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The ability to efficiently design new and advanced dielectric polymers is hampered by the lack of 
sufficient, reliable data on wide polymer chemical spaces, and the difficulty of generating such data 
given time and computational/experimental constraints. Here, we address the issue of accelerating 
polymer dielectrics design by extracting learning models from data generated by accurate state-of-the-
art first principles computations for polymers occupying an important part of the chemical subspace. 
The polymers are ‘fingerprinted’ as simple, easily attainable numerical representations, which are 
mapped to the properties of interest using a machine learning algorithm to develop an on-demand 
property prediction model. Further, a genetic algorithm is utilised to optimise polymer constituent 
blocks in an evolutionary manner, thus directly leading to the design of polymers with given target 
properties. While this philosophy of learning to make instant predictions and design is demonstrated 
here for the example of polymer dielectrics, it is equally applicable to other classes of materials as well.

The materials design process requires the identification of materials that meet a desired application or property 
need. The traditional routes adopted thus far to meet such design goals involve the determination of the relevant 
properties of a large number of potential candidates, via high-throughput experiments or computations, and 
choosing the best cases for further studies and optimisation1–4. While powerful and successful, this strategy suf-
fers from two primary drawbacks. First, the consideration of each material in a case-by-case manner is laborious 
and time-consuming, especially if one were to ignore the availability of past data on the same or similar candidate 
materials. Second, the prevalent strategy addresses the materials design problem in an ‘inverted’ manner, i.e., 
instead of approaching the “desired properties →  suitable materials” design problem (previously referred to as 
inverse design5–8), the “materials →  properties” problem is tackled, and the former design aspect is addressed 
indirectly through enumeration, i.e., explicit consideration of a large number of candidate materials. Confronting 
both these hurdles is critical to accelerate, streamline and focus the materials design process.

In the present contribution, strategies are presented to overcome such design challenges for the example of 
polymer dielectrics—essential components in several applications such as electrical insulation9, capacitive energy 
storage1,10–13, organic photovoltaics14,15, and flexible, stretchable and wearable electronics16,17. While some pol-
ymer dielectrics options are available for these applications, given the vastness of the polymer chemical space, 
it is extremely likely that significant untapped opportunities remain hidden. A more diverse spectrum (than 
currently available) of new, better and more suitable candidates will constantly be needed to meet growing future 
needs mandated by performance measures, amenability to synthesis and compatibility with other parts of devices. 
Rational and accelerated polymer design strategies and solutions would thus be enormously useful.

Our starting point in the present work is the generation of reference property data (using first principles 
computations) for a benchmark set of polymers spanning a particular chemical subspace. Interpolative statistical 
learning concepts18–25 are then used to train an on-demand instant property prediction model using this initial 
dataset, via an intermediate (and critical) ‘fingerprinting’ step that converts every polymer to a numerical string 
(c.f. Fig. 1). The prediction scheme produces accurate results for cases not used in the training phase (but fall-
ing within the same chemical subspace), as demonstrated by comparisons with more laborious first principles 
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computations and experimental measurements. Such a model via an enumeration scheme can be used to predict 
the properties of a plethora of new candidate materials in an attempt to search for cases meeting a particular set 
of property needs. Furthermore, one can make rapid go/no-go decisions on whether a new synthesisable polymer 
is worth pursuing or not.

The enumeration approach to materials design is not the most efficient one, as it involves consideration of an 
enormous number of cases, most of which will not be viable in the end (thus leading to low success rates). A better 
approach is to use the on-demand property prediction scheme within a genetic algorithm26,27, to directly tackle 
the “desired properties →  suitable materials” design problem. Several polymers that meet a property require-
ment criterion are designed directly here using such a strategy at a minuscule fraction of the time required for 
enumeration. The predicted property results of the designed polymers are validated by explicit first principles 
computations.

The suite of tools and strategies that emerge from this effort take us a step closer to rational, accelerated and 
direct design of materials in general, and polymer dielectrics in particular. These strategies can also be extended 
to larger polymer chemical and property subspaces. The essential ingredients of this effort are illustrated in Fig. 1, 
and described in detail in the following.

