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Summary

Microalgae as a biofuel source are of great interest.
Bacterial phycosphere inhabitants of algal cultures
are hypothesized to contribute to productivity. In this
study, the bacterial composition of the Chlorella
sorokiniana phycosphere was determined over sev-
eral production cycles in different growing seasons
by 16S rRNA gene sequencing and identification.
The diversity of the phycosphere increased with time
during each individual reactor run, based on Faith’s
phylogenetic diversity metric versus days post-inoc-
ulation (R = 0.66, P < 0.001). During summer months,
Vampirovibrio chlorellavorus, an obligate predatory
bacterium, was prevalent. Bacterial sequences
assigned to the Rhizobiales, Betaproteobacteriales
and Chitinophagales were positively associated with
algal biomass productivity. Applications of the gen-
eral biocide, benzalkonium chloride, to a subset of
experiments intended to abate V. chlorellavorus
appeared to temporarily suppress phycosphere bac-
terial growth, however, there was no relationship
between those bacterial taxa suppressed by benza-
lkonium chloride and their association with algal pro-
ductivity, based on multinomial model correlations.
Algal health was approximated using a model-based

metric, or the ‘Health Index’ that indicated a robust,
positive relationship between C. sorokiniana fitness
and presence of members belonging to the
Burholderiaceae and Allorhizobium–Neorhizobium–

Pararhizobium–Rhizobium clade. Bacterial commu-
nity composition was linked to the efficiency of
microalgal biomass production and algal health.

Introduction

Liquid biofuel has shown great potential to replace a
large portion of the global demand for portable energy
sources by capturing atmospheric carbon through the
process of photosynthesis (Hu et al., 2008). Many green
microalgae strains can be readily cultivated for biomass
feedstock production (Richmond, 2004). As single-celled
organisms, they are more efficient than their more com-
plex terrestrial plant relatives (Metting, 1996). While
bioethanol crops have been shown to compete with
essential food crops by utilizing precious arable land
resources (Wigmosta et al., 2011), algae can be grown
on marginal lands, achieve high rates of growth, and
produce high energy density with some species capable
of accumulating as much as 80% of their total biomass
as lipids (Hu et al., 2008; Singh et al., 2011). Large
amounts of biomass are required to make microalgal bio-
fuel programmes economically feasible, making open
outdoor reactors among the most cost-effective growth
systems, despite certain disadvantages, compared to
closed and/or indoor reactors (Jorquera et al., 2010).
Open systems also provide excellent platforms for
research and discovery because they are exposed to a
wide spectrum of abiotic and biotic environmental param-
eters, of which at least a subset is thought to contribute
favourably to algal growth.
Several locations in the southwest region of the United

States were strategically selected as United States
Department of Energy (DOE) testbed sites to evaluate
the economic feasibility of biomass production based on
factors such as abundant sunlight, heat and predicted
maximum growth rates (Wigmosta et al., 2011). In previ-
ous studies, a field isolate of the green microalgae,
Chlorella sorokiniana (Shihira and Krauss, 1965)
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designated DOE strain 1412 (Neofotis et al., 2016),
exhibited a maximum specific growth rate of 5.9 day�1

at 36°C, with significant lipid accumulation (Huesemann
et al., 2016). As a result, DOE 1412 was prioritized as a
primary high-temperature test strain for outdoor produc-
tion, including at the DOE Regional Algal Feedstock
Testbed (RAFT) site, The University of Arizona, Tucson,
AZ, where temperatures commonly exceed 33°C during
the summer months. During a three-year period from
2015 to 2018, the RAFT project conducted cultivation tri-
als under different seasonal, environmental and opera-
tional conditions, including a general biocide treatment to
ameliorate the effects of a persistent predatory bacterial
pathogen of DOE 1412. (Park et al., 2018; Steichen and
Brown, 2019). The overall aim of RAFT was to optimize
the productivity of selected microalgal strains in arid
regions through interdisciplinary approaches including
engineering, modelling and biological sciences (Ogden
et al., 2019).
Microalgae are known to associate with microorganisms

