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Abstract: To systematically investigate the influence of the positional isomeric effect
on the structures of polymer complexes, we prepared two new polymers containing
the two positional isomers ethyl 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-3-carboxylate (L1)
and ethyl-5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate (L2), as well as Cd(II) ions.
The structures of the metal–organic frameworks were determined by a single crystal XRD analysis.
The compound [Cd(L1)2·4H2O] (1), is a hydrogen bond-induced coordination polymer, whereas the
compound [Cd(L2)4·5H2O]n (2) is a three-dimensional (3-D) coordination polymer. Their structures
and properties are tuned by the variable N-donor positions of the ligand isomers. This work indicates
that the isomeric effect of the ligand isomers plays an important role in the construction of the Cd(II)
complexes. In addition, the thermal and luminescent properties are reported in detail.

Keywords: metal-organic frameworks; Cd(II) complexes; X-ray diffraction analysis; thermal
properties; luminescence

1. Introduction

The self-assembly of coordination polymers and metal–organic frameworks (MOFs) [1–3] has
been attracting great attention in the past decade, mainly because of their great potential as functional
materials for diverse technological applications [4–8]. In particular, the luminescent properties of
this type of material, as well as the possibility of fine-tuning the characteristics of their emission by
carefully selecting both the metal and the organic ligands, have been a topic of special relevance in this
field [9–13].

In this sense, the well-studied luminescent properties [14–18] of d10 cations, such as Cu(I), Ag(I),
and Au(I), as well as their versatility in the construction of complex coordination networks with
different types of organic ligands have been the object of interest.

From a structural point of view, the two principal themes in this field have been the synthesis
of compounds that have either discrete molecular architectures with polyhedral or polygonal shapes
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or infinite coordination polymers in one, two, or three dimensions (1-D, 2-D, or 3-D, respectively)
composed of metal ions in combination with deliberately tailored organic ligands. In the latter case,
the resulting network topology [19] for the supramolecular complex can usually be predicted by
selecting the chemical structure of the organic ligands and the usual coordination geometry of the
metal ions linking the ligands together in the final structure [20]. The structural properties of the
bridging ligands, such as their rigidity or flexibility, length, size, bulkiness, and linear or nonlinear
geometry, have been found to play an important role in the construction of specific macromolecular
architectures [21–23].

One crucial aim of this work is to explore the essential factors of positional isomeric ligands for
regulating the structural assembly of Cd(II) MOFs, which may provide further insight into the design
of new functional crystalline materials [24–28].

2. Materials and Methods

2.1. Reagents and Instruments

All chemicals were of A.R. grade and used without further purification (Sigma-Aldrich, St. Louis,
MO, United States). FT-IR spectra in the range of 400–4000 cm−1 were obtained, using KBr pellets,
with a Nicolet Avatar 330 spectrometer (Thermo Scientific, Waltman, MA, United States). The elemental
analyses were obtained on a CNHS FLASH EA 1112 Elemental analyzer (Thermo Scientific, Waltman,
MA, United States). HR-ESI-MS were obtained on a Waters (Micromass) AutoSpec mass spectrometer
(Water co.; Milford, MA, United States). Powder X-ray diffraction data were obtained on a Bruker D8
Advance diffractometer (Cu-Kα radiation (λ = 0.1542 nm); Bruker Co.; Billerica, MA, United States).
The thermogravimetric analyses were carried out in an N2 atmosphere on a Mettler Toledo DL31
thermoanalyzer (Mettler Toledo enterprise, Columbus, OH, United States) with a heating rate of
10 ◦C/min. The luminescence spectra were recorded on a JASCO FP-8500 spectrofluorometer (JASCO
Co.; Kyoto, Japan). The excitation was performed with λex = 360–370 nm, and the emission was
recorded at λem = 410–450 nm.

