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In brief

Nowadays, observational traits

(phenotype) of biological entities

complement with genomics offering the

possibility to monitor phenomenon

evolutions and underlying mechanism

(neurodegeneration, cancer cell

replication, etc.). By complementing

video, data analysis, and machine

learning approaches with label-free time-

lapse microscopy, NeuriTES tool allows

automatically analyzing such traits and

extracting as outcomes proof of concepts

and visual graph-based representation of

the phenotypical rationale behind.
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THE BIGGER PICTURE One of the most challenging frontiers for the automatic understanding of biological
systems is fluorescent label-free imaging in which the behavior changes of living being are characterized
without cell staining. To this aim, we present here the NeuriTES platform that revisits standard paradigms
of video analysis to detect unlabeled objects and correlate the analysis to phenotype evolution of themech-
anisms under observation. Through the exploitation of adaptive algorithms and of transfer entropy mea-
sures, the platform assures regular cell detection and the possibility to extract reliable parameters related
to the evolving cell system. As a proof-of-concept, NeuriTES is applied to two fascinating phenotype inves-
tigation scenarios, amyotrophic lateral sclerosis (ALS) disease mechanism and the study of the effects of a
chemotherapy drug on living prostate cancer cells (PC3) cultures. Directed graphs assist the biologists with
a visual understanding of the mechanisms identified.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
One of the most challenging frontiers in biological systems understanding is fluorescent label-free imaging.
We present here the NeuriTES platform that revisits the standard paradigms of video analysis to detect un-
labeled objects and adapt to the dynamic evolution of the phenomenon under observation. Object segmen-
tation is reformulated using robust algorithms to assure regular cell detection and transfer entropy measures
are used to study the inter-relationship among the parameters related to the evolving system.We applied the
NeuriTES platform to the automatic analysis of neurites degeneration in presence of amyotrophic lateral scle-
rosis (ALS) and to the study of the effects of a chemotherapy drug on living prostate cancer cells (PC3) cul-
tures. Control cells have been considered in both the two cases study. Accuracy values of 93% and of 92%
are achieved, respectively. NeuriTES not only represents a tool for investigation in fluorescent label-free im-
ages but demonstrates to be adaptable to individual needs.
INTRODUCTION

Live-cell imaging has becomea fundamental framework to better

understand cellular processes and biological functions.1 To

enhance cells appearance, however, fluorescent labeling tech-

niques are commonly used to increase the contrast of bright-field
This is an open access article under the CC BY-N
images, to visualize proteins and subcellular compartments to

help us answer biological questions and make new discov-

eries.2–5 Unfortunately, labeling prevents several kinds of living

cell analyses, due to its invasiveness, whichmay perturb the sys-

tem under investigation or at least produce toxic effects, finally

compromising research findings. A non-invasive and non-toxic
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Figure 1. A schematic view of the whole

NeuriTES platform

(A) Culture preparation and time-lapse microscopy

acquisition.

(B) Manual detection and automatic cropping of

motor neurons in each video sequence in the first

frame.

(C) Application of the adaptive semantic segmen-

tation-supervised approach for the automatic

extraction of the motor neuron shape along the

temporal evolution in the video.

(D) Extraction of the morphological descriptors

from the shapes over time.

(E) The morphological descriptor signals are then

processed through the multivariate transfer en-

tropy (TE) operator for the extraction of the mutual

relationship.

(F) The most relevant TE descriptors are then used

as features vectors in motor neuron classification

through standard classification models. The DTEG

related to the comparative classes (healthy versus

ALS samples) are then used for a further visual

understanding of the neurite outgrowth processes.
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alternative to fluorescentmicroscopy is fluorescent label-free im-

aging (LFI), in which combined contrast improving and image

analysis algorithms are used to analyze cell culture without the

need for cell staining. LFI canprovide valuable biological informa-

tion through analyzing cellular dynamics andmorphology. Firstly,

cells are being analyzed in their native, unperturbed state, leading

to the extraction of more reliable and biologically relevant infor-

mation. Secondly, it is much more fast and cheaper thanks to

the possibility to use a standard light source avoiding any genetic

modification or cell line generation.6 Finally, the most important

advantage is the duration of time-lapse experiments, which is

not limited by phototoxicity. This opens the possibility to conduct

dynamic modeling analysis in which the evolution of cell pheno-

type (i.e., cell morphology and behavior) can be correlated to

cellular events, such as cell division, proliferation, motility, migra-

tion, differentiation, and death. However, LFI is still at a very early

development stage due to the intrinsic difficulty in detecting ob-

jects of interest (cells, bacteria, etc.) or in easily differentiating

cell types at very low optical contrast of images. A huge effort

in image and video analysis is required to overcome such diffi-

culty and to be able to extract objects of interests without the

need for cell labeling.
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Among diverse biological scenarios,

one of the most challenging for LFI is rep-

resented by neuron cultures, due to the

very complex architecture of neuronal

cells (see a sketch in Figure 1B). Neuronal

cells, and in particular motor neurons, are

involved in a wide spectrum of neurode-

generative disorders, including amyotro-

phic lateral sclerosis (ALS), a fatal neuro-

degenerative disease characterized, as a

hallmark trait, by the death of motor neu-

rons in the motor cortex, brain stem, and

spinal cord.7–14 If, at the molecular level,

numerous studies have demonstrated
how neurodegeneration proceeds in a dying-back manner

from the distal to the proximal axon,15–19 investigation of the

phenotype aspects of the degradations are still in their infancy.

In this context, identification and assessment of neurite

outgrowth and dendritic development can represent important

readouts in experiments involved in the understanding of the

degeneration mechanisms of ALS.

Due to the very high complexity in motor neuron structure and

temporal degradation processes, state-of-the-art methods for

the analysis of living motor neuron in culture are based on cell-

staining techniques.20–28 If on one hand, cell labeling allows

the user to easily segment the soma and the neurites from the

background and further analyze their morphological evolution,

according to the limitations highlighted above, the construction

of a dynamic modeling of the degradation process of neurites

is prevented, and most of the existing tools end up providing

only an improved view of the neuronal cell21 or at most a few

static measurements at time points of a few hours.20,23 The

high costs and the toxicity effects hinder the possibility to

conduct massive analysis for long observation times (days) at

a very high frame rate (minutes) with the immediate conse-

quences of losing information on the dynamics of the process
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underlying neurite outgrowth and degradation, along with the

possibility to correlate their mutual relationship. To provide an

overview of the existing approaches, Table 1 lists all the available

tools for investigation of neurite evolution, highlighting imaging

modalities, the kind of measurements allowed, and the amount

of user intervention. It can be noted that, except for NeuriteSeg-

mentation,20 the remaining tools have been applied on labeled

images or on high-contrast-imaging modalities.23 As a conse-

quence, none of the tools allows dynamic modeling of the

outgrowth process and only two of them present discriminant

analysis via statistical tests performed on one20 or a very few in-

dividual shape descriptors.28

In this work, we present a novel software architecture, called

NeuriTES, which works automatically in FLI sequences of living

motor neuron cultures. The main strength of NeuriTES is to con-

jugate unlabeled bright-field images and time-lapse microscopy

(frame rate in the order of minutes) with high performing image

analysis and dynamic feature extraction tools. NeuriTES pro-

vides the user with: (1) a very accurate automatic segmentation

of each motor neuron cell moving along the sequence, thanks to

an adaptive deep learning29 semantic segmentation (SS) strat-

egy; (2) a series of morphological and textural soma and neurite

temporal descriptors along with their mutual relationship through

the implementation of the transfer entropy (TE)30 paradigm; (3) a

directed graph of the mutual relationships identified among the

descriptors under specific comparative biological conditions

(i.e., disease versus healthy, different time of growth) that may

assist the biologist with a visual understanding of the mecha-

nisms related to, for example, neurodegenerative disease,

such as ALS.

Themain assumption underlyingNeuriTES is the need for algo-

rithm adaptation to avoid continuous user intervention21–25 and

manually modified algorithm parameters.20,26–28 For this reason,

we introduce in NeuriTES, an adaptive mechanism that allows

more regular and reliable segmentation results along the image

sequence of the same motor neuron. To this aim, we introduce

the so-called adaptive semantic segmentation (ASS) technique

that conjugates pretrained segmentation networks andperturba-

tive contrast analysis of the frames under consideration to in-

crease the regularity of the segmentation result.