in natural and artificial environments. Prokaryotic bacteria
typically represent the most abundant and impactful of
these associations (Cole, 1982; Seymour et al., 2017).
While axenic cultures of algae are desirable for certain
research and industrial applications (Vu et al., 2018),
large-scale biomass production systems harbour bacteria
naturally and may encounter bacterial invasions. Previous
studies of mass-cultured microalgae recognized that
algal-bacterial associations were generally ubiquitous, but
considered their contributions to algal growth to be benign
or negative (Myers et al., 1951; Krauss and Thomas,
1954). Recent studies have established that complex
community dynamics occur between algae and bacteria,
and span a range of different ecological relationships
(Seymour et al., 2017). Based on these observations, the
‘phycosphere concept’ has been proposed, as a corollary
to the previously recognized ‘plant rhizosphere’, given
robust evidence that bacteria respond chemotactically to
algae exudates, thereby defining a zone of algal–bacterial
interactions (Bell and Mitchell, 1972). The most commonly
detectable phycosphere members are often microbial
algal pathogens that cause losses in biomass, which is a
quantifiable phenotype. Algae in ecosystems from natural
marine environments to biomass production facilities
encounter indirect growth inhibition and even direct lysis
by amoeba, bacteria, fungi, oomycetes and viruses (May-
ali and Azam, 2004; Gachon et al., 2010; Wang et al.,
2010; Carney and Lane, 2014; Carney et al., 2014). Pro-
duction cultures of the DOE 1412 strain of C. sorokiniana
used in the studies reported here, and other Chlorella spe-
cies, have been reported to collapse following attack by
the predatory gram-negative cyanobacterium, Vam-
pirovibrio chlorellavorus (Gromov and Mamkaeva, 1972;
Ganuza et al., 2016; Park et al., 2018; Steichen and

Brown, 2019). Alternatively, microbes exist as mutualist
symbionts with higher plants, often promoting plant health
and contributing to growth and reproduction (Lugtenberg
and Kamilova, 2009; Nadeem et al., 2014). Analogous
observations have been reported for microalgal species,
including C. sorokiniana, which showed significantly
higher growth rates in the presence of the diazotrophic,
indole-3-acetic acid producing Azospirillum brasilense
and Bacillus pumilus bacteria (Amavizca et al., 2017), and
certain naturally co-occurring fungi (Watanabe et al.,
2005). Importantly, microbiome interactions with host phe-
notypes are often best modelled using abundances of
multiple species rather than individual taxon, highlighting
the interconnected nature of most biological systems (Sze
and Schloss, 2018).
Understanding the contributions of individual taxa and

networks of interactions with algae within the phycosphere
requires the ability to detect the predominant as well as
the less abundant types of microbes. Traditional methods
of culturing microbes have been shown to identify as few
as 1% of total microbial diversity (Stewart, 2012). The use
of culture-independent sequencing of microbial DNA has
become a routine technique, relying on conserved regions
in the microbial genome. The 16S ribosomal RNA gene is
one of the most commonly used molecular markers to dis-
tinguish organisms (Woese, 1987) with ~ 1% sequence
divergence indicating different bacterial species (Edgar,
2018). Additional approaches have been developed to
facilitate the detection of the most abundant and more rare
bacterial species in samples by high-throughput sequenc-
ing of the 16S rRNA gene amplicons, making it possible to
determine tens of thousands of individual sequence frag-
ments in a sample (Caporaso et al., 2012). Initially, only
clustering of sequences representing the different taxa
into groups was feasible, based on sequence similarity
and referred to as operational taxonomic units (OTUs).
However, advancements in computing power and algo-
rithms have permitted the differentiation of individual
amplicon sequence variants (ASVs), enabling the detec-
tion of maximum ‘signals’ within a data set (Callahan
et al., 2017; Edgar, 2018).
The parameters recorded and evaluated in this study

