) as basal-like. As expected, predicted
genes and Ki67 were expressed in the appropriate subtypes
(Supplementary Figures 4 and 5). For the basal and luminal
subtypes, greater than 80% of the patients were classified as TNBC
and HR+, respectively (Supplementary Figure 3). The most hetero-
geneous group was the HER2-enriched group in which only 41 out
of the 69 classified as HER2-enriched were HER2+ (59.4%).
Of the 816 patients with the intrinsic subtype data, a subset of

700 tumor samples were also successfully run on the CNA panel
(Figure 1). Luminal B tumors had higher expression of cell cycle
and receptor tyrosine-kinase-related genes (e.g., CCND1, FGFR1,
IGF1R, MYC) compared with luminal A tumors (Figure 1 and
Supplementary Table 2). Cyclin E1 (CCNE1) was amplified in both
the HER2-enriched and basal-like subgroups compared with the
luminal subtypes (4% and 5%, respectively).

Prognostic effects of the PAM50 intrinsic subtypes
As previously reported, the addition of capecitabine to adjuvant
chemotherapy did not demonstrate a statistically significant effect

Figure 1. Molecular landscape of high-risk early breast cancer. Tumor samples are grouped according to intrinsic subtype; luminal A (n= 285),
luminal B (n= 104), HER2-enriched (n= 56), and basal-like (n= 255). Red denotes IHC-positive cases, orange denotes PIK3CA mutation positive
cases, green denotes copy-number amplified cases, white denotes wild-type or IHC-negative cases, and gray denotes no result available. IHC,
immunohistochemical.
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on DFS after a 5-year follow-up.20 Given the low number of events
overall (13%), we pooled the control and experimental arms to
test the relationship of PAM50 intrinsic subtypes with prognosis
for patients receiving adjuvant chemotherapy, and observed
results consistent with those previously reported (Figure 2a).
Of note, only ~ 30% of the HER2+ patients received adjuvant
trastuzumab following chemotherapy when adjuvant trastuzumab
became available, which likely explains the poor prognosis of the
HER2-enriched subtype.
We found that 92.4% HR+ BC were determined to be either

luminal A or B, 86.8% TNBC as basal-like and 40.6% HER2+ BC as
HER2-like (Supplementary Figure 3), therefore we assessed the
prognostic significance of the intrinsic subtype differences within
IHC subtypes (Figure 2b). Within the HR+ IHC group, the luminal B
subtype had a significantly worse DFS compared to the luminal A
subtype (HR, 2.07; P= 0.01). Within the TNBC IHC subgroup, no
significant differences were observed between PAM50-predicted
basal versus non-basal subtypes (HR, 1.15; P= 0.71). Interestingly,
within the HER2+ IHC subtype, the non-HER2-enriched subtype
showed a marginally favorable prognosis compared to the HER2-
enriched subtype (HR, 0.36; P= 0.07). The non-HER2-enriched
subtype included 23 HR− and 36 HR+ tumors with no apparent
differences in DFS observed (HR: 0.38 and HR: 0.35, respectively).

Predictive effect for the addition of capecitabine to adjuvant
therapy within the PAM50 intrinsic subtypes
As the addition of capecitabine to adjuvant therapy showed no
statistical benefit across IHC subtypes,20 we evaluated whether
there was any differential benefit from capecitabine within the

PAM50 intrinsic subtypes. As shown in Figure 2c, no differences
were seen within the HER2-enriched, luminal A or luminal B
subtypes with the addition of capecitabine versus not. However, a
non-significant increase in DFS was observed in the basal-like
subtype with the addition of capecitabine to standard adjuvant
chemotherapy (HR, 0.75; P= 0.26, Figure 2d), which is similar to
that observed in the TNBC population from the primary report (HR,
0.62; n= 780).20

Prevalence and prognostic effects of PIK3CA mutations
PIK3CAmutations were seen at a prevalence of 46% in the luminal A
subtype, 35% in the HER2-enriched subtype, 26% in the luminal B
subtype and 3% in the basal subtype (Figure 3a; Supplementary
Figure 6a). Mutations in PIK3CA were found to be prognostic
within the HR+ subset of patients (HR, 0.66; P=0.052; Figure 3b),
with little outcome difference observed between exon 9 and exon
20 mutations (Supplementary Figure 6b). This effect appeared to be
more driven by the Luminal A subset, although it did not reach
statistical significance (Figure 3C, HR 0.67; P=0.1).