Data Generation
Polymers in our chemical subspace contain a number of linearly repeating chemical building blocks chosen from 
the following pool: CH2, NH, CO, C6H4, C4H2S, CS and O. These blocks are commonly found in much of the 
known polymer space, like polyethylene, polyureas, polythioureas, polyesters, etc. Polymers built from this same 
pool of blocks were considered by us in the past1, but the data from this previous work apply to just individual 
(i.e., isolated) polymer chains, thus leading to (extrapolated) property data with significant uncertainties. Here, 
we go beyond the past work, and determine the 3-dimensional packing and crystal structure of polymers arising 
from these building blocks. Properties computed for such 3-dimensional structures constitute a robust dataset.

For the creation of the initial dataset via first principles computations, we restrict ourselves to 4-block pol-
ymers, that is, polymers built with 4 blocks in the repeating unit (with each of these drawn from the pool of 7 
building blocks). As described below, the goal of the learning models developed here is to use this dataset to 
predict the properties of polymers with arbitrarily long repeat units. A total of 406 symmetry-unique 4-block 
polymers can be formed using the 7 building blocks, of which only 284 were considered here. This reduced num-
ber is because chemical intuition and prior knowledge dictates that some combinations of adjoining chemical 
blocks make for unstable systems, leading to the elimination of all polymers consisting of O-O, CS-CS, CO-CO 
and NH-NH pairs. The crystal structures of all 284 4-block polymers were determined using the minima hopping 
method28,29, with the necessary total potential energies and atomic forces computed using density functional the-
ory (DFT). The structure prediction and DFT details are provided in the Methods section; all the DFT predicted 
data for the 4-block polymers is provided in the Supplementary Information.

With the 3-dimensional structure of all 284 polymers determined, their relevant properties were calculated. 
In the present work, we focus on the bandgap (Egap), computed using hybrid electron exchange-correlation func-
tionals, and the electronic (ϵelec ), ionic (ϵionic) and total (ϵtotal =  ϵelec +  ϵionic) dielectric constant, computed using 
density functional perturbation theory, as described in the Methods section. In the case of dielectrics, the band-
gap and dielectric constant are the primary properties of interest, generally used in an initial screening stage, 
regardless of the specific applications1,30–32.

The workflow underlying the data generation step is depicted in Fig. 2a, and the DFT results are portrayed 
in Fig. 2b. It can be seen from Fig. 2b that ϵelec (shown in purple) seems to follow an inverse relationship to Egap, 
whereas ϵionic (shown in yellow) has no particular relationship with Egap

1,32. Given the larger range of values of 
ϵelec (2 −  10) than those of ϵionic (0 −  3), this effect translates to ϵtotal, and we can see an overall inverse relationship 
between ϵtotal (shown in red) and Egap as well. For high dielectric constant polymer insulator applications, we are 
interested in polymers that simultaneously show high ϵtotal and large Egap. Indeed, based on this notion, our past 

Figure 1. The overall outline of this work. This work is divided into three stages: the data generation stage, the 
instant property prediction stage and the direct design stage.
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work—although it dealt with isolated polymer chains and estimates of ϵtotal and Egap in the absence of crystal 
structure information—has lead to new polymer dielectric solutions1,10.

Fingerprinting Polymers
While high-throughput data generation efforts can provide useful ‘lead candidates’ with desired properties, the 
natural question that arises is whether one can understand the origins of the attractive behavior, and harness this 
understanding to search for other suitable options. Within the context of polymeric materials under investiga-
tion here, the origins should be traceable to the identities of the chemical building blocks. This comes from the 
theory that electronic and dielectric properties of organic polymers can be effectively expressed in terms of a sum 
of contributions from different constituent groups33. These contributions are in the form of polarisabilities and 
dipole-dipole interactions from the groups, with different weights attached to different groups. In the case of our 
polymers, some building blocks, or some combination of blocks, are expected to have a particular influence on 
the properties being studied.

