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Therapeutic hypothermia and targeted 
temperature management for 
traumatic brain injury: Experimental 
and clinical experience
W Dalton Dietrich, Helen M Bramlett

Abstract:
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic 
interventions that can protect the brain and improve functional outcomes in patients. Over the last 
several decades, experimental studies have investigated the pathophysiology of TBI and tested 
various pharmacological treatment interventions targeting specific mechanisms of secondary 
damage. Although many preclinical treatment studies have been encouraging, there remains a lack 
of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 
3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over 
the last several decades have demonstrated successful reduction of secondary injury mechanisms 
and, in some selective cases, improved outcomes in specific TBI patient populations. However, the 
benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials 
to significantly improve neurological outcomes. Although the exact reasons underlying the inability 
to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may 
reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma 
patients. It is known that multiple factors including patient recruitment, clinical treatment variables, 
and cooling methodologies are all important in yielding beneficial effects. High‑quality multicenter 
randomized controlled trials that incorporate these factors are required to maximize the benefits of 
this experimental therapy. This article therefore summarizes several factors that are important in 
enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic 
TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are 
discussed and future directions are emphasized.
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Introduction

Traumatic brain injury  (TBI) is a 
serious worldwide health problem 

that includes mild, moderate, and severe 
injuries.[1,2] Within the United States, there 
are over  1.7 million new patients each 
year who sustain some type of TBI with 
a vast majority of those patients having 
mild TBI  (mTBI) or concussive insults.[3,4] 
Depending on the location of the primary 

impact and injury severity, patients can be 
left with a spectrum of functional problems 
including sensorimotor, cognitive, and a 
range of postconcussive symptoms.[5] The 
pathophysiology of TBI is complex and 
previous research has clarified a number 
of secondary injury mechanisms important 
in the generation of structural and 
functional deficits in patients.[6,7] These 
injury mechanisms include excitotoxicity, 
apoptosis, free radical generation, as 
well as inflammatory processes that 
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contribute to neural dysfunction, cell death, axonal 
and vascular damage, and circuit dysfunction.[7,8] 
Based on this complex pathophysiology, a spectrum 
of pharmacological interventions have been developed 
and tested using a variety of preclinical models with 
different degrees of success.[9,10] To date, however, no 
therapeutic interventions have successfully improved 
behavioral outcomes in multicenter phase 3 clinical trials 
for TBI.[11‑15] For example, in recent clinical testing, the 
neuroprotective agents progesterone and erythropoietin 
both failed to improve outcomes in well‑designed 
multicenter clinical trials.[11,13‑15]

Profound focal levels of hypothermia have been 
known for many years to be effective in reducing brain 
edema and improving functional outcomes in models 
of TBI.[16‑18] However, more recent preclinical studies 
also demonstrated that relatively mild reductions in 
systemic brain temperature were also neuroprotective 
in models of global and focal cerebral ischemia.[19‑23] 
TBI studies have been initiated to test the benefits of 
mild systemic hypothermia on histopathological and 
behavioral outcomes.[24‑34] Clifton et  al. first utilized 
moderate hypothermia (30°C) in a rat moderate lateral 
fluid percussion injury  (FPI) and showed that the 
induction of hypothermia before or soon after the primary 
insult improved motor function using beam‑walking 
and beam‑balance outcome measures.[29] Subsequently, 
Dietrich et al. reported that early posttraumatic cooling 
significantly reduced histopathological damage after 
moderate FPI.[35] In that study, a reduction of brain 
temperature to 30°C starting 5 min after TBI and extended 
for 3 h significantly reduced overall contusion volume as 
well as the frequency of dead neurons within the adjacent 
cerebral cortex [Figure 1].[35] Encouraging findings with 
posttraumatic hypothermia were also reported from 
other laboratories using different animal models with 
variable levels and durations of cooling.[30,36,37] Together, 
these preclinical studies showed that the early induction 
of mild‑to‑moderate hypothermia in models of both focal 
as well as diffuse TBI was beneficial in terms of a variety 
of histopathological outcomes and functional outcomes 
including cognitive assessment.[31,34,38‑45]