In addition to the ASS novel paradigm, we also include in Neu-

riTES a very powerful analysis technique based on the TE para-

digm. TE allows to mutually correlate the diverse descriptors

extracted from the same cell along time and estimate theirmutual

temporal relationship. This information allows the user to estab-

lish a sort of leader/follower relationship among the time-varying

variables (e.g., shortening versus flattening of neurites along the

degenerative process) for further understanding of the outgrowth

process. TE information can be also used as indicative of the

degeneration process. The powerfulness of the TE strategy is

strengthened by the possibility to associate to the resulting ma-

trix (i.e., the matrix containing the TE between descriptors i and

j) a directed graph. Such a graph, later called the disease transfer

entropy graph (DTEG), visually indicates which relationships are

relevant in the model of a particular biological condition (e.g.,

ALS disease) and which are standardly present in the neurite

outgrowth process of healthy motor neurons. In this way, biolo-

gists may further differentiate the physiological motor neuron ag-

ing process from pathological conditions.
We believe that the strategies involved in NeuriTES, going

from ASS, to TE and related disease graph representation, are

totally general andmay offer to data scientists hints for improving

dynamic system understanding, monitoring, and control. For the

sake of demonstrating this generalizability, we also apply the

NeuriTES tool to a very different case study of living prostate

cancer cell cultures31 treated with a chemotherapeutic drug.

We export graphs for the two case studies.

To conclude, the present tool tries to establish a bridge

between biologists and data scientists, combining minimally

invasive imaging techniques, such as label-free bright-field

time-lapse microscopy with more recent image and data anal-

ysis algorithms, and dynamical modeling.

RESULTS

A sketch of NeuriTES platform
To introduce the reader to the main steps involved in the Neu-

riTES platform, Figure 1 shows a sketch of the whole platform,

exemplified overmotor neuron investigation. First, amixed spinal

cord culture, containingmotor neurons, is prepared and cultured

in a Petri dish. Then, a video is acquired over 1 day at 1 frame/min

(1,440 frames per video) (Figure 1A). A crop of eachmotor neuron

ismanually extracted in the first frameof each videoby looking for

a large cell body, long axon, extensive dendritic Arborization, and

by aminimum threshold diameter criterion (>30 mm).32,33 A video

for eachmotor neuron lasting 1 day is then extracted (Figure 1B).

Examples of a full field-of-view frame acquired by time-lapse mi-

croscopy is shown in the supplemental figures: Frame_1_W

T_8th_day.tif and Frame_1_WT_8th_day_marked.tif. Each motor

neuron is then automatically segmented (Figure 1C). Image seg-

mentation is a general framework for automatic object character-

ization aimed at automatically identifying pixels belonging to the

object of interest. There exist many approaches for automatic

segmentation based on various criteria related to pixel similarity

as well as to local pixel intensity changes.34 Among various

methods, supervised approaches, such as SS, demonstrated

to be the most effective methodologies.29 In this work, SS based

on a pretrained convolutional neuronal network (CNN),35 i.e., Re-

sNET50,36 has been used to segment motor neuron in all the

frames of each video, starting from a small subset (less than

1%) of manually segmentedmotor neuron provided by the biolo-

gists in the first frame of a subset of videos. The segmentation

regularity is achieved by perturbing the nonlinear contrast of

the actual frame so to maximize the similarity measure of actual

andprevious segmentation results. This newapproach is referred

asASS (Figure 1C).Morphological descriptors (Figure 1D) related

to the neurite thickness, flatness, extension, and general motor

neuron appearance in terms of luminance inhomogeneity, and

automatic implementation of the Sholl analysis of neurites37 are

then extracted along the segmented sequence of each motor

neuron. Each descriptor is further coded in terms of its statistics

over the different boundary points of themotor neuronmask or of

the internal soma (e.g., standard deviation values of the neurite

thickness over all the boundary points of the segmented neuron).

The obtained descriptors acquired in each frame can be used as

indicators of degeneration over time to improve the discriminant

capability of the platform. In addition, in NeuriTES, it is assumed

that the relationship among the descriptors can be more
Patterns 2, 100261, June 11, 2021 3



Table 1. Available tools for digital investigation of neurite evolution

Method

Name

Microscopy

technique

Segmentation

technique Image processing Measurement achieved Dynamic analysis Discriminative task

NeuriteSegmentation20 bright field automatic local adaptive

thresholding and

manual refining of

the artifacts

axon area, average and

maximal axon length

yes, time points

at 24 h, 48 h, 5 days,

8 days, 14 days

statistical test

Neuron-J21 fluorescence semi-automatic minimum detection

and tracing algorithm;

second-order difference

filters

neurite intersection and

occupied area

no no

NeuriteTracer22 fluorescence semi-automatic thresholding and

skeletonization

neurite length, quantity of

soma

no no

NeuronGrowth23 phase contrast,

differential

interference contrast,

fluorescence

semi-automatic sequence alignment,

background subtraction,

flat field correction,

light normalization, cropping,

DIC correction, livewire

and snakes algorithm

neurite length yes,

rate of 2–12 min per

image for several days

no

NeuronMetrics24 fluorescence semi-automatic contrast improvement,

skeletonization,

Laplacian

primary neurite count,

neurite length, branch number,

quantity of soma, soma’s size

no no

NeurphologyJ25 fluorescence semi-automatic image enhancement,

background subtraction,

edge detection and

binarization, morphological

operations, skeletonization,

arithmetic and logical

operations

neurite length, branch number,

quantity of soma, soma’s size

no no

Neurite-IQ26 fluorescence automatic dynamic

programming

neurite length no no

NeuronCyto_II27 fluorescence automatic background removal,

matrix-forest theorem on

directed graph

axonal length, branching,

complexity, crossover

no no

Neurite-J28 fluorescence automatic global thresholding neurite length and arbor area,

circularity and explant body

area

no statistical test

NeuriTES bright field automatic adaptive semantic

segmentation (deep

learning, adaptive contrast

enhancement)

neurites’ length, diameter,

number of primary axons,

neurites’ flatness,

soma aspects and area,

and their temporal evolution,

TE analysis

yes,

rate of 1 min per image

for 6 h to 1 day

statistical test

and linear

discriminant

analysis

classifier

The main details of the state-of-the-art approaches are indicated.
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Table 2. Video data description

VIDEO data description

No. of videos available

79 (21,646 frames)

no. of videos

at 6th day50

no. of videos

at 8th day29

No. of labeled

15 (150 frames)

no. of labeled

videos2

no. of unlabeled

videos48

no. of labeled

videos13

no. of unlabeled

videos16

No. of unlabeled

64 (21,496 frames)

G93A

51 (13,974 frames)

G93A2 WT0 G93A37 WT11 G93A6 WT7 G93A6 WT10

Wild-type

28 (7,672 frames)

The numbers of videos of each motor neuron for different days of acquisition, labeled and unlabeled cases, and presence of the disease are listed.
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informative than the descriptors themselves. The TE operator

maps such a relationship into an asymmetric entropy map

(each element quantifies the information transfer from descriptor

i to the descriptor j, Figure 1E), which is considered as a new

feature vector for classification (Figure 1F). After feature selec-

tion, the selected TE values provides the most relevant relation-

ships among morphological descriptors that can be also used

to construct the so-called DTEG,38 as shown in Figure 1F.

In particular, the DTEG is a graph (one for each category of

subjects) representing a visual cue of the disease in terms of sig-

nificant morphological relationships along with a weight attrib-

uted to this relationship provided by the TE value. In this way,

the biologist is not only provided with a black box platform for

the automatic monitoring of motor neuron degeneration but

also with a visual representation of the mechanism and of their

biological implication (e.g., motor neuron body roughness im-

plies neurite flatness in ALS samples).

CASE study 1
Source data

In this study we used primary spinal cord cultures prepared

from transgenic G1H mice, which overexpress a mutant hu-

man SOD1 gene containing a glycine93/alanine (G93A) sub-

stitution. These mice have been extensively validated as an an-

imal model of ALS due to the development of symptoms and a

motor neuron pathology that mimics those found in ALS pa-

tients.39 We acquired videos of motor neurons from two

distinct kind of cells, G93A and wild-type (WT), as control.

The original videos were acquired using time-lapse micro-

scopy at a frame rate of 1 frame/min over a day at the 6th

and 8th days in vitro. Based on the focus and illumination con-

ditions obtained during time-lapse microscopy acquisitions an

expert biologist manually segmented 15 motor neurons at the

initial frame using ImageJ.40 To increase the training set for

segmentation, we transfer the same ground truth images

also to the corresponding next 9 frames (10 min in total), lead-

ing to 10 consecutive labeled frames. The assumption is that

the motor neurons’ motility is almost null within 10 min of

observation and that the same ground truth (GT) image can

be assumed as the truth segmentation for the subsequent

frames. A total number of 150 labeled frames (15 motor neu-

rons by 10 labeled frames) were then used to train the SS

network and to assess the segmentation performance also
with respect to comparative approaches. Such setting also al-

lowed us to reduce the memory storage of the entire video

sequence (see Table 3).

