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Sequential transitions between metastable states are ubiquitously observed in the

neural system and underlying various cognitive functions such as perception and

decision making. Although a number of studies with asymmetric Hebbian connectivity

have investigated how such sequences are generated, the focused sequences are

simple Markov ones. On the other hand, fine recurrent neural networks trained with

supervised machine learning methods can generate complex non-Markov sequences,

but these sequences are vulnerable against perturbations and such learning methods

are biologically implausible. How stable and complex sequences are generated in the

neural system still remains unclear. We have developed a neural network with fast and

slow dynamics, which are inspired by the hierarchy of timescales on neural activities

in the cortex. The slow dynamics store the history of inputs and outputs and affect

the fast dynamics depending on the stored history. We show that the learning rule that

requires only local information can form the network generating the complex and robust

sequences in the fast dynamics. The slow dynamics work as bifurcation parameters for

the fast one, wherein they stabilize the next pattern of the sequence before the current

pattern is destabilized depending on the previous patterns. This co-existence period

leads to the stable transition between the current and the next pattern in the non-Markov

sequence.We further find that timescale balance is critical to the co-existence period. Our

study provides a novel mechanism generating robust complex sequences with multiple

timescales. Considering the multiple timescales are widely observed, the mechanism

advances our understanding of temporal processing in the neural system.

Keywords: slow-fast systems, recurrent neural networks, bifurcations, sequential patterns, non-Markov

sequences

1. INTRODUCTION

Sequentially activated patterns are widely observed in neural systems, for instance, the cerebral
cortex (Jones et al., 2007; Ponce-Alvarez et al., 2012; Stokes et al., 2013; Mazzucato et al., 2015;
Kurikawa et al., 2018; Taghia et al., 2018), hippocampus (HPC) (Gupta et al., 2010; Maboudi et al.,
2018; Schuck and Niv, 2019; Wimmer et al., 2020), and the striatum (Akhlaghpour et al., 2016).
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These patterns underlie a range of cognitive functions: perception
(Jones et al., 2007; Miller and Katz, 2010), decision making
(Ponce-Alvarez et al., 2012), workingmemory (Stokes et al., 2013;
Taghia et al., 2018), and recall of long-term memory (Wimmer
et al., 2020). They process temporal information by concatenating
shorter sequences (Gupta et al., 2010), reorganizing the order
in sequential patterns (Wimmer et al., 2020), and chunking
sequences (Jin et al., 2014), which lead to inference and recall,
based on previous experiences.

Several models have been proposed to understand how such
sequential patterns are shaped in the neural systems to perform
complex tasks (Kleinfeld, 1986; Sompolinsky and Kanter, 1986;
Seliger et al., 2003; Gros, 2007; Sussillo and Abbott, 2009; Russo
and Treves, 2012; Laje and Buonomano, 2013; Recanatesi et al.,
2015; Chaisangmongkon et al., 2017; Haga and Fukai, 2019).
Popular Hebbian models provide a simple framework in which
each pattern in the sequence is represented as a metastable
state, which is formed through Hebbian learning. An asymmetric
connection from the current to the successive pattern (Amari,
1972; Kleinfeld, 1986; Sompolinsky and Kanter, 1986; Nishimori
et al., 1990; Seliger et al., 2003; Gros, 2007; Russo and Treves,
2012; Recanatesi et al., 2015; Haga and Fukai, 2019) causes
transition between patterns. Such transitions are also induced
by slower destabilization terms (Gros, 2007; Russo and Treves,
2012; Recanatesi et al., 2015). Note that these sequences are
widely observed in neural systems (Miller, 2016). In other studies
(Sussillo and Abbott, 2009; Laje and Buonomano, 2013; Mante
et al., 2013; Chaisangmongkon et al., 2017), recurrent neural
networks (RNN) are trained by using machine learning methods
so that experimentally observed neural dynamics are generated.

Despite the great success of these studies, however, some
fundamental questions remain unanswered. In models that
generate sequential metastable states, a transition between
these states is embedded rigidly into the connectivity (i.e., the
correlation between the current to the next pattern), resulting
in successive patterns being determined by the immediately
preceding pattern. Hence, the generation of sequences depending
on the long history of the previous patterns is not possible. On
the other hand, RNNs trained with machine learning methods
allow for generating complex sequences dependent on history.
The training methods require non-local information and have
to retain the information until the sequence finishes, which is
not biologically plausible. In addition, the formed sequences are
vulnerable to noise or perturbation to the initial state (Laje and
Buonomano, 2013).

To resolve these unanswered questions, we introduce a neural
network model with slow and fast neurons that can learn
the history-dependent sequences and connect the sequences.
The fast neural dynamics generate patterns in response to
an external input with the feedback from the slow dynamics.
The slow dynamics store the history of the inputs via the
fast dynamics, and feed the stored information back to the
fast, as shown in Figure 1A. By this model, we provide a
novel framework in temporal processing in the neural system
in which the slow dynamics control successive bifurcations
of fixed points of fast dynamics, based on the stored history
of previous patterns and inputs. By adopting a biologically

plausible learning rule based solely on the correlation between
the pre- and post-synaptic neural activities as introduced
previously (Kurikawa and Kaneko, 2013, 2016; Kurikawa et al.,
2020), we demonstrate that our model with the fast and slow
neural dynamics memorizes the history-dependent sequences
and enables inference based on them.

