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Abstract

Discrete classification of SARS-CoV-2 viral genotypes can identify emerging strains and detect geographic spread, viral diversity, and

transmission events. We developed a tool (GNU-based Virus IDentification [GNUVID]) that integrates whole-genome multilocus

sequence typing and a supervised machine learning random forest-based classifier. We used GNUVID to assign sequence type (ST)

profiles to all high-quality genomes available from GISAID. STs were clustered into clonal complexes (CCs) and then used to train a

machine learning classifier. We used this tool to detect potential introduction and exportation events and to estimate effective viral

diversityacross locationsandover time in16USstates.GNUVID isahighly scalable tool forviralgenotypeclassification (https://github.

com/ahmedmagds/GNUVID) that can quickly classify hundreds of thousands of genomes in a way that is consistent with phylogeny.

OurgenotypingST/CCanalysisuncovereddynamic local changes inST/CCprevalenceanddiversitywithmultiple replacementevents

in different states, an average of 20.6 putative introductions and 7.5 exportations for each state over the time period analyzed. We

introduce the use of effective diversity metrics (Hill numbers) that can be used to estimate the impact of interventions (e.g., travel

restrictions, vaccine uptake, mask mandates) on the variation in circulating viruses. Our classification tool uncovered multiple

introduction and exportation events, as well as waves of expansion and replacement of SARS-CoV-2 genotypes in different states.

GNUVIDclassification lends itself tomeasuresofecologicaldiversity, and,withsystematicgenomic sampling, it couldbeused totrack

circulating viral diversity and identify emerging clones and hotspots.
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Introduction

Rapid sequencing of the SARS-CoV-2 pandemic virus has pre-

sented an unprecedented opportunity to track the evolution

of the virus and to understand the emergence of a new

pathogen in near-real time. During its explosive radiation

and global spread, the virus has accumulated enough geno-

mic diversity that we can identify distinct lineages and track

their spread in distinct geographic locations and over time
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(Bedford et al. 2020; Chen et al. 2020; Deng et al. 2020;

Rambaut et al. 2020; Shen et al. 2020; Worobey et al.

2020). Phylogenetic analyses in combination with rapidly

growing databases (Shu and McCauley 2017; Rambaut et

al. 2020) have been instrumental in identifying distinct clades

and tracing how they have spread across the globe, as well as

estimating calendar dates for the emergence of certain clades

(Bedford et al. 2020; Deng et al. 2020; Fountain-Jones et al.

2020; Rambaut et al. 2020; Worobey et al. 2020). This infor-

mation is extremely useful in assessing the impact of early

measures to combat spread as well as identifying missed op-

portunities (Korber et al. 2020; Worobey et al. 2020).

Although reconstructing a robust phylogeny of viral var-

iants is an intuitive approach for viral classification, traditional

phylogenetic approaches suffer from problems with scalabil-

ity. Building comprehensive phylogenetic trees for single nu-

cleotide polymorphism (SNP) based analysis of SARS-CoV-2 is

already extremely computationally expensive, and will be-

come more so as hundreds of thousands of sequences are

added. Additionally, although temporal effective population

size of SARS-CoV-2 can be modeled using Bayesian methods

such as the skygrowth package and skygrid coalescent mod-

els, they are computationally expensive for large data sets

(Volz and Didelot 2018; Hill and Baele 2019; Fountain-Jones

et al. 2020). Dividing the data set into subsets of genomes for

analysis necessarily loses information and explanatory power.

Sequence typing tools developed so far such as Pangolin,

Nextclade, Genome Detective Coronavirus Typing Tool, and

COVID-19 Genotyping Tool (CGT; Hadfield et al. 2018;

Cleemput et al. 2020; Maan et al. 2020; Rambaut et al.

2020; O’Toole et al. 2021) have been critical for tracking

variants and communicating about the spread of certain lin-

eages. However, the scalability of these tools is limited by

computationally expensive steps (alignment and phylogenetic

construction), and reliance on nonautomated curation for

identifying lineages.

Because of these computational roadblocks, our goal was

to develop a rapid way to categorize genomes that scales

readily and leads to as little information loss as possible. We

saw an opportunity to combine our allele identifying tool,

WhatsGNU (Moustafa and Planet 2020b), with the multilocus

sequence typing (MLST) approach (Maiden et al. 1998) that

has been widely used in bacterial classification, and occasion-

ally in viral classification (e.g., Equine Herpesvirus 1 and SARS-

CoV [Wang et al. 2005; Garvey et al. 2019; Sutton et al.