The analyzed motor neurons derive from a total of nine distinct

cultures. In addition, an expert located the center of additional

motor neurons to increase the dataset for analysis. According

to the coordinates provided, each motor neuron was then auto-

matically cropped and a distinct video was extracted from each

motoneuron progression.

Table 2, lists the number of videos for each condition either in

terms of day of acquisition (6th or 8th) and in terms of the presence

of the disease phenotype (WT versus G93A). In addition, we also

detailed the number of videos with labeled and unlabeled cells.

Videos Supplementary_video_G93A_6th_day.avi, Supplementar-

y_video_G93A_8th_day.avi, Supplementary_video_WT_6th_day.

avi, and Supplementary_video_WT_8th_day.avi provide four ex-

amples of videos for WT and G93A motor neurons, acquired on

the 6th and 8th days, respectively (see data and code availability

for the link to download the videos).

Performance of ASS using labeled images

Regarding the assessment of the ASS network, we calcu-

lated the performance of the network in training where we

had GT images, namely images for which an expert biologist

draws the shape of the motor neuron, as mentioned above.

Performance was evaluated in terms of standard metrics,

such as recall (R), precision (P), and F measure (FM) (i.e.,

the harmonic mean of R and P),41 hereafter defined. Denot-

ing by true positive (TP) those pixels correctly assigned to

the motor neuron neurites, false positive (FP) those pixels as-

signed to the motor neuron neurites but originally belonging

to the background culture, and false negative (FN) those

pixels belonging to the motor neuron neurites but missed

by the algorithm, we had

R =
TP

TP+FN
; P=

TP

TP+ FP
; FM=

2,CM,CR

CM+CR
: (Equation 1)

R is affected by under-segmentation where the segmentation

algorithm misses some parts of the motor neurons. P is affected

by over-segmentation in which the segmentation is overcom-

plete with a relevant number of FPs. FM is a combination of

the two metrics and account for both kind of segmentation er-

rors. The value of 2 in the FM definition represents a normaliza-

tion factor to assure FM is in the range [0,1].
Patterns 2, 100261, June 11, 2021 5



Table 3. Total overhead

Single motor neuron video (274 frames) Computational time (s) Memory storage (double precision) (kB)

Adaptive semantic segmentation (no

training)

�750 �10,000

Feature extraction �1,150 �50

TE computation �2 �5

Total overhead �1,902 �10,055

Computational overhead and memory storage for the analysis of a single motor neurons.
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Figure 2A shows four examples of motor neuron segmentation

results obtained by ASS for WT and G93A samples from the

6th-day and 8th-day experiments. Figure 2B shows the boxplots

of R, P, and FM separately calculated for the 6th and 8th days. It

can be noted that, in general, the SS results are overcomplete,

leading to a very high R value (on average larger than 0.95) and a

smaller P value (on average 0.25). In addition, it is important to

note that the above metrics do not account necessarily for shape

similarity between the GT and the segmented shape. In particular,

in some cases, see comparative results below, an overcomplete

result conjugated with a moderated precision value, may still

convey the needed information for further morphological charac-

terization, which is the scope of our analysis.

Performance of ASS with respect to standard SS

ASS allows to increase the overall robustness of the segmenta-

tion step. Standardly, the SS procedure in a frame does not

take into account the SS relative to the previous frame, leading

to unexpected segmentation results in certain frames due, for

example, to changes in illumination or in the image focus. To

address such a problem, it was necessary tomodify the standard

approach to confer more regularity to the segmentation in each

frame. Regularity is fundamental to obtain more stable morpho-

logical descriptors with regular temporal trend. Figure 2C shows

the boxplot of the FM calculated considering the segmentation of

two consecutive frames at a time (i.e., the FM in this case is used

asameasure of regularity of the shapesegmentedover time). The

adaptive and the standardSSare also visually compared for aWT

motor neuron recorded at the 8th day. Results are shown in Fig-

ure 2D. Note that, in general, the SS results for the two compar-

ative approaches are similar, because, for computational

complexity constraints, the adaptive approach is used only

when the FM between consecutive frames is lower than 0.8 to

avoid applying useless laborious procedures when the two seg-

mentation results are already similar. However, it can be noted

that FM using the adaptive approach is always larger or equal

to that obtained using the standardmethod, leading tomore reg-

ular results. In addition, fromFigure 2D it canbeobserved that the

standard SS strategy produces some unwanted protrusions that

may alter the morphological assessment of the motor neuron

shape (see, for example, the first, second, and fifth frames).

Individual discrimination ability of morphological

descriptors

Each segmented shape along with the corresponding bright-

field frame are processed for the extraction of 21 morpholog-

ical descriptors (see the experimental procedures) over an

observation time of 1 day (6th or 8th). Each descriptor pro-

duces a time series of length 274 frames for each motor

neuron, at a frame rate of 0.2 frame/min. The statistical signif-
6 Patterns 2, 100261, June 11, 2021
icance of the descriptors extracted was assessed through the

calculation of an individual discriminant power (DP) for a

generic descriptor fi obtained as

DPðfiÞ = maxðAUCðfiÞ;1�AUCðfiÞÞ
where AUC represents the area under the ROC curve, which ac-

counts for the general capability of discrimination of the descrip-

tors with respect to a binary classification problem.42 In this pa-

per, the problem was the discrimination between healthy (WT)

and unhealthy (G93A) motor neurons in mice cultures. Figure 3A

shows the DP values for descriptors extracted from motor neu-

rons visualized at the 6th day (x axis) and at the 8th day (y axis),

respectively. For the sake of interpretability, we report in color

only descriptors with aDP value higher than 0.75. The gray spots

indicate the remaining feature values.

From Figure 3A it can be noted that only three descriptors,

namely f5; f7; and f17, exceed the 0.75minimum area (the purple

rectangular region). Moreover, only two of them are discriminant

for the 6th-day experiment (f5, f17). Such a low DP value repre-

sents a serious bottleneck for a high-performing monitoring sys-

tem. In conclusion, out of the 21 descriptors, 14 have a DP lower

than 0.6 making it prohibitive to construct a classification model

using such features.

Discrimination ability of TE descriptors

As mentioned before, each descriptor is represented by a time

series that depicts the trend of the descriptor over time during

1-day observations. The random contribution to the series is

related to the acquisition process and to the electronic noise

term induced by the platform for the analysis (quantization

noise, photon noise, etc.) The temporal evolution of such a

system may be quantified by the concept of Shannon’s en-

tropy.43 For a system consisting of more than one component

(time series in the following), such as the one presented in this

work, important information on the structure of the observed

phenomenon, i.e., morphological evolution, can be obtained

by measuring to what extent the individual time series contrib-

utes to produce information and at what rate they exchange

information among each other. The translated aspect is to

what extent descriptors mutually increase the knowledge

about the process by accounting for dynamical and direc-

tional information. The answer to this question is provided

by the so-called multivariate TE (MUTE).30,43 Entropy estima-

tors are able to reveal the information transferred among vari-

ables represented by time series that, in our application, are

represented by the morphological descriptors signals over

time. More specifically, without the need to assume any

particular probability distribution for the involved time series,
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Figure 2. Examples of ASS results

(A) Four examples of segmentation results obtained

with ASS (orange shapes) over-imposed on the

original motor neuron crops: WT and G93A ac-

quired at the 6th and 8th days.

(B) FM,R, andP distribution values calculated for all

the ASS results relative to motor neurons with an

available GT image, at 6th and 8th days.

(C) Comparison of the distribution of the FM values

computed comparing the standard SS (left) and the

ASS (right): the p values of the t test conducted to

verify the significance of the difference are also

indicated.

(D) An example of the visual effect of applying the

ASS (second row) compared with the standard SS

(third row) for a G93Amotor neuron acquired on the

8th day.
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with term TE we refer to the ‘‘predictive information transfer’’

intended as the amount of information added by the past (and

present) states of a source time series to the present state of a

target time series. Further mathematical details can be found

in the experimental procedures. The MUTE matrix consists of

21 3 21 elements, each identifying the directed relationship

between two descriptors conditioned to the remaining 19,

except for the 21 diagonal elements that are forced to zero.