Multiple-timescale neural dynamics are observed across
cortical areas (Honey et al., 2012; Murray et al., 2014; Chaudhuri
et al., 2015; Hasson et al., 2015). Neural activities in lower sensory
cortices change in a faster timescale and respond instantaneously
to stimuli, whereas those in higher association cortices change
in a slower timescale and integrate information over longer
periods. Cooperations between the higher and lower cortices are
necessary to process the temporal information.

Some model studies focused on the multiple-timescale
dynamics (Kiebel et al., 2008; Yamashita and Tani, 2008) and
showed that their models generate history-dependent sequences.
These models, however, adopted machine learning methods, and
thus, biological plausibility is hard to be assured. In contrast,
our model proposes a biologically plausible mechanism in
which the higher cortices regulate the lower ones to generate
complex sequences.

In the following, we focus on two basic aspects of neural
sequences in temporal information processing; context (history)-
dependent sequences and inference. In the context-dependent
working memory task (Mante et al., 2013; Stokes et al., 2013),
distinct sequences of neural patterns are evoked by identical
stimuli depending on the preceding context signals. Second, in
this study, inference is defined as the ability to make appropriate
responses against a new environment by using previously learned
examples. For instance (Jones et al., 2012; Wikenheiser and
Schoenbaum, 2016), consider a rat learning successive stimuli,
A followed by B, and then reward C. After changing the
environment, the rat is required to learn a new combination
of stimuli, A’ followed by B. In this situation, the rat is able to
infer that stimuli A’ causes the reward C via B. Neural activities
reflecting this cognitive function should show sequential patterns
A’BC even after learning only A’B. After showing basic behaviors
in ourmodel, we demonstrate that how such a context-dependent
sequence is generated and how inference is executed.

2. MATERIALS AND METHODS

2.1. Neural Model
We consider learning of K sequences, each of which contains
M patterns, with K input patterns. We denote the µ-th targeted
pattern in the α-th sequence as ξα

µ, and the corresponding input
as ηα for µ = 1, 2, · · · ,M over the inputs α = 1, · · · ,K.
Figure 1A illustrates the case with K = 2 and M = 3: In this
case, a given sequence ξα

1 ,ξ
α
2 ,ξ

α
3 (α = 1, 2) should be generated

upon a given corresponding input ηα . Generally, a pattern to be
generated next is determined not only by the current pattern but
also by earlier patterns. Thus, a network has to retain the history
of previous patterns to generate a sequence correctly.

To achieve this, we built a two-population model with
different timescales, one withN fast neurons and one withN slow
neurons, denoted as X and Y , respectively. X receives an external
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FIGURE 1 | (A) Schematic diagram of the proposed model for two sequences (K = 2) and three patterns (M = 3). (B) Neural dynamics during the learning process of

three targets. Top: the time series of one of the fast variables x0 (solid line) and the corresponding slow variable y0 (broken line) during the learning process. Bottom:

mx
1,2,3, overlaps of x with ξ11 (blue), ξ12 (orange), and ξ13 (green). The black line represents the overlap between x and y denoted as mxy . The bars above the panels

indicate the targeted patterns given to the network in corresponding periods. (C) The fraction of successful recalls is plotted as a function of M for K = 1, 2. It is

averaged over 50 realizations (10 networks and five pairs of the target and input patterns for each network). Here, a successful recall is defined as the case in which all

K ×M targets are sequentially generated in the correct order in the presence of the corresponding inputs.

input, and Y receives the output from X and provides input to X,
as shown in Figure 1A. The neural activities xi in X and yi in Y
evolve according to the following equation:

τxẋi = tanh (βxIi)− xi, (1)

τyẏi = tanh(βyxi)− yi, (2)

Ii = ui + tanh(ri)+ (ηα)i, (3)

where ui =
∑N

j 6=i J
X
ij xj; ri =

∑N
j JXYij tanh(yj). J

X
ij is a recurrent

connection from the j-th to the i-th neuron in X, and JXYij is

a connection from the j-th neuron in Y to the i-th neuron in
X. JX is a fully connected network without self connections.
It is modified during the learning process as described in the
following subsection “Learning model” and initialized with the
binary values P[JXij = ±(N− 1)−1/2] = 1/2. The diagonal entries

of JX are kept at zero during the entire learning process. JXY , in
contrast, is a non-plastic sparse network; P(JXYij = ±cN−1/2) =

ρ and P(JXYij = 0) = 1 − 2ρ. X is required to generate

the pattern ξα
µ in the presence of ηα , i.e., an attractor that

matches ξα
µ is generated under ηα . The i-th element of a targeted

pattern denoted as (ξα
µ )i, is assigned to the i-th neuron in X, and

randomly sampled according to the probability P[(ξα
µ )i = ±1] =

1/2. The input (ηα)i is injected to the i-th neuron in X, randomly
sampled according to P[(ηα)i = ±1] = 1/2. ξ and η are the same
dimensional vectors as the fast dynamics, i.e., N-dimensional
vectors. We set N = 100,βx = 2,βy = 20, τx = 1, τy = 100,
ρ = 0.05, and c = 7. The dependence of the performance
on these parameters are shown in the Supplementary Materials,
while the details for the parameter setting are described.