2019]). MLST efficiently compresses genomic information

into a form that can be easily used to reconstruct phylogenetic

relationships. Our approach uses whole-genome MLST

(wgMLST) to assign an allele number to each of the ten

open reading frames (ORFs) in the virus’s genome creating

a sequence type (ST), which is codified as the sequence of

allele numbers for each of the ten genes in the viral genome.

Each allele number is an exact match at the nucleotide level

such that any nucleotide changes are coded as a new allele

number. Thus, STs can be thought of as haplotypes that differ

from each other by at least one allele. The STs are then clus-

tered into bigger groups which are designated clonal com-

plexes (CCs) based on their grouping on a minimum spanning

tree (MST).

Here, we show that this approach allows us to link STs into

clearly defined CCs that are consistent with phylogeny and

other SARS-CoV-2 typing systems (Shu and McCauley 2017;

Rambaut et al. 2020) using minimal computational power.

Using this classification system, we measure the number of

introductions and exportations of the virus in 16 US states and

perform a temporal assessment of ST/CC diversity, uncovering

waves of expansion and decline of distinct STs and CCs, and

the apparent replacement of certain CCs with emerging

lineages.

Results and Discussion

We developed the GNU-based Virus IDentification (GNUVID)

system to automatically assign a number to each unique allele

of the ten ORFs of SARS-CoV-2 (Wu et al. 2020; fig. 1A).

Beginning our analysis in October 2020, GNUVID v2.0 com-

pressed the 696,860 ORFs in 69,686 high-quality GISAID

genomes (supplementary table 1, Supplementary Material on-

line) to 37,921 unique alleles in 5 min on a standard desktop,

achieving 18-fold compression and losing no information. To

create an ST for each isolate, GNUVID automatically assigned

35,010 unique ST numbers based on their allelic profile (sup-

plementary table 1, Supplementary Material online). We then

used an MST to group STs into larger taxonomic units, CCs,

which we define here as clusters of>20 STs that are single or

double allele variants away from a “founder.” A founder is a

specific ST located at a node in the most parsimonious MST

with a large number of dependent single and double locus

variants (DLVs; Feil et al. 2004). Founders represent central

nodes in the phylogeny and the putative ancestral genotype

of the CC. Phylogenetically, a CC is ideally equivalent to a

lineage of genomically related haplotypes (STs) that have di-

versified recently from a founder. Using the goeBURST algo-

rithm (Feil et al. 2004; Francisco et al. 2009) to build the MST

and identify founders, we found 154 CCs (fig. 1A and sup-

plementary table 1, Supplementary Material online).

To benchmark the speed of GNUVID against other techni-

ques, we assessed each step in the pipelines with a data set of

all high-quality GISAID CC-labeled genomes from the

GNUVID August database (25,807; table 1). GNUVID data-

base building, MST construction, and ST/CC classification

were 300 times faster than construction of a maximum like-

lihood (ML) phylogenetic tree from an SNP matrix employing

an HKY substitution model. In addition, computing the MST

with the compressed ST GNUVID data set was at least seven

times faster than using an SNP matrix to build an MST.

Moreover, supplementary figure 1, Supplementary Material

online shows that GNUVID has scaled very well as databases
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FIG. 1.—Workflow for the GNUVID tool and its compression technique. (A) Compression and classification. The tool starts by compressing the database

of the ten ORFs of each of the SARS-CoV-2 genomes to only include a unique sequence for each allele type. The tool then uses a wgMLST approach by
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have increased in size and processed almost 1 million sequen-

ces in less than 2 days on a single processor.

One critical function in all classification schemes is the as-

signment of new sequences to groups. As mentioned before,

existing tools for classifying sequences are limited by speed,

scalability, and taxonomic granularity. For instance, the

Genome Detective Coronavirus Typing Tool takes 1 min per

genome, allows only 2,000 genomes per batch, and only

assigns genomes to one of five variants of concern (B.1.1.7,

B.1.351, P.1, B.1.1.70, or mink cluster; Cleemput et al. 2020).

The CGT limits the number of sequence inputs to ten and can

take up to 15 min per genome because of the concurrent

processing of public data (Maan et al. 2020). Nextclade

(Hadfield et al. 2018), a very fast tool, only classifies genomes

into 12 possible clades. The Pangolin classification tool

(Rambaut et al. 2020; O’Toole et al. 2021) has the most gran-

ular taxonomic scheme for classification, and a relatively fast

classification approach. We compare its performance with

GNUVID below.