Thus, if we can numerically represent—or fingerprint—our polymers based on their building block identities, 
correlations can potentially be established between the fingerprints (or parts of it) and properties. Indeed, numer-
ically representing molecules and materials is emerging as an active topic of inquiry within materials science, 
physics and chemistry in recent years34–37. Descriptors such as this have historically been used in cheminformatics 
and related fields like medicinal chemistry and drug discovery38,39. Key requirements of such representations are 
that the fingerprints should be intuitive, easily computable, invariant with respect to translations and rotations 
of the material, invariant to permutations of like atoms or motifs, and generalisable to all cases within the same 
chemical subspace. Such an approach was recently implemented by us for fingerprinting organic molecules and 
crystals in terms of constituent atom types (analogous to the chemical building blocks in case of our polymers 
here)6. Singles, doubles and triples of different atom types (based on atom identity and coordination of bonds) 
were successfully correlated with a number of calculated properties.

A simple polymer fingerprint could therefore be a count of the number of different types of building blocks 
(e.g., the number of CH2 blocks, the number of C6H4 blocks, etc.), normalised by the total number of blocks in the 
repeat unit. This would give rise to a 7 dimensional vector, each component of which corresponds to one of the 
blocks and is related to the number of times it appears in the given polymer repeat unit. We call this fingerprint 

Figure 2. Data generation from DFT and origins of properties. (a) The different steps involved in generating 
a database of the properties of 4-block polymers. (b) The DFT computed electronic, ionic and total dielectric 
constants plotted vs bandgaps for the 4-block polymers. (c) Pearson correlation coefficients between fingerprint 
MI and the 4 properties. (d) Correlations between fingerprint components of MII and the properties shown in 
the form of heat maps. Red crosses represent the components which lead to unstable polymers and were not 
considered in the present study (see text for details).
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MI. While it is a simple and elegant way of representing a polymer, MI does not take the effects of neighbouring 
blocks into account. Thus, we go a step higher in complexity and propose fingerprint MII, which is a count of 
the number of different types of pairs of building blocks in the polymer, normalised again by the total number 
of blocks in the repeat unit. MII is defined as a 7 ×  7 matrix, every component of which corresponds to any one 
pair of two neighbouring blocks (eg. CH2-NH pairs, CS-O pairs, etc.). Similarly, a fingerprint MIII can be defined 
which would be a 7 ×  7 ×  7 matrix each component of which refers to any triplet of blocks (CH2-NH-CO triplets, 
C4H2S-C6H4-CS triplets, etc.).

In this fashion, we could go to higher dimensional fingerprints with more information added at every step; in 
the limit that we consider n-tuple block combinations, we can uniquely represent any polymer out of an n-block 
polymer repeat unit chemical space. We note that this general fingerprinting concept was presented before by 
us32, but only a subset of the fingerprint components (namely, the diagonal) was considered earlier. We argue 
here that there is no reason to choose such a restricted fingerprint, and moreover, show in the Methods section 
that the full tensorial representation satisfies key sum rules. With the present prescription, the fingerprint for any 
given n-block polymer is populated by assigning a certain score to every block or pair of blocks or triplet of blocks 
that is encountered, with the counting done from either end of the polymer repeat unit to take periodicity and 
inversion into account. The scores are always averaged and normalised by the total number of blocks in the repeat 
unit. The averaging step ensures that sum rules are satisfied, and normalisation assures that the fingerprints are 
generalisable to repeat units of arbitrary length. It should be noted that this polymer fingerprint does not take 
into account spatial degrees of freedom or other structural factors, and would thus not distinguish between two 
polymers with the same repeat unit but different crystal structural arrangements.

For ease of initial discussion, we consider the fingerprints MI and MII. Correlations between the different 
components of fingerprint MI and 4 properties (ϵelec, ϵionic, ϵtotal and Egap) are shown in Fig. 2c. The coefficients 
plotted on the y-axes were obtained using the Pearson correlation analysis, which gives us values between − 1 
and + 1 showing the degree of negative or positive correlation between any property and any component of the 
fingerprint vector. The opposite behaviour of ϵelec and Egap can be ascertained by observing their respective plots: 
CH2 and O blocks make notable positive contributions to Egap and negative contributions to ϵelec, whereas C4H2S 
and CS contribute positively to ϵelec and negatively to Egap. The same effects largely translate to ϵtotal as well while 
for ϵionic, CO and NH blocks contribute the most.