In Equation (3), we implement the non-linear activation at
the apical dendrites (Larkum et al., 2009). We assumed that
the input from Y to X innervated on the apical dendrites of
neurons in X, which is consistent with observations that the

feedback inputs from the higher cortical areas innervate on
the apical dendrites of layer 5 pyramidal neurons (Larkum,
2013), whereas the recurrent input from X to X was assumed
to innervate the proximal dendrites. The synaptic inputs to the
apical dendrites are integrated and evoke the calcium spike when
the integrated input exceeds the threshold of spikes (refer to
the detail of this type of spike in Larkum et al., 2009). To
reproduce this information processing at the apical dendrites, we
used two nonlinear filters by the hyperbolic tangent function for
the input from Y to X. First, by adopting tanh(yj), the activity
of the j-th neuron in Y is amplified in a nonlinear way at a
synapse onto the neuron xi. Second, tanh(ri) represents calcium
spike at the branching point of the tuft dendrite. Even if these
hyperbolic tangent functions are not leveraged in Equation (3),
the behavior of the model is not changed qualitatively, although
the performance of the model is reduced.

2.2. Learning Model
Only JX changes to generate the target according to the
following equation:

τsyn
˙JXij = (1/N)(ξi − xi)(xj − uiJ

X
ij ), (4)

where τsyn is the learning speed (set to 100). This learning
rule comprises a combination of a Hebbian term between the
target and the presynaptic neuron, and an anti-Hebbian term
between the pre- and post-synaptic neurons with a decay term
uiJ

X
ij for normalization 1. This form satisfies locality across

connections and is biologically plausible (Kurikawa et al., 2020).
We previously applied this learning rule to a single network of
X and demonstrated that the network learns K maps between

1According to Eq. (4), d(
∑

j 6=i(J
X
ij )

2)/dt ∝ (1−
∑

j 6=i(J
X
ij )

2).
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inputs and targets, i.e., M = 1 (Kurikawa and Kaneko, 2013,
2016; Kurikawa et al., 2020). However, in that case, generating
a sequence (M ≥ 2) was not possible. In the present study, there
are two inputs for X, one from input η and one from Y that stores
previous information. Thus, the network can generate a pattern
depending not only on the present input pattern, but also on the
previous patterns.

2.3. Learning Procedure
In our model, the patterns in the sequence are learned
sequentially. A learning step of a single pattern is accomplished
when the neural dynamics satisfy the following two criteria:
x sufficiently approaches the target pattern, i.e., mx

µ ≡

6ixi(ξ
1
µ)i/N > 0.85, and y is sufficiently close to x, i.e.,

6ixiyi/N > 0.5. After the completion of one learning step, a new
pattern ξ 12 is presented instead of ξ 11 with a perturbation of fast
variables xi, by multiplying a random number uniformly sampled
from zero to one.We execute these steps sequentially fromµ = 1
to M to learn a sequence once, denoted as one epoch of the
learning. Before finishing the learning process, this procedure
is repeated 20 times (i.e., 20 epochs). The second criterion for
terminating the learning step is introduced for memorizing the
sequences, especially the history-dependent sequences. Further,
the value 0.5 of this criterion must take an intermediate value. If
this criterion is not adopted or this criterion value is small, the
target pattern is switched as soon as x is close to the target during
the learning process. At this time, y is far from x because y is
much slower than x. In this case, y cannot store any information
about x. On the other side, when the value is close to unity, y
matches x and y can store only the present x. In both cases, y
cannot store the history of x.

2.3.1. Inference Task
In the inference task, we present sequentially different inputs
in a sequence, whereas a single input is applied for a sequence
in other tasks. We include the super- and sub-scripts in the
notation of η as ηα

µ that represents the µ-th input pattern
in the α-th sequence. In this task, a network learns three
sequences:(S,A,B,C), (S,A′,B,C), and (D). The former two
sequences are used for inference, whereas the last one is a
distractor to prevent the over-stability of the other two sequences.
First, in the learning process, the network learns (S,A,B,C)
and (D). Second, it learns (S,A′,B) after training is completed.
Then, we examine if the network generates (S,A′,B,C), implying
inference from B to C.

For the first sequence (S,A,B,C), we apply η11 = s for the
target S, η12 = a for A, and η13 = η14 = b for B and C. For
the second sequence (A′,B,C), we apply η11 = s for the target
S, η22 = a′ for A′, and η23 = b for B. All the targets and inputs are
randomly sampled according to the probability P[(ξα

µ )i = ±1] =
P[(ηα

µ)i = ±1] = 1/2.
Because, in this task, the input pattern is changed in a single

sequence, we apply the input and target over 100 unit times and
change them to the next in the sequence through the learning
process. In the recall process, we regularly change the input
pattern every 100 unit times, independently of the value of the
neural activities.

2.4. Data Analysis
2.4.1. Principal Component Analysis (PCA)
We analyzed neural trajectories by using mainly PCA in
Figures 2, 5–7 and Supplementary Figure S5. The N × T
dimensional neural data of x is used for the PCA. In this study, T
is the duration time to analyze neural dynamics multiplied by the
sampling number of x per unit time (In this case, 20). For analysis
of y, we also used PCs obtained by x.

2.4.2. Calculation of Success Rate in the Inference

Task
To compute the success rate of the generation of the sub-
sequence (B,C) under input b, we first identify the sequence
of the patterns from the continuous neural activity by setting a
threshold for the overlap value at 0.7. In the recall process, since
the overlap with either (or a few) of the targets S,A,B,C,D,A′

is selectively high most of the time, the sequences composed
of some of the patterns S,A,B,C,D,A′ are obtained for each
of different input sequences (s, a, b, b), (s, a′, b, b), and (s, v, b, b).
In this study, v is a random pattern that is not used for
learning. We generate these sequential patterns starting from
20 initial states for each of 100 network realizations and use
the subpart of them in the presence of b to calculate the
success rate of the sub-sequence (B,C). In this study, 100
network realizations are obtained by generating JX , JXY , ξ , and
η 100 times according to independent and identically probability
distributions as described in the “Neural model” in this section.