2.2. Single-Crystal X-ray Diffraction

The diffraction data for compound 1 were collected on an automated D8 Venture Bruker
diffractometer (Bruker Co.; Billerica, MA, United States) equipped with a two-dimensional
CMOS detector (graphite monochromator, λ(MoKα) = 0.71073 Å, ω-scans). For compound
2, λ(CuKα) = 1.5418 Å radiation (ω-scans) was used. Integration, absorption, correction,
and determination of unit cell parameters were performed using the APEX3 program package [29].
The structures were solved by a dual space algorithm (SHELXT [30]) and refined by the full-matrix least
squares technique (SHELXL [31]) in the anisotropic approximation (except hydrogen atoms). The final
formula of compound 2 was calculated from the data of the PLATON/SQUEEZE procedure [32]
(196 ē in 699 Å3, equivalent to around 10 disordered ethanol molecules). Additional crystallographic
details are available in the CIF files. ORTEP views were drawn using OLEX2 software (version
1.12, Olexsys Ltd., Durham University, Durham, UK) [33]. The crystallographic data and details
of the structure refinements are summarized in Table 1. CCDC 1515697 (L1H), 1515698 (L2H),
1866538 (1), and 1866353 (2) contain the supplementary crystallographic data for this paper. These
data can be obtained free of charge from the Cambridge Crystallographic Data Center at http:
//www.ccdc.cam.ac.uk/data_request/cif.

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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Table 1. Crystal data parameters for compounds L1H, L2H, 1, and 2.

Compound L1H L2H 1 2

Empirical Formula C9H8N4O2 C9H8N4O2 C18H22CdN8O8 [C18H14CdN8O4]n
Formula mass, g·mol−1 204.19 204.19 590.84 518.77
Collection T, K 295.21 296.27 295.51 297.22
crystal system orthorhombic Monoclinic Monoclinic Monoclinic
space group Pna21 Cc P21/c P21/n
a (Å) 13.4617(12) 18.5248(10) 9.9864(5) 10.7368(8)
b (Å) 3.7613(3) 3.7425(2) 7.3650(4) 14.8147(14)
c (Å) 17.9448(16) 13.0186(7) 15.7758(9) 15.7859(14)
α (◦) 90 90 90 90
β (◦) 90 92.154(4) 104.846(3) 99.017(3)
γ (◦) 90 90 90 90
V (Å3) 908.61(14) 901.93(8) 1121.57(11) 2479.9(4)
Z 4 4 2 4
ρcalcd (g·cm−3) 14.926 1.504 1.750 1.389
Crystal size (mm) 0.402 × 0.24 × 0.108 0.414 × 0.129 × 0.114 0.13 × 0.102 × 0.073 0.459 × 0.433 × 0.258
F(000) 425.5 424.0 596.0 1032.0
abs coeff (mm−1 ) 0.931 0.938 8.372 0.917
θ range (◦) 9.86 to 122.94 9.556 to 117.866 9.16 to 118.36 5.5 to 56.75

range h,k,l −14/15, −4/4,
−19/19

−20/20, −4/4,
−13/14

−11/11, −8/8,
−17/17

−12/14, −1 9/19,
−21/21

No. total refl. 13089 8282 24642 52471
No. unique refl. 1328 1242 1598 6169
Comp. θmax (%) 94.0 97.0 98.3 99.4
Max/min transmission 0.765/0.904 0.865/0.899 0.413/0.543 0.663/0.78
Data/Restraints/Parameters 1328/5/138 1242/2/139 1598/0/164 6169/0/282

Final R [I > 2σ(I)] R1 = 0.0490,
wR2 = 0.1363

R1 = 0.0445,
wR2 = 0.1004

R1 = 0.0392,
wR2 = 0.0779

R1 = 0.0415,
wR2 = 0.0922

R indices (all data) R1 = 0.0618,
wR2 = 0.1415

R1 = 0.0557,
wR2 = 0.1077

R1 = 0.0614,
wR2 = 0.0849

R1 = 0.0631,
wR2 = 0.1041

Goodness of fit/F2 1.094 1.124 1.065 1.036
Largest diff. Peak/hole(eÅ−3) 0.33/−0.35 0.18/−0.15 0.72/−0.58 1.93/−0.63
Flack Parameter 0.0(5) 0.4(2) — —