Results for a similar Pearson correlation analysis between MII and the 4 properties are shown in Fig. 2d in the 
form of half-matrix heat maps. The shade of the colour in any matrix component (based on the adjoining colour 
scale) shows how positively or negatively that particular pair of blocks is correlated with the given property. Once 
again, it can be seen how the heat map for Egap is really opposite to that of ϵelec or ϵtotal in terms of the spectrum of 
colours (dark blue to dark red). While C6H4-C4H2S, C4H2S-C4H2S and C4H2S-CS pairs make the most positive 
contributions to ϵelec and CH2-O and CO-O pairs make the most negative contributions, the roles of these pairs 
are just reversed when considering their contributions to Egap. In case of ϵionic, NH-CO, NH-CS and CO-O pairs 
contribute to its increase while CH2-C6H4 and CH2-C4H2S pairs have the opposite effect. It is now possible for us 
to come up with educated combinations of different kinds of pairs of building blocks targeted towards increasing 
the dielectric constant or the bandgap or indeed, both. In light of these insights, it is not surprising that polymers 
with [-NH-CO-NH-C6H4-], [-NH-CS-NH-C6H4-], and [-NH-CO-NH-C6H4-] repeat units were singled out in 
past work as promising dielectrics for energy storage applications1.

On-Demand Property Prediction
While qualitative notions such as discussed above are useful, a quantitative property prediction model that is 
fast (because it by-passes the DFT route to property predictions) would satisfy several practical needs. Following 
previous work, we use kernel ridge regression (KRR)40 to establish a quantitative mapping between the polymer 
fingerprints on the one hand and the relevant properties (namely, Egap, ϵelec, and ϵionic) on the other. KRR is a 
statistical or machine learning algorithm capable of handling non-linear relationships6,32. By comparing the fin-
gerprint, say MIII, of a new polymer with those of a set of reference cases for which property values are known, an 
interpolative prediction of the property of the new polymer may be obtained. In practice, the machine learning 
prediction model is developed for a subset of the available dataset, referred to as the training set, and the perfor-
mance of the model is tested on the remainder of the dataset, referred to as the test set. Model development based 
on the training set also included internal cross-validation to minimise over-fitting and ensure model generality. 
In the present work, about 90% of the 284 4-block polymer dataset was taken to be the training set, and the 
remaining 10% was placed in the test set. The optimal training set size was determined by studying the ML model 
performances for different training set sizes; this data is presented in the Supplementary Information. Further 
details of the KRR method and specifics of the model development are provided in the Methods section.

The plots in Fig. 3 show Egap, ϵelec and ϵionic as predicted using the KRR-based machine learning (ML) model 
(and fingerprint MIII) versus the respective DFT values. The insets also show the relative error distribution for 
each property prediction, indicating that the average error for all three properties is of the order of 10% or less. 
We thus have a model in our hands that will convert a fingerprint (MIII, in the present illustration) to property 
values with errors that are reasonable (given the efficiency of the prediction process relative to DFT). Prediction 
performances using MI and MII for KRR are shown in the Supplementary Information for completeness.

The true power of such a property prediction model is its ability to instantly predict Egap, ϵelec and ϵionic for a 
polymer with arbitrarily long repeat unit (but with the building blocks drawn from the same pool of 7), with-
out needing to pursue the cumbersome approach of structure prediction and DFT. The workflow involved in 
predicting the properties of new n-block polymers is depicted in Fig. 4a. If one were to pursue the enumeration 
approach, it is straightforward to list all possible n-block polymers for any given n, as long as n is a small enough 
number. To illustrate this, we came up with all the possible symmetry-unique 6-block polymers (~6000 in num-
ber) and 8-block polymers (~150000 in number), determined their respective fingerprints, and estimated their 
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properties using our ML model. Figure 4b shows the predicted ϵtotal (= ϵelec +  ϵionic) plotted against the predicted 
Egap values for all the 6-block polymers and 8-block polymers, as well as for the considerably smaller number of 
the 4-block polymers. Figure 4b is a demonstration of how one may use interpolative statistical learning methods 
to densify the population within a chemical subspace. We thus have a lot more options to choose from.

The predictive performance of our model can be put to test in two ways: by comparing our predictions with 
actual DFT calculations, and by comparing them with available laboratory measurements. First, we validate our 
ML model against DFT calculations. A selection of 8-block polymers ranging from low (high) to high (low) 
values of ϵtotal (Egap) was chosen out of Fig. 4b (shown by stars in figure; incidentally, these were also the cases 

Figure 3. Prediction model performances. Comparison of the KRR property predictions with DFT evaluated 
properties for the prediction models for ϵelec, ϵionic and Egap respectively.