One reason why GNUVID is so fast is its reliance on exact

matching of nucleotide sequences, which is almost instanta-

neous. However, it is likely that many newly sequenced

genomes will not find exact match of an ST even in a very

large data set. Therefore, we needed a method to quickly

classify new sequences without an exact match. For this

goal, we used a random forest classifier trained on 53,565

CC-labeled genomes. The overall prediction statistics of the

model were the weighted area under the receiver operating

characteristic curve (ROC AUC; 0.987), Matthews correlation

coefficient (0.953), accuracy (0.955), F-score (0.950), preci-

sion (0.947), and recall (0.964) (fig. 1B). Two other supervised

learning algorithms, decision tree and logistic regression, were

explored. Logistic regression had a lower accuracy of 0.72.

The decision tree approach performed as well as random for-

est (accuracy: 0.957, F-score: 0.952, precision: 0.948, and

recall: 0.964). However, previous work showing that proba-

bility estimates from decision trees tend to be too extreme

(either 1 or 0) led us to choose a random forest (an ensemble

of decision trees) approach (Margineantu and Dietterich

2003; Niculescu-Mizil and Caruana 2005; Chawla 2006).

For any new query genome, GNUVID attempts to classify it

first by exact matching of the allelic profile to one of the other

STs because this is most efficient and nearly instantaneous. If

there is no exact match, the CC for the query genome is

predicted using the trained model developed above. This

query process saves time and also allows each ORF to be typed

and tallied individually (fig. 1C and D).

The Pangolin classifier (Rambaut et al. 2020; O’Toole et al.

2021) uses a machine learning approach that greatly enhan-

ces its speed and offers a taxonomic granularity similar to the

GNUVID system. Therefore, we chose to benchmark our tool

against Pangolin. As expected, using 1,000 exact match

genomes, GNUVID outperformed Pangolin, with a 61% re-

duction in processing time (31 vs 80 s), in table 2 and supple-

mentary table 1, Supplementary Material online. The GNUVID

random forest classifier was only slightly faster using 1,000

genomes without an exact match (table 2 and supplementary

table 1, Supplementary Material online), but had the added

benefit of assigning an allele number for each individual ORF.

In downstream analysis, allele numbers could be used to

quickly find amino acid residues of concern or define emerg-

ing variants.

To show that CCs are mostly consistent with whole-ge-

nome phylogenetic trees, we mapped the ten most common

CC designations onto an ML tree. Members of the same CC

visually grouped together in clades (supplementary fig. 2,

Supplementary Material online). To further validate our clas-

sification system, we compared it to the proposed “dynamic

lineages nomenclature” for SARS-CoV-2 used in Pangolin

(Rambaut et al. 2020) and the GISAID clade naming system

(Shu and McCauley 2017). A high percentage of CCs, 95.5%

(147/154) and 87.7% (135/154) of the CCs, had 90% of their

genomes assigned to the same GISAID clade and Pangolin

lineage, respectively, showing strong agreement between

these classification schemes (supplementary table 1,

Supplementary Material online).

One limitation of our classification strategy, as with many

schemes that operate in real time, is that paraphyletic groups

can occur as a new ST arises from an older ST (e.g., CC258

and CC768 emerged from CC255 and CC258 making

CC255 and CC258 paraphyletic, respectively) (supplementary

assigning an allele number to each gene nucleotide sequence in the virus’s genome creating an ST, which is codified as the sequence of allele numbers for

each of the ten genes in the viral genome. The STs are then linked into clearly defined CCs using goeBURST. (B) Training a machine learning classifier. The

CC-labeled genomes are then aligned to the SARS-CoV-2 reference genome (MN908947.3) and SNPs are called. The SNP matrix is then one-hot encoded

and used to train a random forest classifier. The training followed a 5-fold cross-validation approach to assess the prediction capabilities of GNUVID according

to four statistics (accuracy, precision, recall, and F-score). TP, TN, FP, and FN are true positives, true negatives, false positives, and false negatives, respectively.