Recalling the intrinsic asymmetry of the MUTE matrix due to

the directionality of the descriptor relationship, we collected

all the 420 TE descriptors of the MUTE matrix in a vector

and treated them as descriptors. We denoted them as TE de-

scriptors, or TE feature (TE-fs). To verify the significance of the

TE-f, we calculated the DP values for the TE descriptors. The

results are plotted in Figure 3B for the 6th-day (x axis) and 8th-

day (y axis) cases, respectively. By using the same limit values

(only for the sake of visualization) as in the case of morpholog-

ical descriptors, it can be noted that even eight TE-fs have a

DP score higher than 0.75 for the 8th-day experiment and

even 11 TE-fs have a DP score higher than 0.75 in the 6th-

day experiment. In addition, gray markers, 65 and 69 TE-fs

have a DP score higher than 0.65 for the 6th-day and 8th-

day experiments, respectively. This result confirms the fact

that a high number of TE-fs can be used to construct a reliable

classification model for both temporal scenarios. It is impor-
tant to note that, in general, the TE-fs selected are different

for the two experimental scenarios (i.e., 6th and 8th days) giv-

ing evidence to the fact that timing plays a crucial role in the

cell behavior also in relation to the degeneration of the neurite

outgrowth. In addition, the TE-fs allow accounting for mutual

information between descriptors over time rather than to the

individual feature values. In light of this, the system is more

robust to the dependence of the descriptor values on image

focus and illumination conditions and related unexpected

changes. This statement is further supported in the

Discussion.

Performance of automatic recognition of motor neurons

with ALS (G93A) or WT

To demonstrate the effectiveness of the proposed monitoring

platform, we designed two kinds of experiments. In the first

one, we considered only motor neurons visualized on the 6th

day and, in a second step, we selected motor neurons visual-

ized on the 8th day. In each test, we implemented a leave-one-

motor neuron-out (LOMO) cross-validation approach. The

classification model is, in turn, trained on all the motor neu-

rons except for the one left out and tested on that motor

neuron. The procedure is repeated for all the motor neurons.

Under the assumption that not all frames fully manifest the

degradation effects, either because neurite degradation is a

continuous ongoing process or because of the acquisition
Figure 3. Discriminant power score plot for

standard morphological descriptors

(A) versus TE descriptors (B). The gray boxes locate

descriptors with a discriminant power (DP) lower

than 0.65, the purple boxes locate descriptors with

a DP smaller than 0.75 (and larger than 0.65). (A)

Features with DP larger than 0.75 are indicated

using their symbol, whereas (B) descriptors are

indicated using the TE relationship associated.

Circle markers relate to the 8th day and cross

markers relate to the 6th day.
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DC

Figure 4. Confusion matrices of competing

approaches

(A) Sixth-day experiment, ASS.

(B) Eighth-day experiment, ASS.

(C) Eighth-day experiment, SS.

(D) Eighth-day experiment, SS.
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conditions (inhomogeneous illumination, noise, confounding

cells, such as macrophages, secondary motor neurons,

etc.), we finally assigned a label to each motor neuron being

negative (WT) with label = 0 or positive (G93A) with label =

1. Classification results can be represented by a so-called

confusion matrix. A confusion matrix is a table reporting, for

each category, the number of correctly and misclassified in-

stances. Therefore, in the considered two-class problem, we

assume as negative the WT instances and as positive the

G93A instances. Therefore, in the first row (from left to right

in the tables in Figure 4), the confusion matrix contains the

number of WT instances correctly classified as WT and mis-

classified as G93A, and in the second row (from left to right

in the tables in Figure 4), the number of misclassified and

correctly classified G93A instances. Starting from the confu-

sion matrix, we compute the so-called balanced accuracy of

classification (ACCb). Denoting as sensitivity, the rate of

correctly classified positive instances and as specificity the

rate of correctly classified negative instances, ACCb repre-

sents the average values between the sensitivity and the

specificity of the method. ACCb allows to compensate for

the class unbalance phenomenon.

Classification results for motor neurons visualized on

the 6th day and 8th day using ASS

Figure4Ashows theconfusionmatricesof theclassification results

related to the 6th-day experiment, using the described method.

The true class indicates the expected class while predicted class

represents the labels assigned by the classification model. Out
8 Patterns 2, 100261, June 11, 2021
of the 50 motor neurons observed on the

6th day, 39 were G93A and 11 were WT.

Thesystemachievedafinalbalancedaccu-

racy value ACCb equal to 93%. Two G93A

motor neurons were misclassified as WT

and only one WT motor neuron was mis-

classified as G93A. Figure 4B shows the

confusionmatrix of the classification results

related to the 8th-dayexperiment.Out of the

29 motor neurons observed on the 8th day,

12wereG93Aand 17wereWT. The system

achieved a final balanced accuracy value

ACCbequal to 93%.Only onemotor neuron

G93AwasmisclassifiedasWTandonlyone

WT motor neuron was misclassified as

G93A, implementing the standard SS

approach with no adaptation step. It can

be noted that accuracy values worsen

remarkably, especially on the 6th-day

experiment. This is probably due also to

the fact that the number of expert-

segmented motor neurons on the 6th day

is very low and the segmentation step is
more critical than that performed on the 8th day. In addition, the

regularityofferedby theadaptationassuresan increasing reliability

of the descriptors and consequently of the TE-fs extracted.

Classification results for motor neurons visualized on

the 6th and 8th days using standard SS

Figures 4C and 4D shows the confusion matrices of the classifi-

cation results obtained on the 6th and 8th days by the ASS (Fig-

ures 4A and 4B) approach compared with those achieved by

standard SS (Figures 4C and 4D).

Case study 2
Source data

In this case study, we considered prostate cancer cells

(PC3)31 treated with a chemotherapeutic drug (etoposide).

Etoposide, inhibiting the action of topoisomerase II, thus im-

pairing the ligation step of the cell cycle, has a replication

blocking effect over cancer cells. The aim of the study was

to demonstrate that the mutual evolution of shape and texture

descriptors of cells is indicative of the phenotype changes in

PC3 treated with etoposide versus untreated cells. For this

task, we considered the experimental setup described in Giu-

seppe et al.,31 and applying NeuriTES modules to label-free

time-lapse microscopy video sequences of living PC3

cultured in a Petri dish (1 frame/min, 0.33 mm/pixel). The steps

described in Figure 1 are sequentially applied to the analysis

of PC3. Since there are a few small cells in a single frame,

cells are first automatically tracked using the software Cell-

Hunter as described in Giuseppe et al.31 A region of interest



A B Figure 5. Examples of ASS results for the

PC3 cells

(A) Untreated cell and (B) treated cell.
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(ROI) is then extracted for each cell along its trajectory over

time, thus leading to a sequence of ROIs for each moving

cell. For the training of the SS network, a total of 24 cells

(12 from control and 12 from treated cells) were manually

segmented at the first frame. A total of 5,000 cell frames

were extracted.

Results in the automatic recognition of the effect of

chemotherapy on PC3 phenotype

The 5,000 cell frames were automatically segmented by ASS af-

ter a dedicated SS network was trained over the first manually

segmented frames of each track. On average, trajectories were

6 h long (360 values at a frame rate of 1 frame/min). Therefore,

the shape a cell has in the first frame is totally independent

from the shape after many hours. Figure 5 shows an example

of segmented cell for an untreated cell (Figure 5A) and a treated

cell (Figure 5B). Only some selected frames are visualized. Note

that segmentation is still very challenging due to the changes in

shape during the cell’s movement and the closer cells in the

surroundings.

Descriptors used for the task of classification are divided into

three groups: first group fg1 includes five shape descriptors; the

second group fg2 includes five texture descriptors related to the

PC3 pixel intensity; the third group fg3 comprises four texture

Haralick descriptors.44 A total of 14 descriptors are used to char-

acterize the cell along time. Further details on the descriptors are

included in the experimental procedures. After TE estimation,

182 TE descriptors are used for the classification task. Accuracy

of classification achieved implementing one-track-out cross-

validation is about 92%. Figure 6 shows the confusion matrix

associated to the experiment. Note that untreated cells were

all correctly recognized, whereas only two treated cells were

misrecognized as untreated.