Based on these encouraging findings from multiple 
research groups, a number of single institutional 
clinical studies using a relatively small number of 
subjects were initiated in severe TBI patients to test the 
beneficial effects of moderate systemic hypothermia 
[Figure 2].[46‑51] Importantly, several of these clinical 
investigations reported that the induction of early 
hypothermia reduced abnormal elevations in intracranial 
pressure (ICP) as well as improved neurological function 
at chronic survival periods.[52] However, results from 
additional randomized controlled clinical trials resulted 
in conflicting findings.[53‑55]

The first multicenter trial, National Acute Brain Injury 
Study: Hypothermia (NABIS: H) that involved a number 
of recruitment sites throughout the United States, 
failed to show beneficial effects in terms of improving 
functional outcomes.[56] Many questions emerged 
from this multicenter trial suggested that this negative 
finding might be due to a delay in initiating the cooling 
protocol as well as patient management protocols that 
may have varied between recruitment sites.[57] Although 
negative, overall hypothermia treatment appeared to 
work best in younger patients who were cooled early 
after the traumatic insult.[56] A second multicenter 
trial was initiated based on these observations where 
several changes in the treatment protocol were 
initiated.[58] Unfortunately, therapeutic hypothermia was 
again shown to be ineffective in this second multicenter 
trial, resulting in the study being stopped. Interestingly, 
post hoc analysis of the data sets from the two previous 
NABIS: H  trials indicated that hypothermia might 
work best in the treatment group where patients had 
undergone early cooling combined with decompression 

Figure 1: Bar graph of mean + standard error of the mean number of cortical 
necrotic neurons per microscopic field (1.65 mm2) at seven coronal levels. 
Data taken from normothermic (clear bars) and posttraumatic hypothermic 

(black bars) rats. (*, significantly reduced compared to normothermia. Bar graph of 
mean + standard error of the mean contusion area from normothermic (clear bars) 
and posttraumatic hypothermia (black bars) rats at 6 coronal levels (*, significantly 

reduced compared to normothermia). Reprinted from Acta Neuropathologica, 
Posst-traumatic brain hypothermia reduces histopathological damage following 
concussive brain injury in the rat, Vol 87, 1994, pages 250-258, Dietrich WD,  

Alonso O, Busto R, Globus, MY and Ginsberg MD with permission of Springer
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surgery.[58] In contrast to this observation, there appeared 
to be a lack of therapeutic efficacy in patients who had 
diffuse axonal injury and were cooled.

Although the current literature including systematic 
reviews and meta‑analyses does not support the routine 
use of hypothermia for the management of severe TBI in 
pediatric and adult patients, more recent studies suggest 
that specific patient populations may benefit from this 
experimental treatment.[59‑67] Over the last several years, 
there have been reports suggesting various explanations 
for the lack of efficacy of therapeutic hypothermia 
with severe TBI.[68] Furthermore, considerable work 
has continued using preclinical TBI models to more 
clearly define the most critical factors that may be 
important when designing clinical trials for the use 
of therapeutic hypothermia. In this regard, variables 
including the therapeutic window, duration and level 
of cooling, as well as the rewarming protocol have been 
emphasized.[46,49,50,57,68‑71] Each of these factors is now 
appreciated to be highly relevant for maximizing the 
beneficial effects of hypothermic treatment, and these 
concepts need to be considered and integrated into the 
design of future clinical trials.

Level of Hypothermia

Studies initiated in the 1940s and 1950s for cardiac 
by‑pass surgery utilized very profound levels of 
hypothermia to protect the heart and brain.[16,17,21,68,72‑74] As 