Heterogeneity of TNBC tumors and response to treatment
TNBC is a heterogeneous subtype that can be molecularly
subtyped using gene expression profiling.15 As demonstrated in
Figure 4a,b, RNA profiling of the 280 triple-negative patients,
defined by IHC, clustered patients into distinct subgroups based
on a subset of the Lehmann et al. gene list. The basal-like (BL) 1
and 2 subgroups clustered closely and accounted for 28%
and 22%, respectively, the immunomodulatory (IM) subgroup
accounted for 12%, the mesenchymal-like (M) accounted for 14%

Figure 2. Effect of intrinsic subtypes on outcome. (a) Pooled arm analysis showing Kaplan–Meier curves of PAM50 status and DFS. (b) Forest
plot depicting the effect of PAM50 status within IHC-defined subtypes. Her2E denotes HER2-enriched. In each subtype, the reported hazard
ratio (HR) is calculated for DFS by comparing the two groups with the reference group being the top one. (c) Plot showing the effect of the
addition of capecitabine to adjuvant chemotherapy with PAM50-defined subtypes. (d) Kaplan–Meier graph demonstrating the effect of
capecitabine in the basal-like subgroup. A denotes doxorubicin, C denotes cyclophosphamide, T denotes docetaxel and X denotes
capecitabine. DFS, disease-free survival; IHC, immunohistochemical.
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and mesenchymal stem-like (MSL) subgroup accounted for 13%.
Last, the luminal androgen receptor (LAR) accounted for 10% of
the population and was largely predicted to be either HER2-
enriched (55%) or luminal A (38%) based on PAM50 subtyping and
accounted for the majority of PIK3CA mutations (65%) observed
within the TNBC population (Figure 4a). Notably, distinct out-
comes were observed in these subtypes with the M subgroup
having the worst prognosis and the IM and MSL subtypes
displaying the most favorable prognosis (Figure 4c).

Immune gene profiling in adjuvant breast cancers
Tumor lymphocyte infiltration has been demonstrated to correlate
with pCR in the neoadjuvant setting.16–19 Supervised cluster
analysis of 88 immunologic and immune-related genes found that
immune-high and low populations could be identified in all
subtypes of breast cancer (Supplementary Figure 7). Immune-high
tumors correlated with improved DFS in the TNBC population
(P= 0.04, Figure 5a), showed a marginal improvement on DFS in
the HR+ population and did not reach significance in the HER2+

population, likely due to limited sample size. Analysis of individual
immune-related genes with outcome within the TNBC population
revealed that genes involved in T-cell mediated cytotoxicity
(e.g., GZMA, PRF1, PDL2, CD8A, and so on, Figure 5c) correlated
with a better DFS outcome. Expression of five immune-related
genes correlated with a poorer DFS outcome in TNBC patients
(B7H3, CD24, CD29, IL8, and LY6E). Within HR+ breast cancer, higher
expression of immunologic genes trended to have a more
favorable DFS rate compared to tumors with low expression,
although did not reach significance (P= 0.06, Figure 5b). These
genes were largely different to those identified in the TNBC
tumors, in that genes associated with chemokine receptors (e.g.,
CCR5, IL6R and IL7R) and chemokine ligands (e.g., CCL19, CXCL10
and CXCL13) correlated with a better clinical outcome (Figure 5d).

Interestingly, we found that the genes CD22, CD45, and CD27,
which are associated with B-cell activation and in mediating
B-cell–B-cell interactions, also correlated with a better outcome in
HR+ tumors. Similar to the situation in TNBC (HR 1.93, P= 0.02),
CD24 expression correlated with a poorer outcome in HR+ cancers
(HR 1.91, P= 0.01).