We test significant differences in the success rates of
the generation of the sub-sequence (B,C) for different input
sequences by Wilcoxon’s signed-rank test. The success rates
for (s, a′, b) and (s, v, b) are calculated from 20 sequences for
each network realization. Hundred samples of two related
paired success rates are obtained and used in Wilcoxon’s
signed-rank test.

3. RESULTS

Before exploring the history-dependent sequence, we analyzed if
our learning rule generates simple sequences, namely, sequences
in which the successive pattern is determined solely by the
current pattern. Figure 1B shows a sample learning process for
K = 1. We applied η1 to a network and presented ξ 11 as the first
pattern of a target sequence. After the transient time, x converges
to ξ 11 due to synaptic change. y follows x according to Equation 2
and, consequently, moves to the target.

We present an example of a recall process after the learning
process for (K,M) = (1, 3) in Figure 2A. In recall, the
connectivity is not changed. The initial states of the fast variables
are set at random values sampled from a uniform distribution of
–1 to 1. The slow variables are set at values of their final states
in the learning process in order for the network to generate the
sequence starting from ξ 11. (If the slow variables are set randomly
in a similar manner as the fast variables, the network can still
generate the sequence, but the first pattern of the sequence is not
ξ 11). The targets appear sequentially in X in order. Note that in
the recall process, the transition occurs spontaneously without
any external operation.
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FIGURE 2 | Bifurcation of x with quenched y. (A) Neural dynamics during the recall process of the three learned patterns. Overlaps of neural activities m
x,y
µ , µ = 1, 2, 3

in x (top) and y (bottom) for M = 3 are plotted in the same color as shown in Figure 1B. y is sampled from the trajectory at 200 < t < 500 for the bifurcation diagram

of x shown in (B). (B) Bifurcation diagram of x as quenched y is updated with the sampling time. Fixed points of x are shown by projecting to the first principal

component (PC1) of principal component analysis (PCA). Small circles indicate fixed points with small basins: neural activity beginning only from the vicinity of the

target converges to these points. Large circles represent fixed points with large basins: neural activities from the initial states converge to these points. To identify fixed

points, the neural states are plotted after the transient period. Colored lines indicate the locations of the targets (ξ11,2,3 in blue, orange, and green, respectively). Vertical

arrows show the transitions of x to different targets in the recall process. (C) The neural dynamics for a given y at t = 225, 285, 335, 375 shadowed in (B) are depicted

by projecting x to the 2-dimensional principal component (PC) space [PC1 is same as that in (B)]. Fifteen trajectories (three from the vicinity of the target, and others

from random initial states) are plotted. Large and small circles represent fixed points given in (B).

We explored the success rate of the learning and found that
increasing M and K generally leads to a decrease in the success
rate of recalls. For N = 100 and K = 1, the success rate is
over 80% for M = 1 up to 11, and decreases beyond M = 12.
For K = 2, the success rate is approximately 80% for M = 3
and decreases gradually as M increases (Figure 1C, refer to the
Supplementary Material for detailed results). Furthermore, we
investigated how the balance between the timescale of the slow
variables τy and that of learning τsyn affect the success rate.

Next, the spontaneous activities without the input are
analyzed. Figure 3A exemplifies the characteristic behavior of
the complex spontaneous dynamics: fast oscillating activities
and slowly varying ones appear alternatively. In the period of
the oscillating activities, the memorized patterns are activated
sequentially, which are not all memorized patterns, but their
subsets, as shown in Figures 3B–D. Different subsets of patterns
appear intermittently. For instance, (ξ1, ξ2, ξ5), (ξ3, ξ4, ξ5),
and (ξ1, ξ4, ξ5) are observed in Figures 3B–D, respectively. In
contrast, in the period of the slowly varying activities, one or few
patterns are stable for a while and then are collapsed.

3.1. Bifurcations of Fast Neural Dynamics
To elucidate how such a recall is possible, we analyzed the phase
space of x with y quenched. In other words, y is regarded as
bifurcation parameters for the fast dynamics. Specifically, we
focused on the neural dynamics for 200 ≤ t ≤ 500, as shown
in Figure 2A. In this period, the fast dynamics show transitions

from ξ 11 to ξ 12 at t = 290, from ξ 12 to ξ 13 at t = 375, and from ξ 13 to
ξ 11 at t = 220, 460. We sampled the slow variables every five units
of time from t = 200 to 500, yt=200, yt=205, · · · , yt=500, along the
trajectory, and analyzed the dynamics of x with the slow variables
quenched at each sampled yt=200,205,··· ,500. Figure 2B shows the
bifurcation diagram of x against the change in y, and Figure 2C

shows the trajectories of x for specific y.
We now consider the neural dynamics for yt=225, just after the

transition from ξ 13 to ξ 11 [Figure 2C (i)]. For this y, a single fixed
point corresponding to the present pattern (ξ 11) exists, leading to
its stability against noise. As y is changed, the basin of ξ 11 shrinks,
while a fixed point corresponding to the next target ξ 12 appears,
and its basin expands 2, as shown in Figure 2C (ii). At yt=290, the
fixed point ξ 11 becomes unstable. Thus, the neural state x at ξ 11
goes out of there, and falls on ξ 12, i.e., a transition occurs.