previously mentioned, encouraging preclinical studies 
for transient global cerebral ischemia first reported that 
more mild‑to‑moderate levels of systemic hypothermia 
were protective in reducing ischemic cell death as well 
as improving behavioral outcome measures.[19,20,22,23,75] 
Indeed, it was discovered that in some circumstances, 
only a 1‑  or 2‑degree difference in intra‑ischemic 
brain temperature significantly altered the severity 
of hippocampal CA1 neuronal cell death.[20] Based on 
these findings, moderate levels of systemic hypothermia 
were tested in several models of TBI.[21,26,29,30,35,76,77] Early 
studies showed that hypothermic levels ranging from 
30°C to 34°C were effective in improving a variety 
of clinically relevant outcomes.[8,30,32] However, in 
terms of the potential use of systemic hypothermia 
in TBI patients, it was determined that reducing core 
temperature to levels below 33° could potentially 
increase the frequency of risk factors, including changes 
in clotting factors, increased incidence of pneumonia 
and cardiac arrhythmias as well as reducing heart rate 
or blood pressure.[78] Thus, in clinical studies including 
cardiac arrest, TBI, and spinal cord injury (SCI), levels 
of systemic hypothermia ranging from 33°C to 36°C 
have been commonly utilized.[49,56,78] An important 
question remains whether lower levels of hypothermia 
might be more protective in the experimental or clinical 
setting under certain situations. This question is being 
currently addressed by utilizing more selective or 
focal‑cooling strategies with new cooling devices.[79‑81] 
Interestingly, a recent clinical study of severe TBI 

Figure 2: Clinical trials assessing the effects of hypothermia on neurological outcome in patients with traumatic brain injury and intracranial hypertension. Reprinted 
from The Lancet, Vol 371, Polderman KH, Induced hypothermia and fever control for prevention and treatment of neurological injuries, pages 1955-1969, 2008, with 

permission from Elsevier
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patients reported that metabolic‑targeted hypothermia 
treatment reduced metabolic rate to 50%–60% in 
contrast to testing a predetermined temperature target 
which would significantly reduce mortality.[82]

Recent findings, specifically from the cardiac arrest 
field, have suggested that possibly more mild levels of 
hypothermia may be just as effective as moderate‑cooling 
strategies.[83] For example, in the recent 33 versus 36 cardiac 
arrest study, Nielsen et  al. reported that a postcardiac 
arrest patient population that was cooled to either 33°C 
or 36°C both showed similar behavioral outcomes.[83] This 
study emphasized that moderate levels of hypothermia 
previously reported to significantly improve outcomes 
after cardiac arrest may not be necessary to promote 
protection.[84‑86] Several issues have subsequently been 
raised in the literature regarding this well‑conducted 
multicenter cardiac arrest trial, including a significant 
delay in the initiation of cooling, the lack of consistently 
reaching cooling levels in the 33°C group, and a relatively 
rapid rewarming phase.[87,88] Thus, there is a continued 
need to consider optimal cooling levels and whether 
specific patient populations may benefit from specific 
levels of cooling depending on their condition and 
injury severity. Because TBI is also a very heterogeneous 
patient population, it will be important in future studies 
to develop diagnostic strategies including imaging and 
surrogate protein biomarker approaches to better select 
appropriate patients and to monitor temperature‑sensitive 
injury cascades.[89,90] Such an approach would allow 
physicians to vary therapeutic treatments based on an 
individual’s specific status. Furthermore, because many 
patients have focal lesions that can be identified with 
high‑resolution computed tomography or magnetic 
resonance imaging, it might be important in future 
investigations to consider more focal‑cooling strategies 
for these patients.[80,91] This strategy would permit 
more profound levels of cooling to be utilized, thereby 
potentially producing more neuroprotective efficacy with 
reduced risk factors associated with cooling.

Therapeutic Window

One of the most important factors on whether a therapy 
can be successfully translated to the clinic is whether the 
delayed initiation of the therapy remains significantly 
protective in a preclinical study.[92] In the previous brain 
injury studies, investigators have administered treatments 
relatively early after the insult to evaluate the effects of 
new treatments on specific pathomechanisms as well as 
structural or behavioral outcomes.[29,30,32,35,93,94] In contrast, 
many of these studies have not included a systematic 
examination of whether a delayed treatment protocol 
remains effective several hours after injury. This is a critical 
factor when thinking about clinical translation since many 
TBI patients may not be brought into the emergency room 

or assessed by a clinician until hours after the primary 
insult. If a treatment can only work when administered 
before or at early postinjury periods, it may be difficult 
to translate that treatment protocol to the clinical arena.