(C) New Genome classification by exact matching or prediction. GNUVID first tries to match each of the ten ORFs from a query SARS-CoV-2 genome to an

exact match in the compressed database to define an ST, and matches that to any associated CC. If no exact match is found due to novelty or ambiguity in

any of the ten ORFs, the query genome is aligned to the reference, one-hot encoded and a CC is predicted by the trained classifier. A report is then created

showing the allele number of each ORF, ST, CC, and a probability of membership in the CC. (D) Map of SARS-CoV-2 virus genome showing the length in

base pairs (bp) of the ten ORFs and numbers of alleles in the current database 69,686 isolates. The majority of the identified 37,921 unique alleles (69%) are

for ORF1ab which represents 71% of the genome length. Strikingly, the two highest ratios (number of alleles/ORF length) are for the nucleocapsid protein

(2.2) and ORF3a (2.1) whereas the spike protein had a ratio of 1.32. The numbers of genomes and alleles in the figure are from GNUVID v2.0.
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fig. 2, Supplementary Material online). Paraphyly and misclas-

sification can be quantified as the consistency of a classifica-

tion scheme with a phylogenetic tree. Thus, to better quantify

the phylogenetic consistency of our classification system and

compare it to an existing tool like Pangolin, we mapped the

GNUVID CCs and Pangolin lineages as character states for

25,170 genomes on a tree constructed using an SNP matrix,

independently (Lanfear and Mansfield. 2020). We then calcu-

lated the retention index (Farris 1989) for each classification

scheme. The retention index calculates the amount of homo-

plasy on a tree on a scale of 0 to 1, where 1 is a perfect match

with the phylogeny and 0 is complete disagreement with the

tree. Both GNUVID and Pangolin showed high retention indi-

ces (0.915 and 0.97, respectively) reflecting low levels of

disagreement.

Next, GNUVID provides rapid insights into putative patterns

of that can be further analyzed with other methods that ac-

count for phylogenetic uncertainty and unsampled diversity

(Lemey et al. 2020; Dellicour et al. 2021; Hong et al. 2021).

We used the GNUVID classifications system to assay for pat-

terns of global spread of different CCs. When the global re-

gion of origin for each genome sequence was mapped to

each CC, there was a strong association of later emerging

CCs with certain geographical locations, possibly reflecting

relative containment after international travel restrictions

(fig. 2). To obtain an up-to-date picture of virus diversity in

the United States, we analyzed 107,414 high coverage

genomes (isolation dates between December 2019 to

October 20, 2020) from the GISAID (supplementary table 1,

Supplementary Material online). There were 26,528 genomes

isolated in the United States in this data set that belong to 87

of 154 CCs. Strikingly, 35% of the genomes belong to CC258

(GISAID clade GH) and 75% of the genomes are represented

by just ten CCs (CC4, 255, 256, 258, 300, 498 768, 3,530,

10,221, and 21,210). Moreover, 72% (63/87) of the CCs

(representing 82% of the genomes) had the spike D614G

mutation that has been associated with increased spread

(Korber et al. 2020). Interestingly, none of the US genomes

were associated with any of the 12 CCs (26,377, 26,754,

27,693, 27,950, 28,012, 28,825, 29,259, 29,310, 30,362,

31,179, 31,744, and 31,942) that have the spike protein

A222V mutation (GISAID clade GV; Hodcroft et al. 2020).

Ten of the 12 CCs with the A222V mutation were isolated

only from Europe whereas the two other CCs (27,693 and

27,950) had two genomes from Hong Kong and six from

New Zealand, respectively. This shows a strong association

of this clade with Europe.

The relative proportions of STs or CCs isolated and se-

quenced may be a highly biased statistic that is contingent

upon where the isolate comes from, the decision to sequence

its genome, and the local capacity to sequence a whole ge-

nome. Certain states (Washington, Texas, and California)

clearly sequenced more genomes than the other states.

Focusing on specific states may help to partially ameliorate

this bias, and we chose to focus on 16 states (Washington

[WA], Texas [TX], California [CA], Wisconsin [WI], New York

[NY], Michigan [MI], Minnesota [MN], Louisiana [LA], Utah

[UT], Virginia [VA], Florida [FL], Oregon [OR], Massachusetts

[MA], New Mexico [NM], Maryland [MD], and Connecticut

[CT]) with at least 200 genomes in the studied time period,

representing 92.6% (24,565/26,528) of all viral genomes

available from the United States at that time. The most com-

mon 20 CCs in these states, representing 86.5% (21,261/

24,565) of the genomes, are shown in figure 2.