were pH, algal density, dissolved oxygen, algal growth
rate, temperature, precipitation, solar radiation and wind
speed. All the parameters were measured and archived
for each cultivation cycle of C. sorokiniana 1412 in the
RAFT reactors. The resultant data were analysed to iden-
tify the most relevant parameters or factors influencing the
composition of the C. sorokiniana phycosphere, with an
emphasis on the spatial and temporal patterns in the
microbiome community over two consecutive growth sea-
sons. The objective was to parse the microbiome commu-
nity into groups and identify those having the greatest
influence on DOE 1412 health, growth and biomass
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productivity. Two different sets of experiments were
designed and used for determining the composition of
bacteria associated with the phycosphere community. The
first experimental studies, R41 and R42, were used to
conduct replicated, longitudinal analysis of the reactor cul-
ture, with twice daily sampling and was used to establish
the composition of the ‘baseline phycosphere community’
under optimal growth conditions. The second set of exper-
iments, R10 through R27 (Table S1), were conducted
over two growing seasons in paddlewheel and ARID reac-
tors and were sampled every other day to determine the
microbiome community composition based on analysis of
16S rRNA gene sequences, for a cross section of RAFT
cultures. The goal of the study was to identify patterns
potentially linked to different environmental conditions,
including those predicted by modelling to contribute most
to algal growth and biomass productivity.

Results

Baseline community structure analysis

The typical development of bacterial phycosphere com-
munities in outdoor DOE1412 cultures was established

by analysing the 16S rRNA gene content of samples col-
lected twice daily from paddlewheel reactors operated
under standard practices established during the RAFT
project. The growth curves of the two benzalkonium-trea-
ted experiments, R41 and R42, were similar to each
other and showed high growth rates than the untreated
experiments. The variance of the observations of biologi-
cal replicates within the experiments was highest during
the death phase (Fig. 1). Average temperatures of out-
door cultures declined during subsequent experiments
while pH was continuously held near 8 by carbon dioxide
injections (Table S1). The diversity of phycosphere bac-
teria increased with time, post-inoculation, irrespective of
benzalkonium chloride treatment (R = 0.66, P < 0.001)
or not (R = 0.47, P < 0.001; Fig. S1).
The phycosphere samples collected during baseline

experiments were grouped into six clusters based on the
similarity of their ASV frequencies using a Dirichlet multi-
nomial mixture (DMM) modelling approach with lowest
Laplace approximation (Fig. S2; Holmes et al., 2012).
The clusters show a correspondence to the amount of
time culture samples were exposed to outdoor cultivation
(Fig. 2). Cluster 1 through 4 represented distinct phases

Fig. 1. Growth of RAFT baseline experiment cultures. Each line depicts the mean ash-free dry weight (g l�1) concentrations for each duplicate
run. Error bars represent standard deviation (n = 2). Benzalkonium chloride treatments were applied to R41 and R42 cultures.
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of phycosphere development as indicated by samples
collected on consecutive days from the same reactor
transitioning across these clusters over the course of
cultivation (Fig. 2). All the samples in clusters 5 and 6
were collected during experiment R45, which also
demonstrated the most distinctly different growth pattern
from the other replicates (Fig. 1). The samples in clus-
ters 1 and 2 corresponded with the early algal growth
phase, while clusters 3 and 4 consisted of samples col-
lected after day 6, when the culture algal cell densities
began to decline. Thus, the changes in algal growth pat-
tern appeared to be correlated with the composition of
bacteria in the phycosphere.
The predominant phyla represented in phycosphere

samples were identified as members of the Bacteroide-
tes and Proteobacteria, comprising 42% and 40% of the
total 16S rRNA gene sequences, respectively. The most
abundant ASV was identified as the genus, Vampirovib-
rio. The most commonly occurring sequence variant
among those classified within the Vampirovibrio matched
the full-length Vampirovibrio chlorellavorus 16S rRNA
gene sequence, at 100% nucleotide identity, previously
determined from the RAFT outdoor reactor samples
associated with decline of the C. sorokiniana cultures
(Park et al., 2018; Steichen and Brown, 2019). Samples
collected during times corresponding to algal culture
decline (Fig. 1) were grouped together into DMM clus-
ters 3 and 4, which were comprised of average relative
frequencies of V. chlorellavorus at 46% and 11%,
respectively (Fig. 3). Conversely, clusters 1 and 2, which

corresponded to algal growth phase, were typified by rel-
atively higher proportions of bacteria from the Rhein-
heimera, Pseudomonas, Massilia and Bacillus compared
to those samples collected from dying cultures.