Identification of genes associated with risk of recurrence within 5
years in patients receiving adjuvant chemotherapy
Identification of patients whose disease is most likely to recur
within 5 years of adjuvant therapy represents a high unmet clinical
need, since better understanding of this population could lead to
more specific therapeutic interventions. We identified 35 genes
whose expression was associated with a 5-year risk of recurrence
in the HR+ population of greater than 1.5-fold difference between
the high- and low-risk groups and a false discovery rate of 0.05
(Figure 6a). Of the 35 genes identified, low expression of only one
gene (ANLN) was associated with a lower risk of recurrence,
whereas higher expression of the remaining 34 genes correlated
with a lower risk of recurrence. Not surprising, a subset of the
genes identified (e.g. ANLN, MLPH, BCL2, ESR1, and SCUBE2) were
associated with already known prognostic signatures, such as
PAM50 and OncotypeDx.6,21 Next, to validate the prognostic role
of the 35 genes, we utilized an independent data set from the
publically available METABRIC project.8 Of the 35 genes identified
in the training set, 18 were found to significantly associate with
5-year disease-specific survival (DSS) in the test set (Figure 6b).
Similar to the training set, a proportion of the genes
were associated with known prognostic signatures, however,
several genes that are not previously reported in known
prognostic signatures, including as RERG, PCDC4, MAP3K1, CCL19,
and ABI3BP, were validated in the independent data set. We next
examined the association of the 18 prognostic genes with a panel

Figure 3. Prevalence and prognostic role of PIK3CA mutations. (a) Bar graph showing the prevalence of PIK3CA mutations within intrinsic
subtypes. (b) Kaplan–Meier graph showing the prognostic role of PIK3CA mutations in HR+ breast cancer patients. (c) Univariate CoxPH model
assessing the prognostic role of PIK3CA mutations within luminal A and B cancers. HR+, hormone receptor positive.
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of 17 proliferation genes previously described to drive prognosis
within the IHC subtypes.22 We did not observe a strong correlation
between the 18 identified genes, with the exception of ANLN,
which was highly correlated with all 17 proliferation genes
(Supplementary Figure 8C). In the TNBC population, low expres-
sion of 5 genes were found to correlate with a higher 5-year risk of
recurrence in the training set, but did not reach significance at the
5-year DSS endpoint in the validation set (Supplementary
Figure 8).

DISCUSSION
Breast cancer is a heterogeneous disease generally accepted to
have at least five distinct subtypes that can be defined by gene
expression alone, and up to 10 subtypes when analyzed using
integrated CNA and gene expression profiles.6,8 We molecularly
characterized 861 samples from patients enrolled onto a phase 3
clinical trial that assessed the efficacy of adding capecitabine to
standard adjuvant chemotherapy in high-risk early breast cancer
patients. A key question in this patient population is the molecular
definition of high-risk characteristics in order to identify patients
who may benefit from cytotoxic therapy, and to identify predictors

of poor prognosis that can be targeted therapeutically. Previous
analyses of this patient population showed that patients whose
cancers had low proliferation rates based on central Ki67
assessment had low recurrence rates and were less likely to
benefit from the addition of capecitabine.20 Here we sought to use
molecular analyses to more precisely define the high- and low-risk
patients within this study population.
Intrinsic subtyping with the PAM50 algorithm suggested that

the basal-like and HER2-enriched subtypes had the shortest DFS,
consistent with results in other cohorts and likely reflecting the
fact that most patients did not receive HER2-targeted therapies.
We found that ~ 84% of the TNBC were classified as basal-like by
PAM50 analysis, and that these patients showed a non-significant
improvement in DFS with the addition of capecitabine. These
results are similar to those from the FinXX study trial that showed
the addition of capecitabine to adjuvant therapy improved
recurrence-free survival in the TNBC population,23 and also from
the ABCSG-24 study that demonstrated the addition of neoadju-
vant capecitabine increased pCR rate in TNBC patients.24

Mutations within the PIK3CA gene are the second most
common mutation in breast cancer.12 PIK3CA mutations in the
basal subtype were largely confined to the LAR subtype, which