Table 2

Prediction Time (s) for 1,000 Genomes by GNUVID and Pangolin

Genomes GNUVID GNUVID Pangolin

(Exact Matching and Random Forest) (Random Forest) (Decision Tree)

Exact match 31 52 80

New 69 51 81

Table 1

Time (min) Needed to Process (Compress or Build Phylogenetic Tree of) 25,807 Genomes on One Processor/16Gb RAM

Step GNUVID ML (8,744 SNPs) MST (8,744 SNPs)

ORF identification by BLAST 8.8 — —

Whole-genome alignment (minimap2) — 4.1 4.1

Compression/wgMLST 1.5 — —

SNP calling — 1.8 1.8

MST Phyloviz 1.0 — Failed due to memory

MST grapetree 3.3 — 71 (47 Gb RAM)

IQ-Tree ML Tree — 3,570 —

Total 11 3,576 77

ORF, open reading frame; SNP, single nucleotide polymorphism.
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Because we included collection dates for each genomic

sequence, we can use STs and CCs to better understand the

emergence and replacement of certain lineages and viral di-

versity in geographical regions over time. Figure 3A and sup-

plementary figure 3, Supplementary Material online show

temporal plots of the most common 20 CCs in 16 states. In

WA, the earlier introduction CC256 (GISAID clade S) was

replaced by CC258 (GISAID clade GH), perhaps by introduc-

tion from the East Coast or Europe (Bedford et al. 2020; Deng

et al. 2020). CC258 was then replaced by CC300 (GISAID

clade GR) and subsequently by CC498 (GISAID clade G).

In the neighboring state CA, a different pattern was seen in

the early pandemic where the lineage found early on in WA,

CC256, only represented 20% of sequenced genomes at its

most prevalent (March 1–15) whereas CC4 (GISAID clade L)

was the dominant variant, which was then replaced by

CC258. Interestingly, a locally emerged variant CC10221

(GISAID clade G), probably from CC498, increased in abun-

dance over time and then was likely exported to OR and NM

(supplementary figure 3, Supplementary Material online). A

similar pattern was seen in WI where a local variant CC13301

increased in abundance over time and then appeared to

spread to other states (NY, MI, MA, and MN). In TX, multiple

diverse CCs persisted in the population until mid-July.

In NY, a different pattern was seen with CC258 being

persistently dominant. However, a more granular view of

STs, not CCs, in New York shows a shifting epidemiology

with ST258 declining and the rise of closely related single

FIG. 2.—Global SARS-CoV-2 Diversity. MST from goeBURST of the 35,010 STs showing the 154 CCs identified in the data set. Only the most common

20 CCs in the 16 states are shown in black. The pie charts show the percentage of genomes from the different geographic regions in each CC. The numbers

of STs and CCs in the figure are from GNUVID v2.0.
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FIG. 3.—SARS-CoV-2 diversity in six states over time. (A) Temporal plots of circulating CCs and corresponding GISAID clade in parentheses in six different

states (Washington [WA], California [CA], Wisconsin [WI], Texas [TX], New York [NY], and Michigan [MI]). The visualizations were limited to the 20 most

common CCs. (B) Diversity of STs in the six states over time is represented for each 2-week time period in the following ratios: 1) Effective diversity (Hill

number equivalent [2D] of Simpson index [2H]) (red). 2) Number of STs new to a state that were previously isolated and sequenced outside a state divided by

the number of STs not seen previously in a state (blue). The plots represented data for each 2-week time period since the start of the pandemic in December

2019.
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and DLVs of ST258 reflecting local diversification (supplemen-

tary fig. 4, Supplementary Material online).

In MI, CC258 was the predominant strain until the summer

when it gave way to a more diverse group of isolates.

Similarly, in states like VA, CT, NM, and LA mostly one pre-

dominant CC is seen over time, whereas in other states like

UT, FL, OR, MA, MD, and MN a diverse pattern of multiple

CCs was noticed (supplementary fig. 3, Supplementary

Material online).

The expansions and contractions in the temporal plots over

time could be due to locally generated diversity (mutation)

and/or introductions from other states or overseas. To better

understand the source of ST diversity over time, we calculated

indices reflecting effective circulating diversity as well as pro-

portions of new STs in each state, and inferred domestic or

global introductions and exportations based on previous

observations in other locations or subsequent observations

in other geographical locations (fig. 3B, table 3, and supple-

mentary fig. 5, Supplementary Material online). To infer intro-

ductions, we required that exactly the same ST was seen at

least 10 days prior in some other geographical location. For

exportations, we required an ST to be seen first in the state in

question at least 10 days prior to being seen anywhere else.

The results of this analysis showed distinct patterns in dif-

ferent states with evidence supporting introductions usually

outweighing evidence supporting exportations (table 3).

Interestingly, NY has the highest number of putative exporta-

tions (n¼ 26), which was almost equal to the number of pu-

tative importations (n¼ 25) potentially reflecting its role as a

hub driving the initial pandemic. In most states, there was a

high amount of diversity that had no evidence of being intro-

duced, which may signal problems with sampling, or perhaps

that local mutation is a strong force in generating diversity. This

type of analysis gives a quick and intuitive way to look at virus

transmission between regions that can then be further tested

with more sophisticated phylodynamic pipelines for quantify-

ing transmission (Dellicour et al. 2020; Seemann et al. 2020).