Figure 4. On-demand property prediction of polymers. (a) The steps involved in predicting properties of 
any given n-block polymer using the instant prediction models. (b) Dielectric constants and bandgaps from 
the prediction models plotted against each other for all 6-block polymers and 8-block polymers, with the 
computational data for 4-block polymers also shown for reference. (c) Machine learning predicted and DFT 
computed properties of 28 polymers obtained by applying the direct design scheme to different ranges of 
dielectric constants and bandgaps. (d) The machine learning predicted, DFT computed and experimentally 
measured properties of some previously synthesised polymers.
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identified by our genetic algorithm, discussed in the next section, but the same examples serve the present pur-
pose of ML model validation). The stable crystal structures of these 8-block polymers were determined, following 
which their properties were calculated using DFT. Figure 4c compares the ML prediction with the corresponding 
DFT results. As can be seen, the agreement is impressive indicating that the prediction model trained on 4-block cases 
is transferable to polymers with repeat units of arbitrary size.

Next, in Fig. 4d, we compare the on-demand predictions with experimental values for polymers synthesised 
and tested in the recent past1,10, as well as the corresponding DFT results, for completeness. These polymers were 
synthesised following the earlier work1 on high-throughput computational data generation using the isolated 
polymer chains model; this means we have available experimental as well as computational quantification of ϵtotal 
and Egap for a number of polymers which are predictable with our prediction models. Clearly, again, the perfor-
mance of the ML model is impressive. The closeness of our predictions with first principles as well as with actual 
experiments allows us to state with some confidence that we have the means to instantly, and with reasonable 
accuracy, predict the properties of any n-block polymer belonging to the chemical subspace under consideration. 
All the polymers plotted in Fig. 4c,d are denoted by some labels, and the polymer corresponding to each label is 
mentioned in Table 1. The ML predictions are always close to the experimental values, validating our claim of 
accelerating property prediction for arbitrarily long polymer chains.

On-Demand Direct Design
Although the entire expanse of the chemical space can be covered using enumeration, it is essentially a brute-force 
search for suitable polymers, and as such not the best possible design strategy. For instance, enumerating for 
8-block, 10-block and 12-block polymers will lead to ~1.5 ×  105, 5 ×  106 and 5 ×  107 systems respectively, which 
are unreasonably large numbers considering the property domain of interest may restrict us to a small fraction 
of that. We thus attempted to find an efficient way of obtaining specific n-block polymers that simultaneously 
show a certain desirable dielectric constant and a desirable bandgap, without having to individually consider 
every possible polymer. Such a model would make the “desired properties →  suitable materials” route an instant, 
on-demand reality5–8.

We applied a genetic algorithm (GA) approach as the means to optimise the polymers given the target prop-
erties. It has been shown that GA is a very efficient approach in searching for materials with desired properties 
when compared to other approaches like random search and even chemical-rules based search26. The idea here 
is to start with a random initial population of n-block polymers (for any given n) and let them undergo evolution 
(in terms of constituent blocks and their neighbours) based on the principles of GA, finally yielding a set of pol-
ymers with properties closest to the provided targets. At any step, the properties of the polymers are computed 
instantly using the on-demand prediction ML model we developed and explained in the previous section. The 
series of steps followed in this method are shown in Fig. 5a. In an earlier work6, we implemented the same phi-
losophy but used a simulated annealing approach instead of GA for designing organic molecules with specific 
target properties.

Given the target ϵtotal and Egap, and the number of blocks in the polymer repeat unit (the value of n), the 
algorithm generates a list of 300 n-block polymers which serves as the first generation. Based on the predicted 
property values, a fitness score (explained in detail in Methods) is assigned to every polymer and all the polymers 
are ranked according to this score. While polymers with satisfactory fitness scores survive (this is called elitism), 
the rest undergo different kinds of evolution, namely crossover and mutation (again, explained in Methods). New 