2.3. Synthetic Procedures

2.3.1. General Procedure for the Syntheses of Ligands L1 and L2

The organic ligands ethyl 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-3-carboxylate (L1) and ethyl
5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate (L2) were prepared according to standard
methods reported in the literature [34], generating the precursor ester compounds. The esters were
saponified with a solution of NaOH in order to generate the corresponding carboxylate sodium
salts—compounds L1 and L2, respectively.

L1: Yield: quant. IR (KBr, cm−1 ); ν: 3062, 3036 (CAr-H); 2981 (Csp3-H); 1630 (C=O-), 1508 (N=N);
1483, 1466, 1447 (CAr-CAr); 1446 (COO-as). 1H-NMR (500 MHz, DMSO) δ (ppm): 8.72 (s, 1H, H5),
8.71 (d, J = 1.3 Hz, 1H, H3), 8.02 (d, J = 7.2 Hz, 1H, H1), 7.66 (dd, J = 7.9, 4.6 Hz, 1H, H2), 2.45 (s,
3H, H12). 13C-NMR (500 MHz, DMSO) δ (ppm): 166.20 (C13), 151.13 (C3), 146.15 (C5), 144.32 (C8),
136.67 (C9), 134.12 (C1), 133.65 (C6), 125.64 (C2), 10.20 (C12). HR-ESI-MS for C9H7N4O2Na [M + H]+:
calculated = 226.2, found = 226.1 (1 ppm).

L2: Yield: quant. IR (KBr, cm−1 ); ν: 3102, 3055 (CAr-H); 2981 (Csp3-H); 1606 (C=O); 1489 (N=N); 1473,
1446, 1421 (CAr-CAr); 1427 (COO-as). 1H-NMR (500 MHz, DMSO) δ (ppm): 8.77 (dd, J = 4.6, 1.5 Hz,
2H, H2, H4), 7.67 (dd, J = 4.6, 1.5 Hz, 2H, H1, H5), 2.57 (s, 3H, H12). 13C-NMR (500 MHz, DMSO) δ
(ppm): 166.11 (C13), 151.97 (C2, C4), 144.46 (C6), 143.61 (C8), 136.20 (C9), 119.54 (C1, C5), 10.40 (C12).
HR-ESI-MS for C9H7N4O2Na [M + H]+: calculated = 226.2, found = 226.0 (2 ppm).

2.3.2. Synthesis of Tetraaqua–bis(5-methyl-1-(3-pyridin)-1H-1,2,3-triazole-carboxilate) Cadmium(II)
[Cd(L1)2·4H2O] (1)

A solution of L1 (10 mg, 0.0442 mmol) in H2O (5 mL) was added to a solution of Cd(NO3)2·4H2O
(6.28 mg, 0.0221 mmol) in n-butanol (5 mL). The resulting clear solution was kept at room temperature
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for 30 days until the crystals formed. The colorless crystals of compound 1 were filtered, washed with
dimethylformamide (DMF), and dried in air. The yield was 0.0084 g (70%).

2.3.3. Synthesis of Catena-tetra(5-methyl-1-(4-pyridin)-1H-1,2,3-triazole-carboxilate) Cadmium(II)
Pentahydrate [Cd(L2)4]n (2)

A solution of L2 (10 mg, 0.0442 mmol) in H2O (5 mL) was added a solution of Cd(NO3)2·4H2O
(6.28 mg, 0.0221 mmol) in ethanol (5 mL). The mixture was homogenized in an ultrasonic bath at 60 ◦C
for 40 min, and then placed in a Teflon-lined stainless steel vessel, heated to 120 ◦C for three days,
and cooled to room temperature over 24 h. Colorless needle crystals of compound 2 were obtained.
The yield was 0.0063 g (60%).