GNUVID classification lends itself to assessments of the

ecological diversity of circulating virus. To understand the viral

diversity within and between states, we calculated Hill num-

bers for all genomes from each state and over time in each

state (fig. 4A and table 3). Hill numbers are a diversity metric

used widely in ecological studies that express effective diver-

sity in units of STs, and they are less prone to biases intro-

duced by incomplete or biased sampling (Alberdi and Gilbert

2019). Recognizing that our sample was not drawn from a

systematically or evenly sampled data set, we chose to use a

Hill number metric (q¼ 2) that emphasizes abundant taxa in

estimating the effective diversity. Several other metrics such as

the Shannon Index and a normalized richness index were

highly dependent on the number of sampled genomes from

each state. Hill numbers based on STs varied widely by state,

with TX showing the highest diversity and MI the lowest (figs

3B and 4 and table 3). Interestingly, there is a correlation (R2¼

0.1625) between effective diversity and when a state-wide

mask mandate was imposed (fig. 4B).

Higher effective diversity may signal increased introduction

of variants or increased local generation of new STs. To at-

tempt to discriminate between these processes, we calculated

the effective diversity over time in each state and compared

this to the proportion of novel variants that were determined

to be introductions (fig. 3B and supplementary fig. 5,

Supplementary Material online). In most states, initially high

numbers of introductions were followed by a drop in the rel-

ative proportion of introductions as states began to impose

restrictions in March 2020. In some states, the proportion of

introductions also appears to increase over the summer of

2020 as states eased regulations. Interestingly effective diver-

sity also appeared to be associated with peaks in the number

of cases (supplementary fig. 6, Supplementary Material on-

line) in several states, especially New York, but more data will

be needed to assess the connection between effective diver-

sity and numbers of cases.

One advantage of using the GNUVID tool to type new

SARS-CoV-2 genomes is that it provides more resolution for

tracing virus variants of concern and interest. For instance, in

the most updated version of GNUVID v2.3 (genomes included

until June 21, 2021), there are 2,888 CCs and 1,346 of them

represent the Alpha variant (B.1.1.7). Similarly, the Delta var-

iant is represented by 47 distinct CCs. This adds granularity for

investigating outbreaks, local patterns, and emerging variants

within a particular lineage (Moustafa et al. 2021).

Although our wgMLST approach is rapid and robust, it has

several limitations. Because a change in any allele creates a

new ST our method may accumulate and count

“unnecessary” STs that have been seen only once or may

be due to a sequencing error. Sequencing errors may result

in erroneous alleles, and masking known problematic sites

before input may prevent this issue (Maio et al. 2020). This

problem is also partially ameliorated by the use of the CC

definition, which allows some variability amongst the mem-

bers of a group, as well as the use of only high-quality sequen-

ces. As mentioned above, a large number of STs also may

allow more granular approaches for tracking new lineages.

Another limitation is the stability of the classification system,

while ST designation is 100% stable, some STs may be reas-

signed to new CCs as clones expand epidemiologically.

However, this aspect may also reflect a dynamic strength as

circulating viruses emerge and replace older lineages.

Perhaps the most important limitation of our classification

system is that it is limited by the quality and extent of the

genomes in the GISAID database. This is also reflected as a

major limitation associated with the epidemiological and di-

versity inferences reported here. Uneven or biased sampling

could lead to both inaccurate statements of the direction or

origin of import/export events, and the source and quantifi-

cation of diversity. The regular update of GNUVID with more

genomes and the use of diversity statistics that emphasize
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more predominant variants and address sampling bias such as

Hill numbers may help ameliorate this problem, but it seems

clear that well-designed sampling strategies are needed to

confidently understand ecological dynamics for SARS-CoV-2.

Conclusion

The genomic epidemiology of the 69,686 SARS-CoV-2 iso-

lates studied here show that 154 CCs have circulated globally

and that more than half of these have been dynamically

spreading through the US population with waves of changing

diversity. Our tool (GNUVID) allows for fast sequence typing

and clustering of whole-genome sequences in a rapidly

changing pandemic. As illustrated above, this can be used

to temporally track emerging clones, identify the likely origin

of viruses, and understand circulating diversity.