Bacterial correlations with phycosphere variables during
two growing seasons

Associations between bacterial phycosphere composition
and algal culture growth parameters were identified by
examining 16S rRNA gene data from samples collected
during the baseline experiments together with a broad
collection from cultures grown during seasons of optimal
daytime growth temperatures (~ 25–35°C) for C. sorokini-
ana DOE 1412 (Fig. S3). Consistently observed patterns
of phycosphere membership across this larger data set
represented the most robust interactions that persisted
through all the variant environmental conditions that
would be encountered during long-term cultivation efforts
in the Southwestern United States. Bacterial ASV corre-
lations with algal concentration, measured by ash-free
dry weight (AFDW), showed more variation than correla-
tions with the other seven parameters in a multinomial
regression model (Fig. S4). However, AFDW is an
instantaneous measurement that is not indicative of algal
population growth rate as can be seen when compared
to the concentration of oxygen in the media, which is the
direct result of active respiration by algae cells. Biomass
productivity is a measurement of the change in algal
concentration over time, providing a better reflection of

Fig. 2. DMM cluster group together based on cultivation time in the outdoor RAFT reactor. Circles are coloured by their DMM cluster assign-
ment and sizes are scaled by the number of samples collected at the same time point for the same DMM cluster. Number of samples collected
from each of the same reactors on the subsequent day is indicated by vector lines between the DMM clusters.
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cell division or loss as indicated by its close correlation
to dissolved oxygen (Fig. S5). Bacterial ASVs correlated
with biomass productivity were assigned predominantly
to the orders Rhizobiales, Betaproteobacteriales and
Chitinophagales (Fig. S6). The Rhizobiales and Betapro-
teobacteriales demonstrated a positive relationship with
algal biomass productivity relative to the known C.
sorokiniana pathogen, Vampirovibrio chlorellavorus.
These relationships were defined primarily by samples
collected from declining algal cultures, indicating that a
negative log ratio of either of these orders to Vampirovibri-
onales was consistently associated with algal culture
crash (Fig. S7). The frequencies of representatives in the
order, Bacillales and order, Pseudomonadales were found
to be negatively correlated with days after inoculation of
the algal cultures outdoors (Fig. S8), in agreement with

the developmental patterns identified by DMM cluster
analysis of the baseline experiments (Fig. 3).
Bacterial ASVs assigned to taxa with previously

reported relationships to algal growth as well as patterns
uncovered during the present study were further investi-
gated by comparing their changing relative abundances
across measured biomass productivities in reference to
an ASV (6e9594a6005cc8cede0ca7532ff77bfa) assigned
to the Sphingobacteriaceae family (Fig. S9). This
sequence was selected due to its observed ubiquity in
the data set, representing 6.2% of all sequence reads
and being detected in 81.0% of samples collected. The
ASV was also not significantly correlated with biomass
productivity by multinomial model analysis, with a differ-
ential of �0.06 near the middle of the distribution for the
measure (Table S2). During the RAFT experiments, the

Fig. 3. DMM clustering of RAFT baseline experiment 16S ribosomal RNA gene sequence (n = 165). The heatmap shows the relative abun-
dance of the 25 most common genera identified for each sample. Columns represent samples, which are grouped by the respective DMM
cluster. Rows are labelled based on genus-level identification, or by family-level identification when classification was uncertain, with the
corresponding phyla annotation indicated by the differently coloured columns.
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orders Rhodobacterales and Vampirovibrionales were
both negatively correlated with biomass productivity
according to multinomial modelling results (Table S2)
and the pattern was further supported by linear regres-
sion (Fig. S9b and d). Burkholderiaceae ASV
(21c587e98537024a404d6f041c0fb693) and an ASV
matching to the previously described algae growth-pro-
moting Rhizobium sp. (Kim et al., 2014) were selected
as examples of possible algal mutualist in the RAFT
experiments, but failed to produce significant linear cor-
relations with biomass productivity (Fig. S9a and c).
The most significant relationships between bacterial