With a further shift of y, yt=295,300,···, a regime of coexistence

of ξ 12 and ξ 13 with large basins appears [Figure 2C (iii)]. The
basin of the attractor ξ 12 shrinks and vanishes [Figure 2C (iv)],
and the transition from ξ 12 to ξ 13 occurs at t = 375. The next
transition from ξ 13 to ξ 11 occurs in the same manner at t = 460.
These processes provide the mechanism for robust sequential
recall: fixed points x of the current and successive targets coexist,
and then, the current target becomes unstable when the slow
variables change.

2The other fixed point corresponding to ξ 13 also appears, but its basin is quite small.

Thus, we can neglect this fixed point.
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FIGURE 3 | The neural dynamics without input after the learning process for (K,M)=(1,5). (A) (Upper) Overlaps of the spontaneous fast dynamics with the targets mx
µ,

µ = 1, 2, 3, 4, 5 are plotted in different colors indicated at bottom of the panels. (Lower) Overlaps of the spontaneous slow dynamics m
y
µ, µ = 1, 2, 3, 4, 5 are plotted in

the same colors as the top panel. (B–D) The enlarged view of spontaneous dynamics mx
µ in (A) are shown. The enlarged time span adopted in each panel is indicated

by the corresponding black bar at the top of (A).

To examine the robustness of the recall, we explored
trajectories from different initial conditions with Gaussian
white noise with strength s (refer to Supplementary Material

for details). All of these trajectories converge correctly to a
target sequence after some transient period for weak noise. By
increasing the noise strength, the recall performance of noisy
dynamics is made equal to that of the noiseless dynamics up
to noise strength s = 0.3. For stronger noise, the duration of
residence at the target is decreased, because the neural state of x
is kicked out of the target earlier than in the noiseless case. Even
upon applying a strong and instantaneous perturbation to both x
and y, the trajectory recovers the correct sequence. The sequence
is represented as a limit cycle containing x and y and, thus, is
recalled robustly.

3.2. Inference by Concatenation
Next, we test if our model flexibly infers new sequences based
on the previously learned sequence. To this end, we consider
the following task (Refer to Materials and methods for details).
First, a network learns a sequence (ξ12 , ξ

1
3 , ξ

1
4 ) = (A,B,C) in

response to the associated input sequences (η12 , η
1
3 , η

1
4) = (a, b, b).

In addition, we provide η11 = s associated with ξ11 = S preceding
the sequence as a fixation cue and the response to it (e. g.,
the subject’s gaze to the fixation point), respectively. After the

learning is completed, the network should generate the sequence
(S,A,B,C) in response to the input sequence (s, a, b, b). Then, the
network learns a new sequence (ξ21 , ξ

2
2 , ξ

2
3 ) = (S,A′,B), which is

associated with (η21 , η
2
2 , η

2
3) = (s, a′, b). In this study, we intend to

examine if the inference ofC is achieved selectively from (S,A′,B)
in the presence of b. For it, we need to prevent the tight and trivial
association between input b and the sub-sequence (B,C). For this
purpose, the network is also postulated to learn the association
between η31 = b and ξ31 = D as a distractor. We explore if the
network generates the sequence (S,A′,B,C) in response to the
input sequence (s, a′, b, b) after learning the association between
(S,A′,B) and (s, a′, b).

During the learning of the first sequence, the overlaps with all
of the targets reach more than 0.9 after 20 epochs of learning,
as shown in Supplementary Figure S4A. Actually, Figure 4A
shows that the first sequence is successfully generated. Next,
the network learns the new sequential patterns (S,A′,B). If
the network infers (S,A′,B,C) by using the already learned
sub-sequence (B,C), it generates the sequence (S,A′,B,C) after
learning only (S,A′,B) without (S,A′,B,C). As expected, the
average overlaps with all of the targets in the second sequence
(not only A′,B,but also C) are increased through learning
(Figure 4B). After the fifth epoch of learning, the overlap with
C declines, whereas those with A′ and B continuously increase.
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FIGURE 4 | Neural activities in the inference task. (A) The neural dynamics in the recall of the first sequence (S,A,B,C) in response to (s, a,b,b) are plotted after the

learning is completed. Color lines show the overlaps with S, A, B, and C. The bar at the top indicates the inputs (s, a,b,b) and their applied periods. (B) The average

overlaps with the patterns A′, B, and C are plotted in cyan, green, and red, respectively, during the learning of the second sequence. Each overlap is obtained by

averaging over 20 realizations of networks. (C) The neural dynamics in recall in response to (s, a′,b,b) are plotted by using the overlaps with S, A′, B, and C after three

epochs of learning (S,A′,B). (D) Success rate of generation of the sub-sequence (B,C) is plotted for different input sequences (s, a,b,b), (s, a′,b,b), and (s, v,b,b) as a

function of the learning epoch for the second sequence. The black bar indicates the region in which the success rates between (s, a′,b,b) and (s, v,b,b) are

significantly different (Wilcoxon’s signed-rank test p < 0.05). Refer to Materials and methods for details.

As an example, we plot the recall dynamics after learning A′ and
B in Figure 4C. A′ evokes B and C, although the overlap with the
first target A′ is not large. Simultaneously, the network generates
the first sequence (Supplementary Figure S4C). Note that the
sub-sequence (B,C) is generated selectively by the input either
(s, a, b, b) or (s, a′, b, b). In contrast, when a random input v is
given instead of a or a′ in an input sequence, the sub-sequence
(B,C)is not evoked, as shown in Supplementary Figure S4B. To
examine the difference among the recall dynamics in response to
(s, a, b), (s, a′, b), and (s, v, b), the success rate of generating the
sub-sequence (refer to its definition in Materials and methods)
is analyzed statistically in Figure 4D. We found that the input
sequences (s, a, b), (s, a′, b) evoke the sub-sequence (B,C) with a
significantly higher rate than the input sequence (s, v, b). Thus,
our model is able to infer a new sequence based on the previously
learned sequence.