DISCUSSION

Disease graphs for WT and G93A motor neurons
The TE descriptors selected for the scope of classification

represent direct relationships between time-varying morpho-

logical characteristics of motor neurons, highlighting the po-

tential of any mutual variation in neurite outgrowth than can

be meaningful for the overall understanding of the motor

neuron degeneration process due to the presence of an

ALS-related mutation. To this end, we have evaluated the al-

terations caused by the overexpression in mouse motor neu-

rons of the human SOD1 gene carrying the ALS-linked muta-

tion at position 93 (G93A). A fascinating way to visually
represent such a relationships can be

the use of DTEG. The DTEG tool allows

the user to have a direct visual sketch

of how the different aspects of the

degeneration (i.e., alteration on general

aspects, f17–f20, alteration of neurites

thickness and flatness, f1–f4 and f5–f8,
respectively, or finally alterations in heterogeneous and global

neurite extension and numerosity, f9–f12, f21, and f13–f16,

respectively) are related to the presence of ALS disease (of

the ALS mutation). After a restricted number of TE-fs are

selected (those having DP values higher than 0.75, see Fig-

ures 3A and 3B), we constructed the DTEG. The DTEG con-

tains as many nodes as the number of individual descriptors

involved in at least one selected mutual relationship and as

many edges as the non-zero entries of the MUTE matrix for

the TE-f selected. As an example, if the TE-f fi/j is selected,

then the DTEG will contain the nodes i and j and the edge i–

j. The direction of the edge is related to the fact that in the

average MUTE matrix, calculated by averaging the MUTE

matrices of a selected group of subjects (e.g., all the WTs),

the element in row i and column j is non-zero, and the weight

of that edge is the average value of the MUTE matrix in posi-

tion (i,j). Calculating a separate DTEG for WT and for G93A

subjects for the 6th and 8th days, respectively, we are able

to visually represent the overall relationship of descriptors ex-

tracted over healthy (WT) and unhealthy (G93A) subjects. To

provide the reader with this further tool, we show in Figures

7A and 7B, the DTEGs for WT and G93A from the 6th day (Fig-

ure 7A) and 8th day (Figure 7B), respectively. We assigned the

same color to the same feature group to simplify the interpre-

tation, as indicated in the legend. The solid black edges iden-

tify the subgraphs that are in common for the two conditions

(WT versus G93A). Conversely, for each category of subjects,

the dashed orange edges identify the subgraphs additionally

present and related to the specific condition (i.e., left, WT;

right, G93A). The dashed orange circles also identify nodes

that are also specific for each group of subjects, due to the

addition of at least one more edge. For example, considering

Figure 7A, we can observe that the presence of ALS disease

(the ALS-related mutation) strongly reformulated the DTEG

structure by not only including additional crucial nodes (f12)

but also their relationship with many newly inserted nodes

(f14) and already present nodes (f8, f20, and f18), leading to a

four-degree level for the additional node f12 (the degree level

is the total number of incoming or outgrowing edges).

Considering that f12 identifies the minimum distance of the

neurite extremes, the additional subgraph related to the

G93A subjects mainly establishes a relationship of f12 with

motor neuron pixel intensity (f18 and f20), highlighting the fact

that the degeneration in neurite outgrowth also implies an

alteration in neurite appearance (entropy and standard devia-

tion of the neurite soma, f18 and f20, respectively). Such a
Patterns 2, 100261, June 11, 2021 9



Figure 6. Confusion matrices of PC3 experiment

Treated versus untreated cells.
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relationship is not relevant in healthy MNs, as indicated by the

absence of the node f12. By considering Figure 7B, we can

observe that the topology of the graph is totally different, indi-

cating once more that timing plays a crucial role in the under-

standing of the degeneration process. First of all, the differ-

ence between healthy and unhealthy subjects in the

topology of the two graphs is less evident than in the 6th-

day experiment. More specifically, node f15 assumes a rele-

vance as it turns from a two-degree node into a seven-degree

node. The new connections are also related to the addition of

two more nodes (f13 and f11) and in proximity of the new node

(f6). Node f15 represents the variation of the number of neurites

over radial direction. In the DTEG of the G93A subjects, it is

now related to all the aspects of the neurite outgrowth, being

connected directly or in proximity to all the morphological

descriptor groups. This means that a variation in the neurite

number moving away from the center of the soma can be

used to discriminate healthy and unhealthy cells, being

directly related to the neurite degeneration process.

Time-dependent motor neuron evolution discrimination
capability
Timing plays a crucial role in the understanding of ALS progres-

sion. To quantitatively prove this assumption, we demonstrated

that TE descriptors were significant in discriminating WT motor

neurons at the 6th and 8th days. We did the same for G93Amotor

neurons. Applying the same procedure as described before for

the ALS diagnosis, but on the WT and G93A motor neurons

separately, and selecting features more related to the temporal

evolution process, the classification model achieved the accu-

racy values shown in Figure 8. It can be noted that the results

are very promising and demonstrated the existence of a specific

temporal pattern for the motor neurons, independent from the

biological condition.

Temporal TE graph
As a further demonstration that temporal evolution plays a role

in the investigation of ALS and that there are some character-

istics patterns in motor neurons according to the time of
10 Patterns 2, 100261, June 11, 2021
observation, in Figure 9 we compared the temporal TE graphs

of WT (left) and G93A (right) for the evolution from the 6th to 8th

days of observation. Once more, we observe some intrinsic

topological structure for each situation along with the addi-

tional relationship established by the specific biological/tem-

poral condition.
Comparative analysis with standard segmentation
approaches
SS demonstrated to be a powerful approach for the automatic

segmentation of motor neurons, especially with the introduction

of the adaptation procedure. However, it belongs to the cate-

gory of supervised segmentation approaches requiring a

training procedure for the optimal network configuration. There-

fore, to additionally prove the strength of such approach, we

compared the performance of standard alternative segmenta-

tion methods, such as the Canny edge detection45 and K-

means clustering segmentation approaches.46 Each of the

two approaches is optimized on the labeled set of images

with a motor neuron. In particular, for Canny edge detection

we optimized the high threshold value, thhigh, and the s of the

derivative of Gaussian filter for smoothing,45 whereas for the

K-means clustering approach, we optimized the number of

clusters for the clustering.47 Note that the algorithms are opti-

mized for each frame so that it would be very difficult to have

a system with general capability to segment any additional im-

ages, such as that provided by the ASS method. Performance

were assessed through FM, R, and P and are shown in Fig-

ure 10. Figure 10B illustrates the boxplots of the three metrics

for the two approaches and Figure 10A shows an example of

segmentation result for the two comparative approaches with

respect to the proposed ASS method. The results achieved

for the frames acquired on the 6th and 8th days are aggregated.

From the observation of Figure 10, we can note that the SS

approach presents some crucial peculiarities. First of all, as

observed in Figure 10A, there are very few missing pixels (the

so-called FN regions), represented by the purple points. This

aspect is confirmed by the high value of R for the SS approach.

Such a high recall value, conjugated with a moderate precision

value, indicates that the segmented motor neuron generally in-

cludes the GT motor neuron labeled by the expert. It is crucial

to underline the fact that over-segmentation effects related to

moderate values of P mostly refer to an istotropic dilation of

the motor neuron area and less frequently deal with a complete

loss of area of neurites. This is a fundamental aspect in light of

the further morphological characterization. In fact, the descrip-

tors extracted after segmentation are strongly influenced by the

complete representation of the motor neuron shape and would

not be so significant (and above all their relationship), if the seg-

mentation result would lose parts of the neurites. This is instead

what happened, on average, with the two comparative ap-

proaches, which exhibit a very poor recall, leading to an overall

FM that is comparable (Canny) and lower (K-means) with

respect to the proposed approach. In addition, it can also be

observed that the dispersion of the metrics calculated over

the 150 training frames in the ASS approach is much smaller

than that of the two comparative approaches, indicating

increasing robustness and generalization capability.
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Figure 7. Disease transfer entropy graph

(DTEG)

Disease transfer entropy graph (DTEG) for the 6th-

day (A) and 8th-day (B) experiments. Solid black

lines represent the subgraphs in common in the two

cases (WT and G93A). The orange dotted lines

identify the subgraphs specific for each specific

condition (left) WT and (right) G93A. Colors repre-

sent feature groups as indicated in the legend to the

left: neurites’ thickness and flatness, f1–f4 (red) and

f5–f8 (green), respectively; heterogeneous and

global neurites extension and numerosity, f9–f12
(blue), and f13–f16 (yellow), f21 (magenta), respec-

tively; alteration on general aspects, f17–f20 (cyan).

Dashed circles represent new nodes included in the

additional subgraphs.

ll
OPEN ACCESSArticle
Performance of comparison among correlation
measures, TE, and morphological descriptors
The use of TE descriptors demonstrated to be a valid tool to

quantitatively represent the synergy among morphological de-

scriptors and to be further used in discrimination procedures.