3. Results

3.1. Syntheses of L1 and L2

The syntheses of both compounds were carried out according to the literature [34,35], using [3 + 2]
dipolar cycloaddition between n-pyridyl azide (n = 3 or 4) and a 1,3-dicarbonyl compound such as
ethyl acetoacetate (see Scheme 1). In general, the yields of the ester precursors are in the range of
35-70% and the yields of the sodium carboxylate salts L1 and L2 are quantitative.

The obtained compounds were hygroscopic, and consequently had to be stored in a dry box
or under an in inert gas atmosphere. On the other hand, the ligand L1 and L2 are stable under
atmospheric conditions. Both are white powders that are soluble in water and other protonic solvents,
such ethanol or hot methanol.
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Finally, suitable single crystals for XRD analysis were isolated. The crystal structure data reveal
that both compounds crystallize in their protonic forms (see Section 3.2)

3.2. Syntheses of 1 and 2

The Cd(II) compounds were obtained using immiscible liquid for ion diffusion, generating single
crystals in the interphase. In the case of [Cd(L1)2·4H2O] (1), the single crystals were manually isolated
out of the reaction mixture of Cd(NO3)2·4H2O and L1 in a mixture of 1:1 H2O and n-butanol. In the
same way, the synthesis of [C18H14CdN8O4]n compound 2, gave rise to suitable crystals from the
reaction mixture of Cd(NO3)2·4H2O and L2 in a mixture of 1:1 H2O/ethanol. The stoichiometric
ratio between Cd(II) salt and L1 or L2 was 1:2, respectively (see Section 2.3 for more details).
Both compounds generated clear colorless single crystals for XRD analyses. In particular, for compound
2, it was synthesized via solvothermal methods. According to the structural nature of these ligands,
compound 1 generated a discrete coordination compound. Meanwhile, compound 2 generated a
coordination polymer’s 3D architecture (see Scheme 2 and Section 3.3 for more details.).
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3.3. Crystallographic Studies

The crystal structures and chemical compositions of all compounds were established by the
single-crystal X-ray diffraction method. The molecular structures of L1 and L2 show their protonated
forms L1H and L2H (see Figure 1), corresponding to their respective carboxylic acids. L1H crystallizes
in the orthorhombic system with space group Pna21, and L2H crystallizes in a monoclinic system with
space group Cc, both compounds with four molecular entities per unit cell with non-centrosymmetric
settings. All the distances and angles are normal. The bond lengths between single and double bonds
are typical for these types of compounds [36]. It can observed that there is a loss of coplanarity between
the respective heterocycles (n-pyridyl and 1,4-disubstituted-1,2,3-1H-triazole moieties), where the
torsion angle between their heterocycles is lower in L2H than in L1H with 36.8(5) and 39.1(8)◦,
respectively, following the same tendency in similar compounds previously reported with the same
moieties [34,37].Molecules 2018, 23, x FOR PEER REVIEW  6 of 14 
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Figure 1. ORTEP plot for compounds L1H (left) and L2H (right). Hydrogen atoms were omitted for
clarity’s sake. Thermal ellipsoids were drawn with 30% of probability.

The crystal structures of both compounds show hydrogen bonding interactions generated with
-O(2)-H(2)···N(1), generating slabs along the (101) plane with graph set C1

1(9) in the crystal packing
(see Figure 2). This situation has been reported before in compounds with similar features [37,38].
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Figure 2. Crystal packing of compound L1H (left) and L2H (right).