Figure 4. Prevalence and prognostic implications of molecular subtypes within TNBC. Heatmap (a), prevalence (b) and prognostic role (c) of
the Lehmann et al.15 molecular subtypes within triple-negative breast cancer patients. PAM50-defined subtype and PIK3CAmutation status are
indicated in (a). BL1, basal-like 1; BL2, basal-like 2; IM, immunomodulatory; LAR, luminal androgen receptor; M, mesenchymal; MSL,
mesenchymal stem-like; TNBCs, triple-negative breast cancers.
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has been previously reported to harbor a high prevalence of
PIK3CA mutations.25 Within the luminal subtype, PIK3CA is the
most commonly mutated gene and has been demonstrated to be
a good prognostic factor in early stage disease.26 However, in a
recent large adjuvant study, PIK3CA mutations were not found to
be an independent prognostic factor in a multivariate analysis.27

As PIK3CA mutations are more common in the luminal A subtype,
it is plausible that classifying tumors by PIK3CA mutation status
may artificially select for a more favorable prognostic group.
Interestingly, when controlled for intrinsic subtype, we found that
the favorable prognosis associated with a PIK3CA mutation was
only driven within the luminal A, but not in the luminal B subtype,
although the difference did not reach statistical significance.
In addition to being characterized as basal or non-basal, TNBC

have recently been defined further using RNA profiling by
Lehmann et al.15 Furthermore, Masuda et al., demonstrated the
prognostic significance of these subtypes, suggesting that the IM
and LAR subtypes had an increased rate of distant metastasis-free
survival, whereas the BL2 and M subtypes had the lowest rate.28

We assessed representative genes (n= 438) from the Lehmann
signature, and were able to categorize TNBC into the published
molecular subtypes. Similarly, we found that the IM subgroup had
the most favorable DFS, whereas the M subtype had the worst.
However, in contrast to the Masuda et al. findings, in our study the
LAR subtype had a worse prognosis, whereas the MSL had a better

prognosis, perhaps because the MSL subtype, like the IM subtype,
expresses high levels of immune-associated genes.
Recently, Denkert et al.16 profiled 12 immunologic genes

including T- and B-cell markers, chemokines and immune
checkpoint modulators and demonstrated a strong correlation
with TIL infiltration that was significantly associated with achieving
pCR following neoadjuvant therapy in TNBC and HER2+ patients.
Loi et al.18 and Perez et al.29 have recently showed that an
activated immune response is associated with benefit from
trastuzumab-based therapies in the adjuvant setting, suggesting
that the association of TIL infiltration and pCR seen in the
neoadjuvant setting will likely translate into improved DFS in the
adjuvant setting. In our study, we show that increased expression
of the T-cell mediated cytotoxicity genes GZMA, GZMB, and PRF1
correlated with improved DFS in TNBC patients. We also show that
the checkpoint-related genes PDL2 and CTLA4 correlated with an
improved DFS, suggesting that TNBC’s primed for an activated
T-cell response may benefit differentially from adjuvant che-
motherapy. Interestingly, we observed a different immune
signature in the HR+ population, identifying genes involved in
cytokine and chemokine signaling as well as genes involved in
B-cell activation and interaction that correlated with improved
DFS, observations that warrant future investigations in indepen-
dent studies. We also found that high expression of the adhesion
molecule CD24 correlated with poorer DFS in both TNBC and HR+

Figure 5. Role of immunologic and immune-related genes in TNBC and HR+ breast cancers. (a, b) Kaplan–Meier curves demonstrating
the prognostic effect of the immune-high population (red) compared with the immune-low population (green) in TNBC (a) and HR+ breast
cancer (b). (c, d) Forest plots showing the linear analysis of the significantly associated genes with clinical outcome, adjusted by treatment in
both TNBC (c) and HR+ breast cancer (d). HR+, hormone receptor positive; TNBCs, triple-negative breast cancers.