Materials and Methods

All SARS-CoV-2 genomes (n¼ 110,953) that were complete

and had high coverage were downloaded from GISAID (Shu

and McCauley 2017) on October 20, 2020. Genomes had to

be at least 29,000bp in length and have fewer than 1% “N”s.

The ten ORFs were identified in the genomes using blastn

(Altschul et al. 1990) and any genome that had any ambiguity

or degenerate bases (any base other than A, T, G, and C) in the

ten ORFs was excluded. The remaining 69,686 genomes (sup-

plementary table 1, Supplementary Material online) were fed to

Table 3

Number of Genomes, STs, Simpson index, Hill Number, Introductions, and Exportations for 16 US States

State Genomes (STs) Simpson Index (2H) Hill Number (2D) Nonintroductions Introductions (United States) Exportations

WA 3,960 (1,887) 0.987 77 1,817 44 (26) 19

TX 2,167 (1,299) 0.997 319 1,258 31 (16) 17

CA 1,984 (1,236) 0.997 296 1,173 35 (19) 7

NY 1,483 (825) 0.960 25 766 25 (9) 26

MN 1,107 (522) 0.988 81 470 29 (17) 12

WI 954 (574) 0.993 147 529 26 (15) 8

VA 908 (543) 0.994 165 511 18 (13) 4

LA 850 (416) 0.988 85 397 10 (10) 1

MI 795 (416) 0.889 9 384 16 (5) 9

FL 750 (519) 0.995 215 474 29 (18) 6

OR 531 (343) 0.995 190 320 19 (14) 5

UT 350 (216) 0.992 123 204 8 (4) 2

MA 336 (170) 0.940 17 144 17 (12) 2

MD 196 (145) 0.987 76 134 8 (4) 2

NM 162 (109) 0.987 80 103 3 (1) 0

CT 154 (101) 0.964 28 84 12 (8) 0
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FIG. 4.—Effective Diversity of STs in 16 states. (A) The Hill number equivalent (2D) of Simpson index (2H) is on the y axis. Total number of genomes

sequenced on the x axis. (B) Effective diversity (Hill number 2D) plotted against the week when state-wide mask mandate was imposed. Florida (FL) has no

mask mandate so it was plotted at the end of the x axis. The solid and dashed lines show the linear regression fit and 95% confidence interval, respectively.
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Oregon (OR), Massachusetts (MA), New Mexico (NM), Maryland (MD), Connecticut (CT), Minnesota (MN), and Louisiana (LA). The plot represented data for
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the GNUVID tool v2.0 in a time-ordered queue (first-collected to

last-collected), which assigned an ST profile to each genome.

The identified STs by GNUVID were fed into the PHYLOViZ tool

(Nascimento et al. 2017) to identify CCs at the DLV level using

the goeBURST MST (Feil et al. 2004; Francisco et al. 2009). CCs

were mapped back to the STs using a custom script. Pie charts

were plotted using a custom script. The sci-kit learn implemen-

tation of Random Forest was then used to train a model. The

model was trained using 53,565 SARS-CoV-2 sequences from

GISAID representing the 154 CCs. Briefly, the 53,565 genomes

were aligned to MN908947.3 (Wu et al. 2020) to generate a

multiple sequence alignment using MAFFT’s FFT-NS-2 algorithm

(Katoh et al. 2002) (options: –add –keeplength). The 50 and 30

untranslated regions were masked in the alignment file using a

custom script. Variant positions were then called using snp-sites

(Page et al. 2016) (options: -o -v). The 15,136 variant positions

(features) matrix of the 53,565 CC-labeled genomes were then

one-hot encoded, where each SNP is replaced with a binary

vector, and 70% the genomes representing the 154 CCs

were used to train a random forest classifier (n_estimators¼ 10)

in Scikit-learn. The remaining 30% were used for testing

(Pedregosa et al. 2011). The prediction capability of the model

was evaluated according to four statistics (accuracy, precision,

recall, and F-score).

To compare the speed of GNUVID workflow against other

techniques, we used a data set of 25,807 high-quality GISAID

genomes that are part of the GNUVID August database release

and have an assigned CC and date of isolation (supplementary

table 1, Supplementary Material online). This data set was used

to estimate the time for GNUVID workflow, building an ML tree

using IQ-TREE or MST using grapetree or Phyloviz (table 1;

Nascimento et al. 2017; Zhou et al. 2018; Minh et al. 2020).