Label Polymer Repeat Unit Label Polymer Repeat Unit

P1 CH2-O-CH2-O-CH2-CH2-CH2-CH2 P20 O-C6H4-CO-C4H2S-CO-NH-O-CO

P2 CH2-O-CH2-O-CH2-CH2-CH2-O P21 CH2-CH2-O-CS-NH-CS-C6H4-NH

P3 CH2-NH-CH2-CH2-CH2-O-CH2-O P22 C6H4-C6H4-CH2-CS-C4H2S-CS-CH2-O

P4 CH2-CH2-O-CO-O-CH2-CH2-O P23 C6H4-NH-C6H4-CS-NH-C4H2S-CO-NH

P5 CO-O-CH2-CH2-CH2-CH2-CH2-O P24 CO-C4H2S-NH-CS-O-C4H2S-NH-C4H2S

P6 CH2-CH2-O-CO-NH-CH2-CH2-O P25 CS-CO-CH2-CH2-NH-C6H4-CS-C6H4

P7 CH2-NH-CO-NH-CH2-O-CH2-O P26 C6H4-NH-C4H2S-C4H2S-CS-C4H2S-C4H2S-NH

P8 CH2-CH2-CH2-CH2-NH-CO-CH2-CH2 P27 C4H2S-C4H2S-C4H2S-CS-C4H2S-NH-CS-NH

P9 CO-NH-O-CH2-CH2-CH2-CH2-O P28 C4H2S-CS-C4H2S-CS-CO-NH-C6H4-C4H2S

P10 CH2-O-CO-NH-CH2-CH2-NH-CH2 P29 NH-CO-NH-C6H4

P11 CH2-NH-CH2-NH-CO-NH-CO-NH P30 CO-NH-CO-C6H4

P12 CH2-NH-CO-O-NH-CO-NH-O P31 NH-CS-NH-C6H4

P13 CO-NH-CO-O-CO-NH-CH2-NH P32 CH2-CH2-CH2-CH2

P14 CO-NH-CO-NH-CH2-CH2-CH2-NH P33 NH-CS-NH-C6H4-NH-CS-NH-C6H4-O-C6H4

P15 CO-NH-CO-CH2-NH-CO-O-NH P34 NH-CS-NH-C6H4-NH-CS-NH-C6H4-CH2-C6H4

P16 C6H4-O-CO-CH2-CO-CH2-CH2-O P35 NH-CS-NH-C6H4-NH-CS-NH-C6H4

P17 CH2-CH2-CO-O-CO-CH2-C6H4-C6H4 P36 NH-CS-NH-C6H4-NH-CS-NH-[CH2]6

P18 CO-NH-O-NH-CO-NH-C4H2S-NH P37 NH-CS-NH-C6H4-CH2-C6H4

P19 CO-NH-CO-NH-CO-NH-C4H2S-NH

Table 1.  Polymer repeat units denoted by the labels P1 to P37 in Fig. 4c,d.
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generations of polymers are produced in this manner; a stopping criterion is provided based on the fitness score, 
and once polymers with suitable fitness scores are obtained, the algorithm stops. From every generation, the 
polymers with fitness scores above a certain threshold are compiled as the list of best solutions. At the end of the 
algorithm, this list contains the final set of optimal polymers showing the desired ϵtotal and Egap.

For a demonstration and validation of this approach, we restricted our initial search to 8-block polymers only, 
as this provides us with a substantial population of systems to explore while ensuring the system size does not 
become so large as to render subsequent first principles validation extremely expensive. We took 6 different (ϵtotal, 
Egap) combinations as the targets, and allowed the algorithm to search for suitable 8-block polymers showing each 
combination of properties. Figure 4c gives a glimpse of the results: we show a few polymers each obtained for the 
different targets we provided. The ML model predicted property values for these polymers are always close but 
not exactly the same as the target values—but these are the polymers showing the highest fitness scores for the 
given targets. A comparison between the solutions obtained from the genetic algorithm approach and the solu-
tions obtained from the enumerated list of all 8-block polymers, is shown in the Supplementary Information. It 
is seen that for a given target property set, this scheme does indeed determine a number of optimal solutions, if 
not all of them.