Genomic analysis of a high-risk eBC population
TR Wilson et al

6

npj Breast Cancer (2016) 16022 Published in partnership with the Breast Cancer Research Foundation



breast cancers. Expression of CD24 in preclinical mouse models
has been shown to promote breast cancer metastasis by
increasing both proliferation and adhesion.30 These results are
timely given the fast paced development of cancer immuno-
therapy agents, as they suggest a role for such agents in early
stage HR+ cancers in addition to HER2+ and TNBC.
Last, utilizing a discovery approach, we identified 18 genes

associated with recurrence risk within 5 years in the HR+ popu-
lation. For example, the Ras-like, estrogen-regulated, growth-
inhibitor (RERG) gene, which has been previously shown to
correlate with favorable biology in ER+ disease.31,32 The precise
functional role of RERG is unknown, but expression of the protein
has been shown to result in reduced growth and tumor formation
in mice. Secondly, the tumor suppressor, programmed cell death 4
(PDCD4), has been shown to inhibit the translation machinery by
binding to the translational initiation factor eIF4A. Decreased
expression of PDCD4 has been linked with resistance to aromatase
inhibitors in preclinical models, while high expression is associated
with a good outcome in HR+ disease.33,34 Thirdly, MAP3K1, a
serine–threonine kinase, has been shown to mediate apoptosis
through activation of the JNK proapoptosis protein.35 Interest-
ingly, somatic inactivating mutations in MAP3K1 are present in 8%
of breast cancers, with luminal A tumors having a higher mutation
rate than luminal B tumors.10–12

In conclusion, we molecularly characterized breast cancers
obtained from high-risk patients enrolled onto a phase 3 adjuvant
chemotherapy study. We found that patients with basal-like breast
cancer had a trend towards increased DFS with the addition of
capecitabine to adjuvant chemotherapy. We also show that TNBCs
that displayed an activated T-cell cytotoxicity signature had a
superior outcome compared with TNBCs that did not display the
activated T-cell signature. Finally, we demonstrate that increased
expression of CD24 correlated with a worse DFS in both TNBC and
HR+ breast cancers. Although retrospective in nature and requiring
prospective validation in future studies, our findings suggest that

molecular subtyping can be used to further stratify patients
defined as ‘high-risk’ by clinical factors into distinct prognostic
subgroups. A number of these subgroups have clinically action-
able targets that could be tested as novel therapeutic interven-
tions in neoadjuvant or adjuvant studies. Early breast cancer
studies are challenging and take many years to complete due
to generally low rates of disease recurrence. Future studies in
this setting may benefit from enrolling high-risk patients based
on molecular classification in addition to clinicopathologic
parameters.

MATERIALS AND METHODS
USO01062 study
Patients were enrolled onto the parent study USO01062, A Randomized,
Open-Label, Multicenter, phase Ill Trial Comparing Regimens of doxor-
ubicin plus cyclophosphamide Followed by Either dodetaxel or dosetaxel
plus capecitabine as Adjuvant Therapy for Female Patients with High-Risk
Breast Cancer (clinicaltrials.gov/show/NCT00089479).20 Briefly, women
aged ⩾ 18 and o70 years with high-risk (T1–3, N1–2, M0; or T42 cm,
N0, M0; or T41 cm, N0, M0 and both ER- and PR-negative), operable,
histologically confirmed adenocarcinoma of the breast were assigned to
receive doxorubicin plus cyclophosphamide followed by docetaxel
or doxorubicin plus cyclophosphamide followed by docetaxel plus
capecitabine. Patients with HR+ disease received tamoxifen, an aromatase
inhibitor, or both, sequentially, for 5 years. After 2005, patients with
HER2- positive disease were offered 1 year of concurrent or post-study
trastuzumab.

Tissue collection
Formalin-fixed paraffin-embedded (FFPE) tumor samples were obtained
from (n= 1,539) breast cancer patients as part of the parent study. Tissue
samples were collected and analyzed following approval by the US
Oncology. Institutional Review Board and appropriate confirmation of
written informed consent. ER, PR, and HER2 status was determined by
local testing (Supplementary Appendix 1).