In the area of therapeutic hypothermia, Markgraf 
et  al. first evaluated the therapeutic window for 
therapeutic hypothermia after experimental TBI.[33] 
That study reported that significant beneficial effects 
of moderate hypothermia were seen when treatment 
was initiated as late as 90 min.[33] However, if cooling 
was initiated after that period of time, there was a lack 
of benefit in terms of behavioral outcomes. In contrast, 
other subsequent studies have reported that systemic 
hypothermia remains effective even when it is delayed 
up to 3–4 h after injury.[92] Importantly, the therapeutic 
window of hypothermia appears to be based on several 
factors including level of hypothermia, injury severity, 
specific injury model utilized, and whether the trauma 
is focal or diffuse. Nevertheless, in the clinic, cooling 
strategies are generally initiated as soon as possible to 
target early occurring secondary injury mechanisms.

One challenge for early cooling is the lack of safe and 
established strategies for rapid cooling. In some studies, 
the infusion of cold saline has been used to reduce core 
temperature in a rapid fashion.[95] Importantly, recent 
technological advances in the development of effective 
intravascular, surface, and other cooling approaches 
have reduced the delay in reaching hypothermia 
temperature targets.[96‑99]

Duration of Cooling

Many early preclinical studies tested the beneficial effects 
of posttraumatic hypothermia using relatively restricted 
periods of cooling.[29,30,32,35,100‑102] In early studies of TBI, 
for example, many published studies reported positive 
effects with relatively restricted duration.[29,30,32,35,76] 
Interestingly, studies from the transient and focal 
cerebral ischemia field have reported that restricted 
periods of cooling may only transiently protect against 
ischemic brain injury.[103‑105] In a recent TBI study, Lu 
et al. demonstrated the beneficial effects of an extended 
period of selective brain cooling in a model of penetrating 
ballistic‑brain injury. These and other observations 
have led to investigations to determine the optimal 
periods of cooling required to produce permanent 
benefits including clinically meaningful neurological 
improvements.[106] In previous hypothermia studies, 
TBI patients have also been cooled using a variety of 
durations ranging from 24 h up to several days after 
trauma.[46,57,69,70,107‑109]

When considering the importance of cooling duration 
on traumatic outcome, one should also consider what 
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secondary injury mechanisms are being targeted by the 
cooling protocol.[24,36,38,43,44,75,110‑113] Previous studies have 
reported that hypothermia can influence a number of 
injury mechanisms that are active at variable periods 
during the posttraumatic period.[114] In this regard, 
injury mechanisms such as free radical formation and 
excitotoxicity are active fairly early after injury. In 
contrast, other important secondary mechanisms such 
as apoptotic cell death and inflammatory processes 
may be more delayed but remain active for days 
after injury. In terms of acute pathophysiological 
mechanisms, hypothermia initiated early after the insult 
and continued during the time when secondary injury 
mechanisms are active in the patient should therefore 
be considered.[21,27,31,75,115] Thus, early cooling continued 
for up to several days after injury may be necessary to 
successfully target these injury cascades.

A second mechanism that is considered to be an 
important therapeutic target for TBI is the elevations in 
ICP.[6,48,49,70,71,107,108,116‑118] Many patients after moderate or 
severe TBI or other types of brain injury experience focal 
or diffuse brain swelling that can lead to increases in ICP 
that can be life threatening.[6,7,107] The temporal pattern of 
ICP elevations can also be highly variable from patient 
to patient.[48] Thus, it is important when developing a 
clinical hypothermia protocol to consider cooling or 
targeted temperature management being on board before 
or rapidly initiated when ICP elevations occur.[116,119,120] 
Because early secondary injury mechanisms and delayed 
increases in ICP can each significantly affect patient 
outcomes, an optimal approach for the use of therapeutic 
hypothermia may be initiating cooling strategies as early 
as possible and extending them through the period of 
elevated ICP.[56,58,68,116,118,121]

In this regard, several clinical studies have used early 
cooling protocols that were only sustained for a 24‑ or 48‑h 
period and therefore may not have extended to the period 
of increased ICP.[58,70,78] Some clinical studies that have 
utilized early and more prolonged cooling strategies have 
reported improvements in neurological outcomes.[122,123] 
In the study by Jiang et al., for example, extending the 
cooling period up to 5  days was reported to provide 
better neurological outcomes compared to a 2‑day cooling 
protocol.[122] Further, in a recent multicenter clinical trial 
where hypothermic treatment was delayed and only 
restricted to the period of ICP elevation, no long‑term 
benefits on neurological outcomes were reported 
although ICP elevations appeared to be successfully 
managed with the targeted cooling treatment.[108,113]