TE allows transducing all of the descriptor signals of a motor

neuron into a single matrix (time is collapsed) by enhancing the

capacity of the descriptor signals tomutually transfer information

among each other. TE is therefore capable to put in evidence and

reveal if there is an ongoing dynamic process (degeneration,

apoptosis, etc.) that creates an infrastructure among the

geometrical and the intensity descriptors.

Furthermore, TE descriptors not only allowed representing the

synergy but also the relationship, permitting to achieve a graph

representation as the DTEGs shown before. However, to prove

the relevance of TE descriptors for the discrimination task, we

calculated additional mutual correlation metrics between the

morphological features, such as the Pearson’s coefficient (rc)

and the concordance correlation coefficient (rcc).
48 The lack of

directionality of such descriptor (i.e., rcc(i,j) = rcc(j,i) by definition)

led to a reduced number of features equal to 210. Figure 11 com-

pares the most relevant descriptors from TE-fs, rc-f, and rcc-f

having a DP higher than 0.7.

Color information is indicated in the legend. We can observe

that the Pearson’s coefficient features, rc-f, exhibited a gen-

eral lower discrimination power with only one descriptor per

both days with a DP higher than 0.75. On the other hand,

rcc-f exhibited almost comparative DP values in the 8th-day

experiment (only one TE-f is definitively higher than the others,

with a DP of about 0.83), but globally reached lower DP values

in the 6th-day experiment with only one descriptor with a DP

higher than 0.75. Therefore, beyond the always important

absence of causal relationship of the correlation metrics, we
confirmed that the DP of those compar-

ative metrics is still lower than that of

TE-f.

TE graph for treated versus
untreated PC3
The TE descriptors selected for the scope

of classification represent directed rela-

tionships between time-varying morpho-
logical and textural characteristics of moving PC3, highlighting

the relationship between block replication effects induced by

etoposide into dynamic phenotype alterations. A fascinating

way to visually represent such relationships can be the use of

a TE graph (TEG). After a restricted number of TE-fs are selected

according to the DP value, we constructed the TEG. The TEG

contains as many nodes as the number of individual descriptors

involved in at least one selectedmutual relationship and asmany

edges as the non-zero entries of the MUTE matrix for the TE-f

selected. Calculating a separate TEG for untreated and treated

PC3 cells, we are able to visually represent the overall relation-

ship of descriptors extracted over the two categories. To provide

the reader with this further tool, we show in Figure 12, the TEGs

for untreated (Figure 12A) and treated (Figure 12B) cells, respec-

tively. We assigned the same color to the same feature group to

simplify the interpretation as indicated in the legend. The solid

black edges identify the subgraphs that are in common for the

two conditions. Conversely, for each category of cells, the

dashed orange edges identify the subgraphs additionally pre-

sent and related to the specific condition (i.e., left, untreated;

right, treated). The dashed orange circles also identify nodes

that are also specific for each group of subjects, due to the addi-

tion of at least one more edge.

From the comparison of the TEG in Figures 12A and 12B, it

emerges that, in the treated PC3, there are more connections

than in the untreated cells. In this case, it seems that more rela-

tionships appear among the descriptors. In particular, Haralick

descriptors (f11–f14) appear to be fundamental in treated cells

since three more nodes, f11, f12, and f14 are added and linked

to each other. In addition, a reinforced link is established among

intensity descriptors (see edges connecting nodes f9 with nodes

f7 and f10) and more importantly among Haralick features (f11 and

f14) and shape descriptors (f3 and f2, respectively). The latter
Patterns 2, 100261, June 11, 2021 11



Figure 8. Accuracy results

Confusion matrices of the two-class problems of discriminating temporal

evolution in (left) WT and (right) G93A motor neurons.
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relationship is a further demonstration of the relationship be-

tween cell appearance and cell shape in treated cells.

Comments about results, implications in future
investigation, and possible extension
Although, cultured primary neurons and neurons inhabiting the

brain are by definition different, and the results obtained from

primary cultures cannot be directly related to an ‘‘in vivo’’ sit-

uations, they allow us to evaluate in a rather simple context

the intrinsic weaknesses of specific cellular subpopulations.

One obvious advantage in using dissociated neuronal cultures

is decreasing the complications that result from the network

properties of the brain, and so gaining a more direct access

to the biology of individual neurons and eventually helping

the comprehension of molecular and cellular mechanisms

affecting the pathogenesis of complex neurodegenerative dis-

eases, such as ALS. Live imaging of ‘‘in vitro’’ cellular growth

and interaction mode gives the ability to directly monitor and

quantify whether and how pathological conditions or pharma-

cological/drug treatments are capable of altering cellular

movements. Cellular movements are important functional fea-

tures. Interaction between cells is governed by contact and in-

teracting molecules that guide and determine the mode and

extent of communication between cells. As such, measure-

ment of their interactions has relevance to both basic and

translational research. At the same time, accurate measure-

ments of cellular movements and intercellular contacts are

challenging and this could be a difficult obstacle to overcome.

Neuronal tissues comprise a remarkable number of heteroge-

neous cell types, at the molecular as well as at the phenotypic

and morphological levels. This amazing cellular multiplicity en-

ables the different brain areas to properly function while form-

ing a well-connected and performing network. A question we

have tried to address in this paper is: can we automatically

measure through LFI the amount of modifications a diseased

motor neuron shows in its movements/interaction with respect

to its surrounding environment? It has long been known that

cellular communication is essential for the proper homeosta-

sis of a cell. How do cellular diversity, and cell-cell interac-

tions and intercellular communication, work in concert to

determine the proper wiring of a brain? It is now clear that

the neurodegeneration problem is not merely a cell problem,

it is a problem of cell interaction and intercellular communica-
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tion with distant cells and with other tissues. We know that, in

many neurodegenerative diseases, including ALS, the

diseased cells release, into the surrounding environment,

toxic factors (mutated proteins) that can ‘‘infect’’ neighboring

cells and spread the disease. In actual fact, it is hypothesized

that neurodegenerative diseases could be considered a type

of prion disease, with spreading capabilities.

In this paper, we have presented a mathematical framework

that can model how a given neuron ‘‘occupies’’ an area by

shuffling its projections and thus how it is able to keep con-

tacts with its surrounding environment. Keeping in mind that

a cell’s traveling can be heavily influenced by neighboring

cells and microenvironmental factors, on top of genotypically

altered features (i.e., the presence of a mutant gene), we have

elaborated a series of functions that allow the interpretation of

the cellular changes/movements over time (i.e., time in cul-

ture). We have observed a statistically significant increase in

all the paradigms indicative of an increased stationarity in

the mutant motor neurons analyzed compared with the con-

trols. The combination of all the indexes point to an ailing mo-

tor neuron that appears less prone to develop a proper

network, probably because of intrinsic (i.e., mutant gene over-

expression) and extrinsic (release of mutant proteins and toxic

substances by the neurons themselves and the astrocytes)

factors that are realistically altering the extracellular milieu,

the intracellular homeostasis, as well as the cellular mem-

brane external signaling molecules that participate in the

proper formation and wiring of the neuronal network.

It is fundamental to strengthen that the proposed approach

is not only capable to recognize patterns in ALS motor neuron

phenotype and its dynamical progression, but also to propose

novel paradigms for the dynamical modeling of evolving bio-

logical systems. Not straightforwardly, many different sys-

tems, biological or not, manifest peculiarity not in their static

assessment, but rather in the way they change over time.

For this reason, we believe that the strategies presented in

this paper, going from ASS to TE and related disease graph

representation, are totally general and may offer to data scien-

tists hints for improving dynamic system understanding, moni-

toring, and control.

The use of two distinct case studies demonstrated the

adaptability of NeuriTES to different scenarios within LFI.

Although not exhaustively demonstrated in the paper, Neu-

riTES can be applied to very diverse applicative contexts,

going from anisotropic and ramified motor neurons to circular

cancer cells with smoothed boundaries. The possibility to feed

the network with manually segmented cells, in place of

applying invasive staining procedure, and the expansion of

the dataset of images for training, will allow us to collect a bat-

tery of semantic networks each for a specific applications,

avoiding in future retraining over specific applications.