Figure 6. Genes associated with decreased 5-year DFS in HR+ patients. (a) Forest plot depicting the 35 genes associated with an increased risk
of recurrence within 5 years in HR+ patients. (b) Validation of high-risk genes utilizing the METABRIC data set.8 Genes that were significantly
associated with a 5-year disease-specific survival (DSS) are indicated in red. HR+, hormone receptor positive.
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Gene expression
Hematoxylin and eosin sections were prepared for all samples and were
reviewed by a pathologist to confirm diagnosis and assess tumor content.
RNA extraction and gene expression analysis was performed as previously
described.36 Briefly, FFPE sections were macrodissected to enrich for
neoplastic tissue followed by RNA extraction using the High Pure FFPE RNA
Micro kit (Roche Applied Sciences, Penzberg, Germany). Gene expression
was subsequently determined using the NanoString nCounter Analysis
System (NanoString, Seattle, WA, USA) on a custom designed 800-gene
panel tailored for breast cancer. Briefly, a total of 200 ng of RNA was
hybridized to the codeset overnight at 65 °C according to the NanoString
protocol. Samples were loaded onto the NanoString nCounter Prep Station
and read using the NanoString nCounter Digital Analyzer. Raw expression
data was then log2-transformed and normalized against included house-
keeping genes (Supplementary Appendix 2).
Of the 1,539 BM samples originally used to measure Ki67 protein

expression by IHC in the primary manuscript,20 DNA and RNA was
extracted from the remaining tissues. One thousand, one hundred and
eighty-one samples had sufficient RNA quantity and concentration (200 ng
at 50 ng/μl) to profile using the custom designed 800-gene expression
panel. Eight hundred and sixty one samples passed the QC metric of ⩾ 75%
gene detection rate (Supplementary Figure 2), which was defined as the
percentage of genes whose expression counts are larger than the 99.5%
confidence interval of expression counts of 8 negative controls for a given
sample. Of the 861 samples, 817 samples were further categorized into
PAM50 subtypes with prediction confidence 40.4 (Supplementary
Figure 3). RNA concentration of QC-failed samples was significantly lower
than QC-passed samples (Po2.2e− 16 (27 vs 49 ng/μl), Wilcoxon Rank
Test). Comparing 260/280 ratio of 2 or greater, more samples with lower
260/280 ratio resided in the QC-failed group (odds ratio = 6.38, P= 4.5e− 11,
Fisher’s Exact Test). A marginal association between QC failure and tumor
content between failed and passed samples (average tumor content:
29.7% vs 32.9% respectively), and also age of block (average age: 8.2 vs 7.9
years, respectively) was observed.

PIK3CA mutation analysis
Five-micron sections were cut from each FFPE tumor block and DNA
extracted using the QIAamp FFPE kit (Qiagen, Hilden, Germany) after
deparaffinization with Envirene, as described previously.36–38 DNA (160 ng)
from each sample was molecularly profiled using an internally developed
multiplex PCR somatic hotspot mutation assay (MUT-MAP) that detects
hotspot mutations in PIK3CA gene, as described previously.39,40 A list of
detected mutations are listed in Supplementary Appendix 3.

Copy-number alteration
Genomic FFPE DNA (200 ng) was subjected to 17 cycles of preamplification
using pooled gene specific primers at 50 nmol/l each and Taqman
Preamplification Master Mix (Life Technologies, Carlsbad, CA, USA)
according to the manufacture’s protocol. The preamplified samples were
diluted fivefold and qPCR was performed using Fluidigm (South San
Francisco, CA, USA) 96.96 Dynamic Arrays on the BioMark (Fluidigm)
system according to the manufacturer’s instructions. In brief, sample mix
contains DNA, Taqman Gene Expression Master Mix (Life Technologies),
DNA-binding sample loading reagent (Fluidigm) and EvaGreen dye
(Biotium, Fremont, CA, USA). Assay mix contains gene specific primer
pairs and sample loading reagent (Fluidigm). The Ct determination and
melt curve analyses were carried out using the Fluidigm gene analysis
software. Relative gene copy numbers were calculated using a two-way
ANOVAR41 script to normalize sample inputs and assay variations,
assuming the median copy number of all genes in all samples was 2.
Assays were designed and tested with standard curve of human-blood-
derived genomic DNA to have efficiency between 80 to 120% and similar
Cts. The majority of genes on the panel had three assays per genes and
final gene copy-number estimates are the average of all of the assays for
each gene (Supplementary Appendix 4).
One thousand two hundred and forty eight samples were ran on the