Rewarming Phase

Following a period of extended hypothermia, another 
important factor to maximize the benefits of cooling is 

using a relatively slow and controlled rewarming protocol.
[8,124,125] Rapid‑rewarming strategies, especially following 
a prolonged period of cooling, have been reported not to 
be optimal in terms of improving long‑term outcome.[126] 
A study by Suehiro et al. reported that a slow‑progressive 
cooling approach compared to rapid cooling was more 
effective in protecting against traumatically induced 
axonal damage commonly reported in experimental 
models of TBI.[127] In another study that assessed a 
complicated model of TBI that included FPI combined 
with secondary hypoxia, slow but not rapid rewarming 
again produced the best effect in terms of behavioral 
outcomes.[34] Impairments in cerebral vascular reactivity 
have been reported in TBI patients after rewarming from 
therapeutic hypothermia, leading to increased neuronal 
vulnerability.[125] Although underlying mechanisms are 
not known, inadvertent cerebral hyperthermia has been 
suggested in some situations.[128]

Based on these preclinical findings, recent clinical studies 
have developed established protocols for conducting 
therapeutic hypothermia in patients combined with 
a slow and controlled rewarming phase.[121,129] In one 
clinical study that used therapeutic hypothermia to 
target severe SCI, for example, Levi et al. after 2 days of 
systematic therapeutic hypothermia (33°) used a protocol 
that included the slow normalization of core temperature 
over a 24‑h period.[129] In that study, induction of 
hypothermia combined with such a rewarming phase 
led to improved neurological function in cervical SCI 
patients at 1  year after injury compared to historical 
data. In a recent TBI trial for hypothermia, prolonged 
mild  (33°C) combined with slow rewarming was also 
used with encouraging results.[121]

In operating room settings, slow rewarming after 
a surgical procedure may not be consistent with 
normal‑operating procedures that commonly necessitate 
high throughput. Rapid rewarming, especially after a 
prolonged period of hypothermia, may stress vulnerable 
tissues leading to the aggravation of secondary 
injury mechanisms, including brain edema and other 
detrimental consequences.[8,130,131] Further, it is important 
to emphasize that a rapid‑rewarming protocol can lead 
to temperature overshoots and periods of posttreatment 
hyperthermia which also may be detrimental to 
long‑term outcomes, especially when associated with an 
extended hypothermia treatment protocol.[88,128]

Gender

A shortcoming of many preclinical studies is that 
only one gender is used to investigate traumatic 
pathomechanisms or new therapeutic interventions.[132,133] 
In the area of TBI, for example, the majority of preclinical 
studies have been restricted to only male animals for a 
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number of stated or unstated reasons. However, in the 
clinical arena, it is clear that both sexes have TBIs and 
any sex‑specific differences in the pathophysiology or 
potential treatment effects should be first evaluated 
before clinical translation.[3,134‑136]

Previous investigations have reported gender differences 
that may be important when attempting to translate 
new therapies to the clinic.[137‑139] Early studies by Roof 
et  al. showed that sex hormones including estrogen 
and progesterone were neuroprotective after TBI and 
therefore important when considering gender‑specific 
differences in traumatic vulnerability.[139] In those 
and other studies, the removal of the ovaries before 
producing a TBI enhanced the vulnerability of the 
female brain, leading to increased contusion volumes 
and behavioral deficits compared to intact animals.[132,133] 
Bramlett et al. directly compared the effects of moderate 
FPI in both male and female rats and reported that female 
rats displayed smaller contusion volumes compared 
to males.[132] In addition, removing the ovaries several 
days before TBI increased tissue vulnerability, resulting 
in similar contusion volumes between both male and 
ovariectomized female rats. Together, these studies 
emphasize the importance of sex hormones in the 
pathophysiology of TBI and the potential benefits of 
hormonal treatments on neurological disorders such as 
stroke. These types of preclinical studies have also led 
to clinical trials where progesterone and other hormonal 
treatments have been tested after severe TBI.[140,141]