ASVs and the weather variables; precipitation, solar radia-
tion and wind speed were generally negative, as indicated
by the distributions of outliers in Figure S4. During the rel-
atively rare periods of precipitation at the study site, the
most depleted bacterial orders in the phycosphere sam-
ples included Betaproteobacteriales, Chitinophagales and
Sphingomonadles that together accounted for 11 of the 22
statistical outliers in the multinomial model (Table S2).
Those statistical outliers of bacteria associated with wind

speed were distributed among 18 different taxonomic
orders, with the Rhizobiales being the most commonly
depleted during high winds, with five ASVs of the order
among the statistical outliers. The extreme solar radiation
experienced at the test site was linked negatively with a
variety of bacterial taxonomies, but most commonly with
the orders Betaproteobacteriales, Chitinophagales and
Rhizobiales (Table S2).

Biocide treatments were consistently associated with
changes in bacterial phycosphere composition

Benzalkonium chloride (BAC) was applied to treat infec-
tions of project cultures by Vampirovibrio chlorellavorus
bacteria. Applications of BAC reduced accumulation of
the pathogen and increased algal growth duration (Ste-
ichen and Brown, 2019). The bacterial phycospheres of
samples collected from treated cultures shared more
similarity to each other than to untreated culture phyco-
spheres in a principal coordinate analysis of their Jac-
card beta diversities (Fig. 4A). This observation was

Fig. 4. Changes in bacterial community structure associated with benzalkonium chloride treatments. The Jaccard distances between samples col-
lected during RAFT experiments (n = 476) are displayed in an (A) principal coordinate analysis (PCoA) plot with those collected following benzalko-
nium chloride treatment coloured blue and untreated samples coloured red. Samples collected during the baseline experiments are denoted by
spheres (n = 148) and survey experiments by cones (n = 328). Beta diversity comparisons between samples from Benzalkonium chloride-treated
cultures and untreated are displayed in (B) boxplots as the distance to the centroid of treated samples was determined to be significant by PERMA-
NOVA analysis (P = 0.001). The ASVs determined to be significantly differentially abundant between treatments by ANCOM analysis (n = 107) are
(C) plotted according to multinomial model differential values for biomass productivity and BAC treatment variables.
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supported by a significant difference between the sample
groups (P = 0.001) when tested by the PERMANOVA
method (Fig. 4B; Table S3). Among the total tested
ASVs (n = 914), 107 were determined to be present at
significantly different relative abundances between the
BAC-treated and BAC-untreated sample groups based
on an ANCOM statistical analysis. The majority of the
differentially abundant ASVs shared a negative associa-
tion with the BAC treatment (n = 65) according to their
multinomial model differential values, but these bacteria
did not show a strong correspondence to biomass pro-
ductivity (Fig. 4C).

Relationships between bacteria and algal culture health

During the replicated baseline experiments, algal culture
health was quantified by a Health Index (HI) metric,
which compared observed growth rates to simulated
growth rates calculated using a model that includes mini-
mal bacterial effects. More than 93% of the observed
growth rates were lower than their corresponding simu-
lated growth rate (Fig. S10a), meaning that greater HI
scores approaching zero were indicative of healthy

cultures approaching the predicted growth rate. The HI
was highest and most stable two to four days following
culture inoculation across the replicates (Fig. S10b) and
was most negative during sampling times with low or
negative observed growth rates (Fig. S10c). The nega-
tive HI values during the later time points corresponded
again with the declining algal cultures during the second
half of the baseline experiments. There were fewer over-
all ASVs significantly correlated with HI (Fig. S11) than
to biomass productivity, but their taxonomic assignments
were similar at the order level (Fig. S6). Correlations
between selected bacterial ASVs and HI were more sig-
nificant than either biomass productivity or AFDW
(Fig. S12). Bacterial ASVs from the Burkholderiaceae
family and Allorhizobium–Neorhizobium–Pararhizobium–