To understand exactly how valuable the direct design scheme is, we need to quantify the speed of the GA 
approach when compared to enumeration. Taking the example of 8-block polymers, while there are a total pos-
sible ~150000 such systems, GA is able to traverse a small percentage of the points in determining the required 
polymer(s). Upon going to higher block systems, like 9-block or 10-block polymers, the total possibilities are 
exponentially higher but the percentage of points the algorithm needs to explore is even smaller. Figure 5b shows 
that despite the exponential increase in total polymer possibilities, as the number of repeating units n increases, 
a smaller and smaller percentage of points need to be considered by the algorithm in order to obtain the optimal 
polymer(s). Also shown in Fig. 5b are n-block polymers obtained for different values of n for a target ϵtotal of 5 and 
a target Egap of 5 eV. Thus, with actual polymer outputs (with arbitrarily long chains) as well as a quantification 
of the speed-up, we have in our hands an efficient polymer design model that negates the need for enumeration 
followed by down-selection of desired systems.

Summary
Given a material, we want to have the means to instantly estimate its properties, and thus make a quick decision 
on its suitability for an application. We have demonstrated how carefully created and curated materials data can 
be used to train statistical learning models. These models, following testing and validation, require merely the 
fingerprint of a new material to output its properties. We have further shown how a genetic algorithm can be 
combined with the learning models to determine specific materials that possess a certain set of desired properties. 
In this manner, using the example of polymer dielectrics, we have successfully tackled both the “desired proper-
ties →  suitable materials” and the “materials →  properties” problems. The materials design philosophy applied 
in this work can be used for any class of materials, as long as there is sufficient data available for training, and an 
intuitive and easily attainable material fingerprint can be proposed.

Figure 5. On-demand direct design of polymers. (a) The steps involved in the genetic algorithm (GA) 
approach leading to direct design of polymers. (b) The exponential increase in total polymer possibilities for 
increasing number of repeating blocks, and the simultaneous decrease in the percentage of points to be explored 
till success. Also shown are one optimal polymer each for each case for a target dielectric constant and bandgap 
of 5 and 5 eV respectively.
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We have at our disposal a polymer database, generated from first principles and expanded substantially using 
the on-demand prediction model, which enables us to recommend a number of new polymers previously not 
considered for synthesis and testing. While this fulfills one of the specific aims we set out to achieve, that is 
expand on the list of promising dielectric polymers, the prediction and design models can prove to be very valu-
able tools for polymer synthesists. Not only can they make an instant go/no-go decision on any polymer, but they 
can actively seek specific polymers that would suit their requirements. This adds a new, very useful dimension to 
the field of dielectric polymer design.

There are of course limitations to the models, not least in terms of the chemical blocks currently considered. 
The information in the models, and thus the possible guidance, is restricted to combinations of only the 7 basic 
building blocks. For an extension to more blocks, sufficient amount of data on polymers containing those blocks 
needs to be generated, and the models retrained. Further, the fingerprints currently used only take into account 
the constituent blocks in the polymers, and exclude information on how the polymer chains are stacked against 
each other, and other factors that may affect the properties. While this is indeed a limitation, we argue that such a 
fingerprint still functions very well, and points to the fact that materials can typically be boiled down to fairly sim-
ple numerical representations. Lastly, it must be noted that all property predictions from the on-demand predic-
tion model come with some uncertainties, which are inevitable in any statistical learning enterprise. Nevertheless, 
we have established a useful materials design protocol that should help accelerate the design and discovery of 
polymers encompassing a much larger chemical subspace, or non-polymeric but quasi-1D systems (e.g., super-
lattice heterostructures).

Methods
First principles computations. A unit cell is set up containing 2 polymer chains stacked next to each other. 
The Minima Hopping structure prediction algorithm28,29,41,42 was applied on the starting polymer geometry, lead-
ing to the exploration of many low energy crystal structure arrangements which were ranked according to their 
relative energies. For each polymer, the lowest energy crystal structure thus obtained was taken for DFT property 
calculations. DFT43 as implemented in the Vienna ab initio software package (VASP)44 was applied, and relaxation 
was performed using the rPW86 functional wherein the DFT-DF2 vdW correction is applied45 to capture the van 
der Waals interactions in the polymer correctly46. We used projector-augmented wave (PAW)47 pseudopotentials 
and imposed a tight energy convergence criterion of 10−8 eV and an energy cut-off of 500 eV. The relaxed geom-
etry thus obtained went as input into a subsequent density functional perturbation theory (DFPT)48 calculation, 
which provided us with the dielectric constant tensor that includes the electronic component49 as well as the 
ionic (lattice) component50. The reported dielectric constant values were obtained by determining the trace of the 
respective dielectric tensor (a 3 ×  3 matrix in this case). Further, the Heyd-Scuseria-Ernzerhof (HSE)51 functional 
was used on the relaxed geometries to obtain the HSE bandgap values, which are known to be more reliable52.