3.3. Learning of History-Dependent
Sequences
We examined if the proposed model learns the history-
dependent sequence (M = 6), in which the same patterns exist
in a sequence such as (ξ11 , ξ

1
2 , · · · , ξ

1
6 ) = (A,B,C,D,B,E). The

patterns succeeding B are C or E, depending on whether the
previous pattern is A or D. Then, the neural dynamics have
to retain the information of the target A or D, to recall the
target C or E correctly. Our model succeeded in recalling this
sequence, as shown in Figure 5A. Just before the target C and
E are recalled, there is no clear difference in the values of fast
variables x, as indicated by the circles in Figure 5B. However,
the values of slow variables y are different, depending on the
previous targets shown in Figure 5C, which stabilize different
patterns of x. Furthermore, we demonstrate that our model
succeeded in recalling more complex sequences (M = 8)
such as (ξ11 , ξ

1
2 , · · · , ξ

1
8 ) = (A,B,C,D,E,B,C, F), as shown in

Figures 5D–F. In this case, the neural dynamics have to keep
three previous targets in memory to recall the target D or F after
B and C. As expected, generating the sequence with M = 8 is a

harder task than that with M = 6. However, some networks still
can generate the sequence.

To understand the performance comprehensively, we
measured the success rate in generating these sequences for
different lengths. For the sequence with the length of M, the
network is required to retain the information about M/2 − 1
preceding patterns. We examined the success rate for M = 6, 8,
and 10 over 50 networks realizations in the same manner as that
in the inference task. The success rate is reduced for the longer
M and nearly zero for M = 10. This result indicates that our
model can store three preceding patterns at a maximum, but is
difficult to memorize four preceding patterns.

We, next, explored whether the model can memorize
another type of the history-dependent sequence such as
(ξ11 , ξ

1
2 , · · · , ξ

1
6 ) = (A,B,A,C,A,D), as shown in Figure 6. The

network is required to discriminate three neural states in the
slow dynamics just before x approaches B, C, and D, as shown by
circles in Figure 6C. When the network discriminates these states
successfully, it generates the sequence adequately, as shown in
Figures 6A–C. We measured the success rate in generating these
sequences for different numbers of the states to be discriminated
(namely, M/2 states for an M-pattern sequence) in Figure 6D.
For the shortest case, the success rate takes less than 0.4.

As a final example of the complex sequences, we explored
learning two history-dependent sequences (Figure 7), namely,
(ξ11 , ξ

1
2 , ξ

1
3 )=(A,B,C) upon η1, and (ξ21 , ξ

2
2 , ξ

2
3 )=(C,B,A) upon η2.

In these sequences, the flowA → B → C on the state space under
η1 should be reversed under η2. The learned network succeeds
in generating these sequences. Although orbits of x under inputs
almost overlap in the 2-dimensional space, those of y does not.
This difference in y, in addition to inputs, allows the orbits of x in
the reverse order of patterns. Generally, y is different depending
on the history of the previous patterns and inputs even when x

is the same. Different y stabilizes different fixed point of x, to
generate the history-dependent sequence.

Generating these sequences is rather hard. Actually, the
success rate is 0.14 for three-pattern sequences [(A,B,C) under
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FIGURE 5 | Recall processes for history-dependent sequences for K = 1,M = 6 (A–C) and for K = 1,M = 8 (D–F). (A and D) The neural activities of x upon η1 are

plotted by using their overlaps with the targets. Colors and alphabets indicate which targets overlapped. (B,C,E and F) The neural dynamics plotted in (A and D) are

shown by projecting the fast dynamics in (B and E) and the slow dynamics in (C and F) onto a 2-dimensional PC space. X-shaped marks represent the locations of

the targets. Magenta and cyan circles in B indicate the locations of x, respectively, just before targets C and E are recalled (as indicated by the arrows in (A), whereas

the circles in (C) indicate the locations of y. (G) The success rate in generating these sequences is shown for different lengths. For generating the sequence with M,

the network is required to store the information about M/2− 1 preceding patterns. We measured the success rate over 50 network realizations and plotted it as a

function of the number of the preceding patterns to be stored.

FIGURE 6 | Recall processes for history-dependent sequences such as (A,B,A,C,A,D). (A) The neural activities of x upon η1 are plotted by using their overlaps with

the targets. (B,C) The neural dynamics plotted in (A) are shown by projecting the fast dynamics in (B) and the slow dynamics in (C) onto a 2-dimensional PC space.

X-shaped marks represent the locations of the targets. Gray circles in (C) indicate the locations of y just before targets B, C, and D are recalled. (D) The success rate in

generating these sequences is shown for different lengths. For generating the sequence with M, the network is required to discriminate M/2 neural states just before

targets B,C,D, . . . are recalled. We measured the success rate over 50 network realizations and plotted it as a function of the number of the states to be discriminated.

one input, (C,B,A) under the other input] and 0.08 for four-
pattern sequences. The success rate is low even for the shortest
sequences. The difficulty of this task could be attributed to
the request that networks have to memorize the bidirectional
transitions between the target patterns (namely, the transition
from A to B and its reverse transition) dependent on the
external input.