Rhizobium clade were positively correlated with HI with
reference to the ubiquitously distributed Hydrogeno-
phaga (Fig. 5A and B), lending further evidence to the
possibility of mutualistic promotion of algal growth by
these bacteria. The negative correlations of order, Vam-
pirovibrionales and Flavobacterium ASVs to HI demon-
strated that the metric identified previously known and
putative algal antagonists (Fig. 5C and D).

Fig. 5. Log ratio relationships of selected bacterial taxa to algal Health Index (HI). The log ratios of the relative abundance of (A) Burkholderi-
aceae, (B) Allorhizobium–Neorhizobium–Pararhizobium–Rhizobium (ANPR), (C) Vampirovibrionales and (D) Flavobacterium to Hydrogenophaga
for each sample are plotted by their corresponding algal HI measure. Lines and grey areas represent linear regression and 95% confidence
intervals, respectively, and R fitness and P significance values, based on Pearson’s correlation test.
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Discussion

Culture-independent methods have led to a deeper
appreciation of the microbes associated with the human
gut (Stewart et al., 2018), plant rhizosphere (Berendsen
et al., 2012) and various open or natural environments
(Thompson et al., 2017). The interpretation of 16S rRNA
gene sequence data relies on determination of true
sequence variants through the use of de-noising algo-
rithms followed by assignment to known taxonomic
groupings by comparison with sequences in curated
databases (Bokulich et al., 2018). Assemblages of
eubacterial and archaeal organisms (Parada et al.,
2016) in the phycosphere of experimental, outdoor open
algal production reactors (DOE-RAFT project DE-
EE0006269, The University of Arizona) were identified
by comparative analysis of the 16S rRNA gene
sequence. Environmental and experimental variables
were collected over more than two years of cultivation
and correlated with shifts in the bacterial community
structure. The associations between bacteria and
microalgal biomass productivity and of culture ‘health’
under a scenario of repeated rounds of infection of the
algal host by the predatory bacterial pathogen, V.
chlorellavorous, were investigated to help identify condi-
tions to guide optimization of biomass production in the
RAFT reactors. Results demonstrated that the commu-
nity was dynamic, complex and responsive to several
key environmental variables. While the approaches used
in this study were able to capture evidence of a fluctuat-
ing eubacterial composition associated with the
C. sorokiniana algal cultures, the specific mechanisms
guiding the observed biological fluxes are not yet known.
However, it was possible to apply available information
about certain closest bacterial relatives obtained from
previously studied phycosphere and rhizosphere sys-
tems to develop hypotheses for further testing.
The bacterial phycosphere composition changed

throughout the different cultivation cycles and over time,
with community diversity increasing (Fig. S1), while cer-
tain taxa became more or less prevalent than others
(Fig. 2). The fixation of gaseous nitrogen into bioavail-
able ammonium in exchange for organic carbon is one
of the most well-known reactions involving land plants
and rhizosphere-associated microorganisms (Berendsen
et al., 2012). An analogous phycosphere association has
been reported to occur in marine environments where
widely distributed prokaryotes that are associated with
their unicellular phytoplankton express the nifH nitroge-
nase gene, among other dynamic mutualistic contribu-
tions (Thompson et al., 2012). The order Rhizobiales,
which contains numerous nitrogen-fixing rhizosphere
symbionts, was overrepresented among ASVs signifi-
cantly associated with algal biomass productivity