In compound 1, the asymmetric unit contains a Cd(II) cation, two water molecules, and two
molecules of L1. The Cd(II) ion lies on an inversion center and is hexacoordinate with a [N2O4]
coordination sphere (four water molecules and two N donor atoms from the pyridyl moiety of L1) in
a distorted octahedral geometry (see Figure 3). The bond lengths and angles around the Cd(II) ion
are in the range of 2.280(3)–2.294(3) Å for Cd-O, and 2.358(4) Å for Cd-N. The angles O-Cd-O and
O-Cd-N are 86.57(13)-180.0◦ and 88.59(14)-91.41(14)◦, respectively. These bond lengths and angles
are similar to the reported values of related Cd(II) complexes containing carboxylate and pyridyl
fragments [39,40]. Compound 1 exhibits parallel packing, generating a slab along the (101) plane (see
Figure 4). Moreover, an induced hydrogen bond framework in the whole cell generates a spiral shape,
due to the 21-screw axis and perpendicular glide plane. The hydrogen bonding interactions along
the slab are located between water molecules in the equatorial positions of the coordination core and
carboxylate fragments, specifically the O(3) and O(4) atoms.

The coordinated water molecules and the carboxylate groups are involved in the formation of a
two-dimensional hydrogen-bonded network, which consolidates the crystal packing (see Figure 4).
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Figure 4. Slabs generated along the (101) plane (a) and the (110) plane (b), showing the
coordination polyhedral.

The crystal structure and chemical composition of compound 2 were established by
the single-crystal X-ray diffraction method. The asymmetric unit of compound 2 contains
a Cd(II) cation, the coordination environment of which consists of two N atoms of the
pyridine, as well as triazole fragments and one O atom of the carboxylate group from
two ethyl 5-methyl-1-(pyridin-4-yl)-1H-1,2,3-triazole-3-carboxylate ligands L2 (Figure 5). In the
symmetry-unique part of the molecule, the pyridine and chelate ring (N4/C6/C9/O2/Cd1) form a
dihedral angle of 89.5(3).

The Cd(II) ion is coordinated in a slightly distorted octahedral geometry by four N atoms
and two O atoms from the ethyl 5-methyl-1-(pyridin-4-yl)-1H-1,2,3-triazole-3-carboxylate ligands,
(Figure 6). The Cd-O distances range from 2.278(3)–2.296(3) Å, and the Cd-N distances range from
2.291(3)–2.348(3) Å. The O-Cd-O angle is 94.64(11)◦, and the O-Cd-N and N-Cd-N angles are in the
range of 71.41(10)–166.39(10 and 89.38(11)−154.39(11)◦, respectively. The Cd–O (carboxylate) and
Cd–N bond parameters are in agreement with related Cd(II) complexes containing carboxylate and
pyridyl fragments [39,40]. The mean plane defined by pyridine rings (N1/C1/C2/C3/C4/C5 and
N5/C10/C11/C12/C13/C14 for plane 1 and plane 2, respectively) makes an angle of 123.81(14)◦,
and the chelate mean plane defined by Cd1/N8/C15/C18/O3 and Cd1/N4/C6/C9/O2 (plane 3 and
plane 4, respectively) makes an angle of 89.00(10)◦.
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Figure 6. Coordination environment of [Cd(L2)]n cores.

The main structural comparison between compounds 1 and 2 shows the isomeric positional
effect in the ligand, because the ligands of compound 1 generate discrete molecular systems, while its
positional isomer ligand 2, generates 3D metal–organic frameworks (see Figure 7).
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over 600 °C. The first step corresponds to around two H2O molecules, due to moisture present in the 
sample (~6%). In the second step at ~150°C, the weight loss of water ligand molecule was ~3%. Over 
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decomposition curve. The first one at 186 °C represents a weight loss of 5% (two water molecules). 

Figure 7. Three-dimensional (3-D) metalorganic frameworks along to plane (100) (a) and the plane
(111) (b).