3.4. Timescale Dependence
Recall performance is highly dependent on the relation between
τx, τy, and τsyn. To investigate the dependence of the performance
on the timescales, we trained fifty realizations of networks for
various values of timescales and calculated the success rate of

training as a function of τsyn for different τy by fixing τx at 1,
as are plotted after rescaling τsyn by τy in Figure 8A. The ratios
yield a common curve that shows an optimal value ∼ 1 at τsyn,
approximately equal to τy. As an exceptional case, the success rate
for τy = 10 yields a lower value for the optimal τsyn because τy
is too close to τx to store the information about x. The balance
between τsyn and τy is important to regulate the success rate when
they are sufficiently smaller than τx.

To unveil the significance of the timescale balance, we, first,
present how the recall is failed for τy >> τsyn, (τy = 100, τsyn =

10 in Figure 8B). Some of the targets are recalled sequentially in
the wrong order, whereas other targets do not appear in the recall
process. To uncover the underlying mechanism of the failed
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recall, we analyze the neural dynamics of fast variables with slow
variables quenched in a manner similar to that shown in Figure 2
(refer to Supplementary Figure S5A). Here, all the targets are
stable for certain y, although ξ 12 does not appear in the recall
process. We also found that fixed points corresponding to ξ 11 and
ξ 12 do not coexist for any y: the fixed point corresponding to ξ 13
has a large basin across all y. This leads to a transition from ξ 11 to
ξ 13 by skipping ξ 12, and thus, the recall is failed.

Interestingly, how a recall is failed for τy << τsyn are distinct
from that for τy >> τsyn. For τy = 100, τsyn = 1, 000,
only the most recently learned target is stable for almost all y,
and thus, only this target is recalled, as shown in Figure 8C.
We sampled the slow variables from the last learning step of
the sequence (Supplementary Figure S5B), and analyzed the
bifurcation of the fast variables against change in slow variables,
in the same way as above. In this study, only the latest target
(here, ξ 13) is a fixed point, whereas the other targets are not. Thus,
transitions between targets are missed, except the transition to
the latest target.

Why does the network fail in generating the sequences when
τy and τsyn are not matched? The reason is as follows: the learning
time for the non-optimal timescales takes a longer time than
that for the optimal ones. In this study, we consider the time
that is normalized by τsyn because it characterizes the timescale
regulating the synaptic plasticity and, consequently, the neural

dynamics. For τy >> τsyn (Supplementary Figure S5C), the
trajectories of neural activities are similar to those for τy ∼ τsyn,
but it takes a longer time for y to approach x after x converges to
the target. As the approach to x is so slow, the learning process
stabilizes the present target during the approach by modifying
the connectivity, so that the target is too stable over a wide range
of y. On the other hand, for τy << τsyn (Supplementary Figure

S5E), the neural activities of x and y wander before x converges
to the target, resulting in disruption of information about the
previous targets stored in y. Thus, the networks for both cases of
τy >> τsyn and τy << τsyn fail to generate the sequence. These
results indicate that the relative timescale τy to τsyn changes the
bifurcation of the fast dynamics and the memory capacity.

4. DISCUSSION

Sequential transitions between metastable patterns are
ubiquitously observed in the neural system (Miller, 2016)
during various tasks, such as perception (Jones et al., 2007;
Miller and Katz, 2010), decision making (Ponce-Alvarez et al.,
2012), working memory (Stokes et al., 2013; Taghia et al.,
2018),and recall of long-term memory (Wimmer et al., 2020).
We have developed a novel neural network model with fast
and slow dynamics to generate sequences with non-Markov
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property and concatenate sequences, which are based on these
cognitive functions.

In a standard model for generating sequential patterns
(Kleinfeld, 1986; Sompolinsky and Kanter, 1986; Nishimori et al.,
1990; Russo and Treves, 2012; Recanatesi et al., 2015; Haga and
Fukai, 2019), asymmetric Hebbian learning between a pattern µ

and the next µ+1, i.e., ξµ+1(ξµ)t , is used to create the transition
from ξµ to ξµ+1 (Kleinfeld, 1986; Sompolinsky and Kanter,
1986; Russo and Treves, 2012; Recanatesi et al., 2015; Haga and
Fukai, 2019). In these studies, however, only the connections
between the current and immediately preceding patterns are
embedded in the connectivity, resulting in that the prolonged
history of the patterns cannot be embedded. In other studies,
Rabinovich’s group (Seliger et al., 2003; Rabinovich and Varona,
2018) proposed the model generating sequential activities by
heteroclinic orbits between patterns. As the above standard
model, asymmetric Hebbian learning forms the connectivity for
generating the sequences (Seliger et al., 2003). The information
about the history of patterns is not stored in the model.
Thus, non-Markov sequences are not generated in contrast to
our model3.

In some models, a term that changes slower than the neural
dynamics (e.g., an adaptation term) is introduced to lead to
the transition. In Gros (2007), Russo and Treves (2012), and
Recanatesi et al. (2015), the slow term is introduced to destabilize
the current pattern. These methods imply non-Markov dynamics
because the slow term needs prolonged times to recover, leading
to change in the transition probabilities among the patterns.
However, this term does not determine the next pattern and,
thus, some additional mechanism is necessary for the transition
to the desired pattern. The feedback from the slow population in
our model, in contrast, not only destabilizes the current pattern
but also simultaneously stabilizes the next targeted pattern. As
the current and next patterns coexist for some time, the robust
transition between them is achieved.