(Fig. S6). Within the Rhizobiales, bacteria belonging to
the genus, Devosia, represented two of the ten ASVs
whose presence was most closely associated with
C. sorokiniana growth (Table S4). The genus, Devosia,
contains members that have been previously isolated
from root nodules of aquatic leguminous plants (Rivas
et al., 2002), suggesting the possibility of a mutualistic
partnership with C. sorokiniana involving the partitioning
of nitrogen for uptake by algae and other phycosphere
members. The family, Burkholderiaceae, sequence vari-
ants were very highly correlated with biomass productiv-
ity and contain known nitrogen-fixing bacteria (Sawada
et al., 2003). The abundance of members of the order,
Chitinophagales increased after the initial algal growth
phase. This pattern was observed in the baseline experi-
ments for samples collected 6 days post-inoculation of
reactors (Figs 2 and 3), and Chitinophagales ASVs were
positively correlated with number of days in culture dur-
ing the seasonal monitoring (Fig. S8). The latter group
are related to bacteria capable of consuming chitin, and
may be opportunists on other phycosphere bacterial spe-
cies, or the microalgal cell walls that are composed of
chitin and chitosan (Blanc et al., 2010).
Plant growth-promoting rhizobacteria (PGPR) have

been shown to be phylogenetically diverse, and illicit
increased fitness of their terrestrial plant partners by vari-
ous mechanisms (Lugtenberg and Kamilova, 2009;
Berendsen et al., 2012). Several studies have focused
on the promotion of algae growth by taxonomically and
functionally diverse bacteria. In one example, Rhizobium
spp. were the major phycosphere constituents for four
different green microalgal species, including Chlamy-
domonas reinhardtii P.A. Dangeard 1888, Chlorella vul-
garis Beyerinck 1890, Scenedesmus sp. and
Botryococcus braunii K€utzing (Kim et al., 2014). The
most commonly occurring full-length 16S rRNA gene
sequence in the study was identified as a Rhizobium
spp. (EU781656; Kim et al., 2014). In the RAFT reactors,
an isolate sharing 100% nucleotide identity with this
Rhizobium spp., ASV (b449f5066387be07ee577a9558
5d45ca), was present in 39.7% of samples analysed dur-
ing routine monitoring studies. Also, a second Rhizobium
spp. (JX255399), following growth in pure culture, was
shown to promote the growth of the four algal species
following inoculation of the algal cultures (Kim et al.,
2014). This bacterial 16S rRNA sequence was 100%
identical to the ASV, 8ce12e88f6b59bb09494567f0d
678092, from the RAFT data set for which it was present
in 5.6% of the samples. However, neither the ubiquitous
nor the growth-promoting Rhizobium spp. were signifi-
cantly correlated with biomass productivity, based on
coefficients of �0.012 and �0.118, respectively
(Table S2), and, the linear regression analysis identified
one insignificant positive relationship (Fig. S9c). These
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observations indicate that while phylogenetically identical
bacterial species may apparently occur in different phy-
cospheres, their specific contribution to the community
may be specific to habitat and/or algal species composi-
tion.
In a recent study, several Azospirillum spp. were

shown to increase the growth rate of Chlorella sorokini-
ana (Shihira and Krauss, 1965) facilitated by its contribu-
tion the hormone, indole-3-acetic acid (IAA; De-Bashan
et al., 2008). Additional studies showed that algae
growth increased following inoculation of cultures with
Bacillus pumilus (Hernandez et al., 2009; Bashan et al.,
2016; Amavizca et al., 2017). The RAFT samples con-
tained seven ASVs that are assigned to the order
Azospirillales, and however, they were found to be nega-
tively correlated with biomass productivity. While the sole
Bacillus sp. ASV identified in the RAFT samples during
monitoring had a �0.093 correlation with biomass pro-
ductivity, two of the six members of the order Bacillales
were positively linked to growth. Further, a Chlorella spp.
culture having a low growth rate has been shown to
exhibit increased growth when grown in laboratory cul-
tures to which a bacterial consortium from a fast-growing
algal culture was used to augment productivity. An anal-
ysis of the relative abundances of 16S rRNA gene
sequences revealed that several Ruegeria sp. were
enriched in the fast-growing cultures. While no members
of the genus, Ruegeria ASVs were identified among the
RAFT samples, the order Rhodobacterales to which
Ruegeria is assigned, were highly correlated with bio-
mass productivity and rapid growth in laboratory cultures
(Richter et al., 2018).
Bacteria that were negatively associated with algal