In terms of injury mechanisms, recent preclinical 
studies have emphasized gender differences in specific 
pathophysiological events following TBI.[137,138,142] In 
a recent study, for example, Villapol et  al. reported 
significant differences in the neuroinflammatory 
response to TBI in male versus female rats.[142] In 
those studies, male rats were reported to show a more 
aggressive inflammatory response compared to female 
rats after TBI. The importance of gender in the effects 
of temperature modifications after brain injury has 
also been emphasized.[138,143‑145] For example, in a model 
of neonatal hypoxia‑ischemia, Smith et  al. reported 
that the beneficial effect of therapeutic hypothermia 
differed between male and female.[145] In a TBI study, 
posttraumatic hypothermia was also reported to protect 
males but not intact females after moderate FPI.[138] 
However, ovariectomized females showed increased 
contusion volumes that were comparable to males 
and were protected by posttraumatic hypothermia. 
In contrast to hypothermia, other studies have shown 
that ovariectomized female rats are more affected by 
posttraumatic hyperthermia than intact female rats. In 
a study by Suzuki et  al., posttraumatic hyperthermia 
in ovariectomized female rats resulted in a dramatic 
increase in diffuse axonal injury compared to intact 

females.[137] These preclinical findings are important as we 
continue to develop novel therapeutic agents and clinical 
protocols for the future TBI trials, where neuroprotective 
or reparative strategies are tested. It will be important to 
recruit adequate numbers of male and female patients 
in clinical trials to clarify the importance of sex in the 
therapeutic efficacy of experimental treatments.

Heterogeneity of Traumatic Brain Injury 
Patient Population

One of the major challenges in conducting clinical trials for 
severe TBI as well as other neurological disorders is the 
heterogeneity of the patient population.[57,146,147] Different 
types of TBI commonly occur in the general population, 
which include focal, diffuse, as well as a combination of 
both types of injuries. In addition, many severe TBI patients 
can experience multiorgan injury that may also complicate 
treatment approaches. The acute severity and duration of 
clinical consequences after a brain injury can also be highly 
variable in patients undergoing mTBI or concussive insults. 
This potential heterogeneity therefore has to be taken into 
account when developing clinical trial protocols to test a 
new therapeutic treatment in TBI patients. For example, 
the temporal or regional profile of inflammatory cascades 
would be expected to significantly vary between patients 
with different degrees of pathological damage while 
exhibiting similar early neurological score assessments. 
Precision or specialized medical approaches are now 
being used to potentially reduce patient heterogeneity and 
improve treatment outcomes.

An important area of the current clinical research is the 
development of minimally invasive surrogate biomarkers 
including imaging and protein biomarkers which may 
help identify subsets of patients who may most benefit 
from a particular treatment.[148‑151] In this regard, failure of 
previous stroke and TBI clinical trials have been suggested 
to be the result of enrolling highly heterogeneous patient 
populations. To respond to this apparent shortcoming 
in clinical trial design, studies are now utilizing more 
restricted inclusion and exclusion criteria to help recruit 
a more homogenous patient population. It is anticipated 
that such an approach may lead to a more successful 
translation of preclinical findings to the clinic.

Posttraumatic Hyperthermia

Periods of hyperthermia occur in a large number of stroke 
and trauma patients hours to days after the primary 
insult.[12,47,152‑158] Importantly, preclinical and clinical 
studies have concluded that periods of posttraumatic 
hyperthermia may worsen outcome by aggravating 
secondary injury mechanisms, leading to increases in 
contusion volume, diffuse axonal injury, and ICP.[159,160] 
In an early preclinical study, Dietrich and Bramlett 
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reported that an induced period of posttraumatic 
hyperthermia 24 h after TBI worsened histopathological 
damage and aggravated behavioral deficits compared 
to normothermic animals.[161] Similar to therapeutic 
hypothermia, periods of posttraumatic hyperthermia 
target multiple secondary injury mechanisms that are 
thought to contribute to the long‑term consequences of 
TBI.[20,153] For example, published studies have reported 
that hyperthermia following brain injury aggravates 
patterns of excitotoxicity, free radical generation, apoptotic 
cell death, as well as a variety of inflammatory cascades. In 
terms of inflammation, Chatzipanteli et al. reported that an 
induced period of posttraumatic hyperthermia increased 
polymorphonuclear leukocyte extravasation into the 
vulnerable brain tissue associated with increases in 
tissue levels of pro‑inflammatory cytokines.[27] These and 
other studies have led to the use of targeted temperature 
management protocols to inhibit periods of hyperthermia 
that are commonly observed in many TBI patients. In a 
recent clinical TBI study, Hifumi et al. reported that fever 
control management was preferable to mild hypothermia 
in reducing TBI‑related mortality.[162] Indeed, targeted 
temperature management protocols are used in many 
clinical situations to reduce the incidence of hyperthermia 
in Intensive Care Unit patients following brain and SCI 
and to maintain normothermic conditions.