The GNUVID analysis was done on a MacBook Pro desktop

computer with a single processor (3.3GHz Intel Core i7) and

16 GB of RAM, and the run time was recorded. The ORFs

cutting step was done with blastn (Altschul et al. 1990) and

time was recorded. The ORFs were then compressed using

GNUVID and time was recoded. The alignment for both the

ML and MST was done using minimap2 (options: -a -x asm5; Li

2018). The 50 and 30 untranslated regions were masked in the

alignment file using a custom script. Variant positions were then

called using snp-sites (Page et al. 2016) (options: -o -v). The IQ-

Tree step (options: -m HKY -B 1000 –nmax 100 -T 8) was run

with eight processing cores and 128Gb of memory. The grape-

tree MST step for the SNP matrix was run with one processing

core and 47Gb of memory (option: -m MSTree).

To compare the speed of querying using GNUVID exact

matching/random forest model and Pangolin’s decision tree

model, we randomly selected 1,000 genomes from the

GNUVID October 2020 database (supplementary table 1,

Supplementary Material online). We also randomly selected

1,000 new genomes from GISAID that were new to both

GNUVID and Pangolin (supplementary table 1,

Supplementary Material online). The two data sets were

queried using GNUVID v2.2 and Pangolin (lineage version

01/22/2021) three times on a MacBook Pro desktop com-

puter with a single processor (3.3 GHz Intel Core i7) and 16

GB of RAM, and the run time was recorded.

To show the relationship between our typing scheme and

phylogeny, we used a Global phylogeny of SARS-CoV-2

sequences from GISAID (last accessed November 13, 2020).

The tree uses an alignment of 52,747 high-quality genomes

(Lanfear and Mansfield. 2020). The tree and the ten most

common CCs were visualized in iTOL (Letunic and Bork

2019). We assigned a Pangolin lineage (Rambaut et al.

2020; O’Toole et al. 2021) and GISAID clade to each genome

of the 53,565 genomes using the metadata details available

on GISAID. We then compared the composition of each CC

and calculated the percentage of the predominant clade/lin-

eage in each CC (supplementary table 1, Supplementary

Material online).

To measure the consistency of taxonomy with phylogeny,

we calculated the retention index. For each of the 25,170

genomes from the August GNUVID database that were pre-

sent in this tree, we coded CC and Pangolin lineage as char-

acter states using custom scripts. We then calculated the

retention index using the phangorn R package (Schliep 2011).

To measure introductions and exportations from each of

16 states, we used a total of 107,414 genomes, which was

the total number of genomes available in October 2020 that

had a date of isolation and could be assigned to a CC (sup-

plementary table 1, Supplementary Material online). Putative

introductions were defined as an exact ST that was isolated

somewhere else at least 10 days before the first date of iso-

lation in the state in question. Exportations were defined as

STs that were first isolated in the state in question and then

isolated subsequently somewhere else at least 10 days later.

We used the same 107,414 genomes to compare diversity

between states and in each state over time. We first calculated

the Simpson index (Simpson 1949) for each state and time

period. To measure effective diversity in units of STs, we then

transformed Simpson index (2H) to a Hill number (2D), which is

the multiplicative inverse of the Simpson index (Alberdi and

Gilbert 2019). The Hill number is described as the effective

number of STs (or CCs) of equally abundant STs (or CCs) that

are needed to give the same diversity (Hill 1973; Jost 2006). We

recorded the dates of state-wide mask mandates as the dates

when face covering was required in indoor public spaces and in

outdoor public spaces when social distancing is not possible

(Abbott 2020; Allen 2020; Angell 2020; Baker 2020; Cuomo

2020; Edwards 2020; Evers 2020; Hogan 2020; Inslee 2020;

Kunkel 2020; Lamont 2020; Northam 2020; Saunders 2020;

Walz 2020; Whitmer 2020). The state-wide mandate dates

used were WA (6/26/20), CA (6/18/20), TX (7/3/20), WI (8/1/

20), NY (4/17/20), MI (7/10/20), LA (7/11/20), FL (no mandate),

MN (7/25/20), NM (5/16/20), OR (7/13/20), MA (5/6/20), MD (7/

31/20), VA (12/14/20), UT (11/9/20), and CT (4/17/20). The

plots for number of confirmed cases in the 16 states were
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obtained from publicly available data in the Johns Hopkins

University dashboard (Dong et al. 2020).

The GNUVID database will be updated regularly with newly

added high-quality genomes from GISAID (Shu and McCauley

2017). Commands used are in supplementary methods,

Supplementary Material online. All the scripts are available

from the authors and https://github.com/ahmedmagds/

GNUVID (Moustafa and Planet 2020a). The current version of

GNUVID is v2.3 and can be installed through Bioconda (Grüning

et al. 2018).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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