Fingerprint. MI, MII and MIII are characterised by a number of key mathematical constraints which have been 
listed below-

1. The sum of all the elements in any fingerprint should be equal to the total number of blocks in the polymer 
(N). Thus: ∑ == M Ni I

i
1

7 , ∑ =, = M Ni j II
ij

1
7  and ∑ =, , = M Ni j k III

ijk
1

7 .
2. The sum of elements in any row or column of MII should be equal to the total number of blocks of that kind 

in the polymer. This can be written as: ∑ == M Mj II
ij

I
i

1
7 . Similarly, the sum of elements in any given 7 ×  7 

matrix plane in MIII should be equal to the total number of blocks of that kind in the polymer, which can be 
written as: ∑ = ∑ =, = =M M Mj k III

ijk
j II

ij
I
i

1
7

1
7 .

3. The periodic symmetry in the polymer dictates that the fingerprint matrix diagonal acts as a mirror; the 
corresponding elements on either side of it should be equal. That is, =M MII

ij
II
ji and =M MIII

ijk
III
kji.

4. The diagonal elements in any fingerprint matrix should be integer values, that is, MII
ii  and MIII

iii  ∈  the set of 
non-negative integers.

Regression. Kernel Ridge Regression (KRR) was applied to develop a similarity-based model, where the 
Euclidean distances between fingerprints are used to compute a distance Kernel. In this work, a Gaussian Kernel 
was used. A given property is then expressed as a weighted sum of the Gaussians. The different parameters that go 
into the training of such a model— the Gaussian width parameter, the regularisation parameter (which helps to 
prevent overfitting in the data)40, and the coefficients of the Gaussians— are changed in a systematic manner so as 
to achieve maximum closeness between the weighted sum of the kernels and the property. From our database of 
284 4-block polymers, all the points were randomly divided into two sets— the training set (250 points) and the 
test set (34 points). The training set was used to train the KRR model and thus come up with the prediction model 
with the minimum error in property prediction. The best models thus obtained were used to predict the proper-
ties on a test set in order to evaluate their true out-of-sample performance. To ensure the best possible training in 
an unbiased manner, a cross-validation technique was used where the training set itself is divided into two sets 
and one set is used for preliminary training with validation done on the other.

Genetic Algorithm. Based on the target dielectric constant and bandgap, an objective function was defined 
as the following-

= − +  − 
W [ ] E Etarget

gap gap
target2 2
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where ϵtarget and Egap
target are the target dielectric constant and bandgap values respectively, while ϵ and Egap are the 

dielectric constant and bandgap of the polymer undergoing optimisation. This function would be minimised 
when the difference between either property of the polymer and the respective target property is the least. Further, 
a Fitness Score was defined as the inverse of the objective functional value, and acted as the measure of suitability 
of any system. We devised a polymer encoding system that converted any n-block polymer into an n-component 
vector, assigning a number between 0 and 6 to each of the 7 motifs respectively. Using completely random values 
for this vector, an initial population of 300 polymers was generated. Properties were instantly calculated for all 
these polymers using the on-demand prediction models, and the fittest polymers (showing the highest fitness 
scores) were selected. Mating is performed between these individuals using a combination of crossovers, elitism 
and mutation26, giving rise to the ‘offspring’ polymers that then go forth to the next generation of polymers. In 
crossover, some of the vector components of the parent polymers were simply exchanged to generate the children. 
Elitism means preserving a few of the fittest parent polymers in the next iteration, whereas with mutation, we 
changed some of the vector components of the parents randomly to obtain the children. Thus, generation after 
generation of polymers was studied and those with the highest fitness scores at every generation went into the list 
of best solutions. In the end, this list would contain the best individuals that ever lived (that is, the polymers with 
properties closest to the target values ϵtarget and Egap

target), and these would be our solutions.
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