Another structural consequence of the isomeric effect is the generation of voids within the MOF
material, which have a rhombohedral shape with a volume of 1337 Å3. These voids make this MOF a
good candidate as a storage material or luminescent sensor, due to the ability to catch small molecules
within in the voids (see Figure 8).
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3.4. Thermal Stability Studies

The TGA of both compounds were recorded with a heating rate of β = 10 ◦C·min−1 under a
dynamic nitrogen atmosphere in the temperature interval of 20–1000 ◦C. All curves are shifted to a
higher temperature at constant heating rate. The TG curves show a five-step weight loss until total
decomposition. Compound 1 shows a decomposition starting at ca. 60 ◦C, with total decomposition
over 600 ◦C. The first step corresponds to around two H2O molecules, due to moisture present in
the sample (~6%). In the second step at ~150◦C, the weight loss of water ligand molecule was ~3%.
Over 300 ◦C, the decarboxylation from the ligand was founded (~8%). The two following steps
correspond to progressive decomposition of the compound 1. The TG curve of compound 2 shows
a two-step decomposition curve. The first one at 186 ◦C represents a weight loss of 5% (two water
molecules). The second step at ca. 290 ◦C corresponds to progressive decomposition of the organic
ligand. The final compound after total decomposition of product 2 corresponds to cadmium oxide.
(Figure 9).
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3.5. Emission Spectra Measurements

The room temperature, solid-state excitation/emission deconvoluted spectra of each compound
are shown in Figure 7, and their respective values in Table 2. These crystalline solids have interesting
luminescent properties, with slight differences in their spectra (see Figure 10). There are no important
differences between the spectra of the ligands with respect to the complexes, so it is possible to infer that
the metal centers are not contributing to the molecular orbitals involved in the luminescence response.

In general, each compound shows the maximum excitation peaks at approximately 365 nm (see
Table 2). The blueshift of the complex spectra may be attributed to the chelating or bridging effects of the
ligands, due to their isomeric effect over the metal centers. Moreover, the bonding interaction between
donor atoms and the Cd(II) center are slightly larger, agreeing with the Cambridge Crystallographic
Data Base [41], which means that the contribution of the Cd(II) ion is negligible, explaining the
slight blue-shifted bands, and focusing mainly on π–π* type transitions and the practically negligible
metal-ligand charge transfer (MLCT) or ligand-metal charge transfer (LMCT), according to previously
reported Cd(II) frameworks [42]

The spectra of all the compounds show important differences with respect to their luminescent
intensities, which could be a consequence of the planar effect between pyridyl and triazole rings in the
solid state. The compound L1 could be less coplanar than compound L2; this difference is reflected in
each complex, where the torsion angles between the fragments are 46.8(7)◦ for L1 and 42.8(5)◦ for L2.
Another plausible explanation for this difference could be due to the difference between the transition
dipole moments of both compounds, where compound L2 is higher than L1, as a consequence of a
greater coplanar effect in compound L2.

For complexes 1 and 2, the differences in the intensities could be due to the presence of
water molecules in the tetraaquo complex 1, because water molecules quench the basal state S0,
changing the luminescent absorption energy into vibrational energy released by O–H vibration
modes [43]. The amplified luminescent response in the Cd(II) compounds does not correspond to major
contribution of the metal centers. Rather, it is a linear response according to the number of ligands
that each compound contains. Compound 1 contains two ligand units, while compound 2 has more
ligand units due to its polymeric constitution. At this moment, we are working in the computational
studies of a series of coordination polymers using DFT methods. In this work, the topological studies
are also included.
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Table 2. Excitation and emission data for compounds L1, L2, 1, and 2.

Compound λmax Excitation (nm) λmax Emission (nm)

L1 366 448
L2 360 413
1 366 446
2 366 412

4. Conclusions

We synthesized and characterized new types of Cd(II) complexes prepared via
crystallization 2:1 with 5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-3-carboxylate (L1) and ethyl
5-methyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate (L2). The positional isomeric effect in
compounds L1 and L2 gave rise to different types of Cd(II) compounds, a mononuclear discrete
complex (1), and a Cd(II) framework, using L2 as a linker between metal centers (2). Thermal analyses
of compounds 1 and 2 reveal that both compounds are stable over 200 ◦C, being good candidates for
the preparation of luminescent materials.
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