Limitations of the study
In the present release of NeuriTES, the preprocessing image al-

gorithms are specifically designed for bright-field time-lapse mi-

croscopy imaging. In the future, NeuriTES could be adapted to a

wider class of optical imaging techniques, such as phase

contrast imaging and fluorescence time-lapse microscopy

imaging.
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Figure 9. Temporal transfer entropy graph

(TTEG)

Temporal transfer entropy graph (TTEG) for the 6th-

day (A) and the 8th-day (B) day experiments, in

representing the temporal evolution of the neurites.

Solid black lines represent the subgraphs in com-

mon in the two cases (WT and G93A). The orange

dotted lines identify the subgraphs specific for each

specific condition (left) WT and (right) G93A. Colors

represent feature groups as indicated in the legend

to the left: neurites’ thickness and flatness, f1–f4
(red) and f5–f8 (green) respectively; heterogeneous

and global neurites extension and numerosity, f9–

f12 (blue), f13–f16 (yellow), and f21 (magenta),

respectively; alteration on general aspects, f17–f20
(cyan). Dashed circles represent new nodes

included in the specific subgraphs.
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In the current release, NeuriTES does not provide an optimal

visualization of the DTEG associated with the experiment. The

user is asked to design their own optimal DTEG according to

the result of the thresholded TE matrix. Future releases will

include an additional module for the construction and the visual

optimization of the DTEG representation.

Regarding the biological aspects of the ALS study, the

approach has two main limitations: the use of a mixed culture

system, without a physical separation between the neuronal

and the glial components, and the absence of a clear neuronal

marker. In the future, by employing custom-made culture de-

vices allowing the separate growth and select contact between

the neuronal and the glial components, and by employing

GFP-tagged neurons, we will be able to characterize better the

interaction between neurons and eventually between neurons

and glial cells.
Conclusion
Here, we present a novel tool, NeuriTES, for the automatic inves-

tigation of the dynamic processes involved in biological evolving

systems. The algorithms presented in the tool aim to provide a

representation model of the underlying phenomenon through

the quantitative assessment of the phenotypical evolution of

cell morphology over time. The application of the proposed

framework to ALS research might be a complementary tool in

a systematic approach for determining treatment strategies.

Furthermore, this model might help in testing the effect of a drug-

gable compound by analyzing the spatiotemporal mechanisms

of neurodegenerative heterogeneity. Preliminary results are

also presented for a second case study involved in investigating

phenotypical alterations in prostate cancer cells under chemo-

therapeutic treatment.
Despite the very strong biological impli-

cation of the presented case studies, the

strength of the proposed method is its

intrinsic wide generalization. Actually, the

new paradigm based on the idea of adapt-

ing static analysis to a dynamic context, as

well as on the introduction of TE as a mea-

sure of the temporal relationship among

descriptors, can be applied to many

different evolving processes to improve
the capacity to monitor the state but also to predict the evolution

of the phenomenon. This is crucial when the understanding of

the processes is not simply the collection of static conditions,

but rather the variability of their mutual interaction over time.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact is Prof. Eugenio Martinelli, martinelli@ing.uniroma2.it.

Materials availability

The videos used in this paper can be obtained on request to {martinelli, men-

cattini}@ing.uniroma2.it.

Data and code availability

All MATLAB codes and videos associated with this paper can be freely ac-

cessed and downloaded via https://cloudstore.bee.uniroma2.it/index.php/s/

eGaeonyFZg95Wf8, password: SLA_Patterns.

MATLAB codes can be also downloaded at: https://github.com/

Arianna1974/NeuriTES.git.

Implementation details

According to expert opinion, and by virtue of the visual observation of the

videos, motor neurons present very low motility at 1 frame/min. According to

these a posteriori considerations, we decided to reduce the frame rate of the

videos to 0.2 frame/min. This setting also reduced the memory storage of

the entire video sequence (see Table 3).

In addition to the temporal resolution reduction, the frames were further

spatially downsampled by a factor of two to 0.66 mm/px. The intrinsic dimen-

sions of motor neurons as well as the level of details that are visible in bright-

field modality did not motivate the use of the setting 0.33 mm/px, previously

used for detection of prostate cancer cells.31

Experiments were run on a PC Dell G5 15, with an Intel (R) core i7-9750H,

CPU @ 2.60 GHz Processor, 16 GB RAM, Windows 10 Professional 64 bits,

MATLAB 2020b. Table 3 lists the computational overhead of each step in

the NeuriTES platform and related memory storage for a single motor neuron

sequence using the described settings.
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Figure 10. Comparative segmentation re-

sults

(A) Examples of the segmentation results obtained

using Canny edge detection (left), K-means clus-

tering (middle), and semantic segmentation (right).

White pixels represent the true positive regions,

green pixels represent the false positive regions

(over-segmentation), and purple pixels locate the

false negative regions (under-segmentation or

missing regions).

(B) Segmentation metrics in terms of FM, R, and P

for the three compared approaches (Canny edge

detection, K-means clustering, and ASS).
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Mouse model, cell culture, and sample preparation for the motor neuron

case study: TgN (SOD1-G93A)1Gur mice expressing the G93A mutant SOD1

(G93A) originally obtained from The Jackson Laboratory (Bar Harbor, ME,

USA) are housed and bred in the C57BL/6J background at the Fondazione

Santa Lucia animal facilities. For the primary cultures, a male mouse carrying

the mutant SOD1G93A gene was mated with a C57BL/6J female to obtain

mixed embryos, processed separately, and then screened for the presence

of the human transgene.49 Motor neuron cultures were divided into two

groups: transgenic mutant G93A and their corresponding non-transgenic lit-

termates (WT), which were used as controls. Animal care and use followed

the European Directive 2010/63/EU adopted by the Council of the European

Union for animal experiments, and adequatemeasures were taken tominimize

pain or discomfort. The experimental protocol was approved by the Italian

Ministry of Health (license no. 424/2019-PR).

Spinal cord MN-enriched cultures were prepared from 14-day-old

SOD1G93A.49 Each neural tube was dissected, singularly incubated for 10
D
P 

8t
h

da
y

DP 6th day

Figure 11. DP of the compared correlation metrics

Pearson correlation coefficient, rc, concordance correlation coefficient, rcc,

and TE.
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min in 0.025% trypsin, and gently dissociated. The

resulting mixed cultures were seeded on poly-D-

lysine-coated dishes (about 70 3 104 cells for each

glass coverslip) and maintained in neurobasal me-

dium supplemented with B-27 supplement,

0.5 mM glutamine, 5% fetal bovine serum (FBS),

and 5% horse serum. Cultures were maintained in

a 37�C humidified incubator in 5%CO2 atmosphere.

To suppress glia proliferation, at 3 days after seeding

Ara-C was added to a final concentration of 10 mM.

Cell culture and sample preparation for the PC3

case study: human PC3 (ATCC, Rockwell, MD)

were grown at 37�Cwith 5%CO2 in RPMI 1640me-
dium, supplemented with 10% FBS, 1% L-glutamine (2 mg/mL), and 1% peni-

cillin/streptomycin (100 IU/mL) (Euroclone). PC3 are metastatic neoplastic

cells representing highly aggressive tumor cell phenotypes. Cells were treated

with the chemotherapy agent etoposide at a concentration equal to 5 mM. PC3

were also acquired under control conditions (i.e., no drug).

Imaging and image analysis

Time-lapse microscopy image acquisition

A customized microscope was used31: the prototype consisted of a small-

scale inverted microscope suitable to work in high-humidity environments (in-

cubators) with factory standard optics, custom aluminum structure, and fully

sealed electronics. The whole-microscope dimensions were less than

400 mm in height and 350 mm in length and depth. Furthermore, a custom

firmware was implemented in theMATLAB2017a environment to have full con-

trol on acquisition methods and light exposure. For case study 1, acquisition

was at 1 frame/min, with 1 day of total experiment time for two different ses-

sions (at the 6th and 8th days). For case study 2, acquisition was at 1 frame/

min, for a total duration of 6 h. The captured images had a field-of-view of

1.2 mm width by 1 mm height, and a spatial resolution of 0.33 mm/px.

Cell segmentation using ASS: SS is aimed at assigning labels to every pixel in

a given image using deepCNNs.35 In particular, in thisworkwe implemented the

DeepLabv3+,35 which is based on an encoder-decoder architectures with

atrous deconvolution required to re-dilate the image after pooling. The SS we

implement is based on the well-assessed pretrained CNN, i.e., ResNET50.34

Such a modification with respect to the default setting (ResNET18) was justified

by an increase in the final performance. SS is usually applied to static images

with the task of object segmentation and does not rely on video sequence seg-

mentation. In our work, we extend the potential of SS by the ASS approach. Us-

ing ASS we not only segment the motor neuron in each video frame but adapt

the general contrast of the actual frame to that of the previous one, with the

aim to increase the stationarity of the segmentation results along time. The small

set of manually segmented motor neurons is a limiting factor for the machine

learning model’s accuracy and may cause overfit to the training sample and

lack of generalizability. To address this aspect, weapplied an augmentation pro-

cedure aimed at artificially increasing the dataset of training by randomly

rotating the images with an angle in [0,360] degrees, reflecting images, trans-

lating images up to 10 px in both directions horizontally and vertically.