CNA assay that had 200ng DNA available and QC was performed, per
manufacturers’ instructions. CNA data from 700 samples that had matched
RNA expression data with prediction confidence 40.4 PAM50 subtype
calls were included in the analysis.

Molecular classification
PAM50 subtype prediction was carried out using a random-forest-based
classifier that was derived from an independent training set of 157 breast
cancer samples (data not shown) and 50 genes from the public PAM50
signature.6 We assigned PAM50 subtypes for the training samples based
on consensus calls from both public nearest-centroid based PAM50
classification and hierarchical clustering approaches to reduce platform
and population biases. Among them, 112 samples had consistent calls
from both approaches and formed the final training set. A random-forest
based classifier was then developed with an estimated out-of-bag error
rate of 7.1% and applied to predict new samples.
TNBC subtypes were examined on 280 HER2-/ER-/PR- samples by

hierarchical clustering with Pearson’s correlation distance and Ward’s
linkage method. Four hundred thirty eight genes that are previously
reported as differentially expressed in TNBC subtypes15 and present in the
custom 800-gene panel were used for clustering. Six major sub-clusters
were identified. To assign individual clusters to previously defined
subtypes, we examined associations of mean expression profile of
individual clusters with reported subtype-specific genesets15 by single-
sample GSEA.42 Individual clusters were then assigned to the subtype
with highest enrichment score.

Analysis of immune-related genes with clinical outcome
HR+ or TNBC samples were selected based on HER2, PR and ER IHC status.
Hierarchical clustering with 88 precompiled immunologic and immune-
related genes was performed using Manhattan distance and Ward’s
linkage method for HR+ or TNBC samples respectively. Association of
immune-high and immune-low clusters with DFS was analyzed using Cox
proportional hazards regression models and presented as Kaplan–Meier
estimates with HR and 95% confidence interval. Statistical significance was
assessed by a two-sided log-rank test and further adjusted for multiple
testing by the Benjamini–Hochberg method in individual gene analysis. All
analyses were carried out in R 3.2.

Identification of genes associated with a high-risk population
We compared expressions of individual genes from the custom 800-gene
expression panel between patients with DFS ⩽ 5 years and patients with
DFS45 years, within the subgroup of HR+/HER2- patients (n=49 and
n= 342 for DFS⩽ 5 years and DFS45 years, respectively), and within the
subgroup of triple-negative patients (n=54 and n= 209 for DFS⩽ 5 years
and DFS45 years, respectively). A two-sample t-test is used to compare
the log-transformed expression level of each gene in each sub-
group. Regression diagnostics were performed to investigate normality
and homoscedasticity, and normal distribution and similar variances
were observed between groups for most of the genes (data not shown).
The Benjamini–Hochberg procedure43 was used to adjust for multiple
comparisons by controlling the false discovery rate. Genes with a
mean fold-change in expression41.5 oro0.67 and a Benjamini–Hochberg
adjusted P value (false discovery rate)o0.05 were considered significant.
To validate our findings, expression profiling of genes from the

METABRIC study was used as an independent validation set.8 For genes
that were found significantly differentiated between patients with DFS⩽ 5
years and DFS45 years in our study, we examined the gene expression
levels between patients with DSS⩽ 5 years and patients with DSS45 years
within the corresponding patient subgroup (HR+ or TNBC) in the METABRIC
data set. Similarly, two-sample t-test and Benjamini–Hochberg adjustment
were used and genes with an adjusted P valueo0.05 were considered
significant.

Code availability
All analyses were carried out in R 3.2 using custom scripts (available upon
request).
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