Alternatively, supervised learning methods used in machine
learning fields, such as Back-Propagation Through Time
(BPTT) (Werbos, 1990), are investigated to reproduce
sequential neural activities observed experimentally (Mante
et al., 2013; Carnevale et al., 2015; Chaisangmongkon et al.,
2017), including non-Markov trajectories (Sussillo and Abbott,
2009; Laje and Buonomano, 2013). The BPTT, however,
requires non-local information and the network has to
retain a large amount of information until the trajectory
terminates, which is biologically implausible. Furthermore,
the trajectories shaped by this method are vulnerable to
noise (Laje and Buonomano, 2013). Our model is free from
these deficiencies.

In our model, the recurrent connections in the fast population
(i.e., connections within a cortical area) are modified to shape the
transitions between memorized states whereas the connections
between the fast and slow populations and those from the

3It is shown that finely designed networks realize the history-dependent sequences

(Chartier and Boukadoum, 2006; Verduzco-Flores et al., 2012). However, it is

shown that the additional neurons or sub-networks as many as the number of

memories or sequences are required in these studies.

input to the fast population are fixed (i.e., connections across
cortical areas). In another approach, Gros and Kaczor (2010)
demonstrated that the plasticity in the afferent connections
with the fixed recurrent connections is useful for semantic
learning, by connecting appropriately external stimuli with
already established neural patterns in the recurrent network.
In the neural system, generally, both connections across
and within cortical areas are plastic. The existence of both
dual plasticity possibly leads to interference between these
connections, potentially resulting in reducing the learning
performance. Future studies are needed to clarify how such
dual plasticity cooperatively builds neural activities to perform
cognitive functions.

Timescales in the neural activities are hierarchically
distributed across several cortical areas (Honey et al., 2012;
Murray et al., 2014; Hasson et al., 2015; Runyan et al., 2017). For
instance, consider the hippocampus (HPC) and the prefrontal
cortex (PFC), which are coupled by mono-synaptic and di-
synaptic connections (Ito et al., 2015). HPC neurons respond
to the location of animals (Kumaran et al., 2016) with faster
timescales than those in PFC, which has the slowest timescale
among cortical areas (Murray et al., 2014). Experimental studies
(Ito et al., 2015; Guise and Shapiro, 2017) revealed that PFC
neurons are necessary to differentiate HPC dynamics depending
on the context and previous experience. Similarly, neurons in
the orbitofrontal cortex (OFC), whose timescales are considered
to be slower than those in HPC, are necessary for concatenating
the sequences in the stimulus-reward response (Jones et al.,
2012; Wikenheiser and Schoenbaum, 2016). Accordingly, it is
suggested that the area with the slow dynamics is necessary to
generate and concatenate the sequences.

Neural networks with multiple timescales are investigated
theoretically in several studies. In some studies (Yamashita
and Tani, 2008; Perdikis et al., 2011), the slow dynamics are
introduced to concatenate primitive movements and produce
a complex movement, while hidden states of the hierarchical
external stimuli are inferred by the multiple timescales in the
neural dynamics in another study (Kiebel et al., 2009). In
Kiebel et al. (2009) and Perdikis et al. (2011), the relationship
between the slow and fast dynamics are fixed a priori to
perform their tasks, whereas, in our model, such a relationship
is shaped through the learning process. In Yamashita and
Tani (2008), the BPTT method is adopted for training the
network; thus, it faced the same drawbacks as already mentioned.
In the studies of the multiple timescales system, analytical
methods such that singular perturbation methods are adopted,
which are commonly used to elucidate the transition between
the states on the different slow manifolds (Ermentrout, 1998;
Rubin et al., 2013; Bertram and Rubin, 2017; Wernecke
et al., 2018) and the stability of fixed points (Meyer-Bäse
et al., 1996; Hongtao and Amari, 2006). Our model provides
how these transitions are formed through learning and it
generates and concatenates the history-dependent sequences,
while the application of these methods will be useful in
the future.

As for the timescales, we need further studies to fill a gap
between our model and experimental observations. The ratio
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of the timescale in the slow dynamics to that in the fast
dynamics is less than 10 times across cortical areas (Wang and
Kennedy, 2016), which are smaller than the optimal ratio in our
model. Further, the difference between the timescales in the slow
dynamics (on the order of a second) and in the synaptic plasticity
(on the order of a minute Bliss and Lomo, 1973; Bayazitov et al.,
2007) is larger than that adopted in our model.

Diversity in the timescales of individual neurons and
the calcium dynamics possibly resolve this discrepancy. The
timescale of individual neurons in the same area is distributed
over two digits (Bernacchia et al., 2011; Wasmuht et al., 2018).
The calcium dynamics in the synapses can modify the synaptic
efficacy on the order of a second (Shouval et al., 2010; Graupner
and Brunel, 2012). By taking these effects into account, our
model may be consistent with the experimental observations,
although further studies will be important, including those with
spiking neurons (Kurikawa and Kaneko, 2015) and spike-timing-
dependent potentiation.

Finally, we discuss the biological plausibility of the learning
rule in our model. The fast network receives two inputs; an
external input (η) and the input from the slow network. In the
neural system, the external input is conveyed through afferent
connections from a lower cortical area (or sensory input) and
the feedback input comes from a higher cortical area. In addition
to these inputs, another input for the learning is introduced in
our model, which provides information to generate sequential
patterns to be learned. Thus, our network is trained to map
between sensory cues and sequential patterns in the output
area by using a Hebbian rule (correlation between ξj and xi)
and an anti-Hebbian rule (correlation between xi and xj). After

training, the network evokes the sequential patterns under the
sensory input.
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