After the SS network was trained on the 150 frames labeled, all the frames of

the 79 videoswere processed through the use of the ASS approach. In the ASS
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Figure 12. Treatment transfer entropy graph

(TEG)

TTEG for the (A) the untreated PC3 cells and (B) PC3

cells treated with etoposide, a block replication

drug. Solid black lines represent the subgraphs in

common in the two cases. The orange dotted lines

identify the subgraphs specific for each specific

condition. Colors represent feature groups as indi-

cated in the legend to the left: cell shape de-

scriptors, f1–f5 (red); cell intensity descriptors, f6–f10
(green); and Haralick textural descriptors, f11–f14
(blue). Dashed circles represent new nodes

included in the specific subgraphs.
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application, frame contrast enhancement through nonlinear histogram stretch-

ing is repeatedly applied as follows IEðx;y; tÞ = GðIðx;y; tÞ

with G =

8><
>:

�
Iðx; y; tÞ � Ilow
Ihigh � Ilow

�g

; if Ilow %Iðx; y; tÞ%Ihigh

0 ; otherwise

where Ilow = quantileðIðx;y; tÞ;0:01Þand Ihigh = quantileðIðx;y; tÞ;0:99Þand gthe

nonlinearity parameter of the stretching operator. In the present experiment, we

changed the value of gin the range [0.5–1.5]. For each gvalue, the SS was

applied to the enhanced frame and the result was compared with the segmen-

tation result of the previous frame, by computing the FM value (see Equation 1).

The result with the highest FM value was then kept as the optimal segmentation

result for that frame.
Morphological descriptors extraction for case study 1

Each segmentation mask was then used to extract morphological descriptors

for each motor neuron along the video sequence. Descriptors were divided

into six groups: thickness of neurites, flatness of neurites (calculated along

the normal direction to the neurite), extension of neurites (calculated with

respect to the motor neuron centroid), number of neurites on concentric radial

region from the centroid, pixel intensity of the neurite’s soma, and area of the

neurite’s soma. Each group, except for the last one, was coded into four

distinct statistical features representing average values and variations. More

specifically, the extracted features were:

d Group1 (f1–f4)/ f1, median of the neurites diameter; f2, modal value of

the neurites diameter; f3 median absolute deviation of the neurites diam-

eter; f4, 10
th percentile of the neurite diameter.

d Group2 (f5–f8) / f5, mean value of the neurites’s flatness; f6, entropy of

the neurite’s flatness; f7, standard deviation of the neurite’s flatness; f8,

kurtosis of the neurite’s flatness.

d Group3 (f9–f12) / f9, mean value of the neurites’s extension; f10, modal

value of the neurite’s extension; f11, median absolute value of the neu-

rite’s extension; f12, 10
th percentile of the neurite’s extension.

d Group4 (f13–f16) / f13, median value of the number of neurites; f14,

modal value of the number of neurites; f15, median absolute

value of the number of neurites; f16, mean value of the number of

neurites.

d Group5 (f17–f20) / f17, mean value of the pixel intensity in the neurite’s

soma; f18, entropy of the pixel intensity in the neurite’s soma; f19, kurto-

sis of the pixel intensity in the neurite’s soma; f20, standard deviation of

the pixel intensity in the neurite’s soma.

d Group6 (f21) / area of the neurite’s soma.
Morphological and textural descriptors extraction for case study 2

Each segmentation mask was then used to extract morphological and textural

descriptors for each PC3 cell along the ROI sequence. Descriptors were
divided into three groups: shape of the cell, pixel in-

tensity of the cell, and texture descriptors inside the

cell. Each group, except for the last one, was coded
into four distinct statistical features representing average values and varia-

tions. More specifically, the extracted features were:

d Group1 (f1–f5) / f1, circularity of the cell; f2, eccentricity of the cell; f3,

solidity of the cell; f4, convexity of the cell (extent); f5, Frenet ratio.

d Group2 (f6–f10) / f6, mean value of the cell intensity; f7, standard devi-

ation of the cell intensity; f8, skewness of the cell intensity; f9, kurtosis of

the cell intensity; f10, entropy of the cell intensity.

d Group3 (f11–f14) / f11, Haralick contrast of the cell; f12, Haralick corre-

lation of the cell; f13, Haralick energy of the cell; f14, Haralick homogene-

ity of the cell.

For the detailed description of the Haralick parameters computation, see

Haralick and Shapiro.44

TE-f calculation

Each descriptor fi was calculated at each time frame and led to the definition

of a time series, fiðtÞ, i = 1.;Nf , with Nf the number of descriptors. Due to

the acquisition process, each time series could be represented by a so-

called stochastic process. We were interested in evaluating the information

flow from the source system X = fiðtÞ to the destination system Y = fjðtÞ,
isj. The directed transfer of information between X and Y is then linked to

the measure of the directed relationship. Since the signature of causality in-

volves at least three variables,50,51 the computation of TE between X and Y

requires to collect the remaining processes in the vector Z = ffqðtÞg, with

qsfi; jg. Such a framework was developed under the assumption of statio-

narity, which allowed to perform estimations replacing ensemble averages

with time averages. By sampling the processes, X, Y , and Z at time t = n,

we obtained the process observation, Xn, Yn, and Zn. In addition, we de-

noted with X�
n = fXn�1; Xn�2; .g, Y�

n = fYn�1; Yn�2; .g, and

Z�
n = fZn�1;Zn�2;.g the collection of the past of the processes. Then, the

MUTE from X to Y conditioned to Z was defined as:

TEX/Y jZ =
X

p
�
Yn;Y

�
n ;Xn;X

�
n ;Z

�
n

�
log

p
�
Yn

��Y�
n ;X

�
n ;Z

�
n

�
p
�
Yn

��Y�
n ;Z

�
n

� ; (Equation 3)

Where the sum extends over all the points forming the time series, pðuÞ is
the probability associated to the variable u and pðujvÞ=pðu; vÞ=pðvÞ
(Bayes’s theorem)52 is the probability of observing u knowing the

values of v. The TE measures the information explained by the past of

the process X on the present of the process Y that is not already provided

by the past of Y or any other process included in Z. The TE could be formu-

lated also as the difference of two conditional Shannon entropies (H) as

follows:

TEX/Y jZ = H
�
Yn

��Y�
n ;Z

�
n

�� H
�
Yn

��Y�
n ;X

�
n ;Z

�
n

�
; (Equation 4)

where the first term only accounts for the individual predictiveness of the

output process Y, whereas the second term accounts for the cross-predictive-

ness of X over Y .
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TE did not assume any probabilistic model for the interaction between the

systems and it was able to discover nonlinear interactions over different de-

lays. TE was implemented using theMUTE toolbox.30 Starting fromNf time se-

ries for the morphological descriptors, the TE calculation led to a matrix ofNf x

Nf elements, in which the general element TE-f(i,j) represented the interaction

in terms of predictiveness of X = fi(t) and Y = fj(t) after setting the remaining de-

scriptors fq(t), qs{i,j}, in the conditioned term Z. It was important to note that

the TE-f matrix is not symmetric since a time series-directed relationship is an

intrinsic asymmetric phenomenon. By turning the TE-f matrix into a vector of

TE descriptors, and eliminating the diagonal elements (which are forced to

be zero by definition), we obtained a TE-descriptor vector of NfxðNf �1Þ ele-
ments. In the two case studies considered, we have for case study 1 Nf =

21, hence 420 TE descriptors, and for case study 2 Nf = 14, hence 182 TE

descriptors.

Classification model construction

The TE descriptor vector is then used for constructing a classification model

using linear discriminant analysis.46 The descriptors were reduced by applying

a DP-based feature selection procedure, keeping only descriptors with DP

larger than 0.7. The selection was performed in the cross-validation loop using

a LOMO procedure for case study 1 and a leave-one-track-out procedure for

case study 2. Each motor neuron was finally labeled with the category of

healthy (WT) or unhealthy (G93A), whereas each PC3 track was labeled as un-

treated or treated.
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