Most recently, the importance of brain hyperthermia in 
models of mTBI or concussion has also been reported.[163‑165] 
Sakurai et  al. first demonstrated that increasing brain 
temperature to 39°C at the time of impact and continued 
for 4 h significantly increased histopathological damage 
compared to normothermic mTBI animals.[164] In a 

Figure 3: Effects of temperature manipulations on water maze performance. 
Analysis of escape latency on day 4 of testing 2 weeks postinjury. Hyperthermic 

mild traumatic brain injury animals had significantly longer escape latencies 
as compared to sham animals or hyperthermic/normothermic mild traumatic 

brain injury animals. *P < 0.05, one‑way ANOVA and Tukey’s post hoc analysis. 
Reprinted from Experimental Neurology, Vol 263, Emergence of cognitive deficits 
afer mild traumatic brain injury due to hyperthermia, pages 254-262, 2015, with 

permission from Elsevier

subsequent study, Titus et al. using a similar experimental 
protocol reported that hyperthermic mTBI led to the 
emergence of long‑term cognitive problems which are 
not present in animals that underwent normothermic 
mTBI [Figure 3].[163] These studies are important because 
many individuals prone to concussion such as athletes 
or military personnel frequently undergo strenuous 
activities such as sports‑related events or stressful 
activities that can lead to increased core and brain 
temperature. Indeed, a variety of clinical studies have 
been reported that individuals exercising specifically in 
warm climates can demonstrate significant elevations 
in jugular blood temperature above 39°C.[166‑168] These 
studies emphasize that brain temperature at the time 
of a relatively mild impact may vary from individual 
to individual and potentially participate in the severity 
of functional consequences including postconcussive 
syndromes. Recent studies have reported that elevated 
mild hyperthermic mTBI significantly aggravates 
neuroinflammatory and microvascular responses 
compared to normothermia.[165] In addition to more severe 
TBI injuries, mTBI or concussive insults may also require 
targeted temperature management strategies to minimize 
the detrimental effects of these more common types of 
milder insults to the brain.

Recent Clinical Trial Failure

Previous and more recent multicenter trials using 
pharmacological compounds or therapeutic hypothermia 

Figure 4: HPI 201‑induced hypothermia attenuates apoptosis. Activation of the 
apoptotic gene caspase‑3 was detected in the traumatic brain injury (a and b). At 
24 h posttraumatic brain injury, the caspase‑3 levels declined to the sham control 

levels in the HPI 201 group. There was also an observed significant increase of the 
antiapoptotic gene Bcl‑2 in HPI 201‑treated animals (c). #P < 0.05 versus sham; 
*P < 0.05 versus saline. Mean ± standard error of the mean n = 6–8 per group. 

Reprinted from Experimental Neurology, Vol 267, Gu X, Wei ZZ, Espinera A, Lee 
JH, Ji X, Dix TA, and Yu SP, Pharmacologically induced hypothermia attenuates 

traumatic brain injury in neonatal rats, Pages 135-142, 2015, with permission from 
Elsevier
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for severe TBI have failed to show efficacy in large 
numbers of patients.[11,14,15,56,57,69] Earlier clinical studies by 
Clifton and colleagues indicated that the early initiation 
of hypothermia as well as the patient population could 
be important factors in determining the benefits of 
hypothermia. Indeed, the heterogeneity of the TBI patient 
population has emphasized the importance of patient 
selection and recruitment in terms of demonstrating 
benefits from hypothermic therapy.[68,70]

Recently, a large multicenter trial that used cooling to 
target increases in ICP also failed to show functional 
benefits of therapeutic hypothermia.[108] In the Eurotherm 
3235 trial, the investigators sought to utilize hypothermia 
only when evidence of increased ICP occurred in the 
patients.[107,108] In this specific protocol, targeting early 
secondary pathophysiological mechanisms was therefore 
not included. Unfortunately, the clinical trial although 
showing a benefit in terms of attenuating ICP elevations 
did not demonstrate any long‑term improvements in 
neurological outcomes.[113] Mechanisms underlying 
the ultimate consequences of TBI are complicated and 
involve multiple injury cascades including early and 
later pathophysiological events.[6,147] It will therefore 
be important in the future to develop and test clinical 
protocols that include both early‑ and prolonged‑cooling 
strategies that extend past the period when ICP 
elevations remain present.[40,121]

Ongoing studies are also incorporating more extended 
periods of cooling that again may provide better 
outcomes in specific patient populations.[40,121] A recent 
study in Japan will be utilizing an extended‑cooling 
strategy that includes both early and prolonged cooling. 
This trial will therefore target a variety of injury 
processes at extended posttraumatic periods and may 
therefore have the best chance of providing long‑term 
outcomes.[40]

A recent development in terms of clinical trials using 
therapeutic hypothermia for TBI is the HOPES trial.[45,169] 
This trial is currently recruiting severe TBI patients from 
several institutions within the United States as well as 
Japan and China. Inclusion criteria include patients where 
early decompression surgery is required. The protocol 
involves early cooling with decompression surgery in 
severe TBI patients. The overall hypothesis is that cooling 
before the decompression surgery attenuates some of the 
detrimental effects of reperfusion injury that can occur 
when blood re‑enters the ischemic area. Reperfusion 
injury has been studied extensively in the heart and 
involves a variety of injury mechanisms including free 
radical generation, glutamate neurotoxicity, and other 
injury mechanisms.[45] Whether this particular targeted 
therapy in this specific TBI patient population will 
provide beneficial effects remains to be demonstrated.[170]

Pharmacologically Induced Hypothermia

In addition to physical strategies for local or focal 
hypothermia, new investigations are clarifying the 
potential for pharmacologically induced hypothermia 
to also benefit patients with cerebral ischemia or 
TBI.[171‑175] Various research groups have identified 
drugs or compounds that target mechanisms underlying 
temperature homeostasis which may allow for an efficient 
pharmacological approach for inducing hypothermia. 
For example, compounds that target adenosine A1 
receptors, opioid receptors, transient receptor potential 
(TRP) channels, and dopamine receptors have been 
reported to produce hypothermia.[176‑178] In neonatal rats, 
Gu et al. reported that the neurotensin receptor agonist 
HPI 201‑induced hypothermia reduced neuronal damage 
and blood–brain barrier in a pediatric model of TBI 
[Figure 4].[172] Alterations in the hypothermia regulatory 
set point or peripheral temperature sensitive channels 
are among the mechanisms underlying pharmacological 
hypothermia.[179‑181] An exciting future direction therefore 
could be the use of therapeutic hypothermia‑inducing 
drugs in combination with passive‑cooling strategies. 
This new approach could enhance the benefits of 
hypothermia in terms of accelerating the hypothermic 
phase and maximize neuroprotective benefits.

Summary

Although therapeutic hypothermia remains one of the 
most potent neuroprotective strategies investigated to 
date, it is clear from the current literature that there remain 
many challenges for successfully utilizing therapeutic 
hypothermia in severe TBI patients.[65] Only through the 
continued translation of supportive preclinical data to 
the clinic will important advancements be made in this 
exciting field. Controlled, hypothesis‑driven approaches 
are required to treat TBI patients with specialized targeted 
temperature management protocols that have a chance 
of improving outcomes. The potential use of therapeutic 
hypothermia in combination with FDA‑approved 
therapeutic drugs also represents an exciting direction 
for continued research. The combination of therapeutic 
hypothermic and targeted temperature management 
approaches with pharmacotherapy to protect or 
repair the injured nervous system may lead to true 
improvements in long‑term outcomes in this important 
clinical condition.
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