growth during the RAFT project may have been antago-
nistic or possibly pathogenic to C. sorokiniana, and so
are prospective candidates of taxa that could serve as
indicators for declining algal culture health. Six ASVs
were identified that were significantly negatively associ-
ated with C. sorokiniana biomass productivity, based on
the multinomial model. These were identified as mem-
bers of the Rhodobacteraceae, order Nomurabacteria
and the genera Pseudohongiella, Luteolibacter, Cyto-
phaga and Pseudomonas. (Table S4). Among them,
only the genus, Cytophaga, has been robustly linked to
algicidal activity and killing of diatom species (Imai et al.,
1993; Mayali and Azam, 2004), predation on cyanobac-
teria (Rashidan and Bird, 2001), and accumulation dur-
ing stationary and death phases of a mixed
photobioreactor culture containing members of the fam-
ily, Scenedesmaceae (Carney et al., 2014).
The predatory cyanobacterium, V. chlorellavorus, is rec-

ognized as a virulent pathogen of several species of
Chlorella (Coder and Goff, 1986; Soo et al., 2015; Ganuza
et al., 2016). It has been previously shown to be

responsible for the death of C. sorokiniana cultures in Ari-
zona at the RAFT site (Steichen and Brown, 2019). Exper-
iments carried out in this study showed that the infection
cycle could be managed to some extent through applica-
tions of the quaternary ammonium complex, benzalko-
nium chloride (BAC), a general biocide. However, it is not
known whether the apparently marginal negative effects
on algae growth were directly related to the biocide itself,
or indirectly, because of the potential negative effects, it
would be expected to have on some or all of the phyco-
sphere bacterial community. In general, there was no sig-
nificant difference between the biomass productivity of the
algal grown in the BAC-treated reactors or in the untreated
(negative) control reactors (Fig. S13a). However, this
result bears some uncertainty because during the time in
the cultivation season during when reactors were treated
with BAC, the outdoor temperatures were higher than sev-
eral weeks earlier when reactors contained the BAC-un-
treated cultures (negative control; Fig. S13b). An
additional caveat is that typically higher temperatures
result in faster growth and increased susceptibility of C.
sorokiniana to attack by V. chlorellavorus. The hypothesis
that algal growth rate was indirectly affected by changes
in bacterial community is not supported by the ANCOM
results (Fig. 4C) that indicated an overall suppression of
the most significantly affected bacteria, albeit the latter
ASVs did not show a strong relationship to biomass pro-
ductivity. The distribution of the taxonomic assignments of
ASVs significantly affected by the BAC treatment was sim-
ilar to the overall data set, except for the bacteria assigned
to the phyla, Firmicutes, for which only a single ASV was
significantly changed by BAC treatment, despite being the
third most commonly assigned taxa in the collective data
set (Table S5). The Firmicute bacteria, Listeria monocyto-
genes, encodes an efflux pump that confers resistance to
BAC (Kovacevic et al., 2016), offering a mechanism by
which members the phylum could have feasibly avoided
the potentially toxic effects of the BAC treatment.
Taking quantitative measurements of algal health in

outdoor reactor cultures is challenging. On a regular
basis, algal cultures are exposed to continuously chang-
ing environmental conditions, particularly light intensity
and water temperature. Consequently, the growth of the
algae and microorganisms that comprise the phyco-
sphere and their interactions are dynamic. Also, algal
growth is affected by its own properties and capacity to
adapt to and flourish in the collective environment. For
example, a ‘healthy’ dense algal culture would be
expected to grow more slowly than a healthy, low-den-
sity culture in part owing to increased self-shading. The
algal Health Index (HI) computed in this study showed
promise for the ability to identify significant bacterial con-
tributors to growth of the target alga. The HI was found
to be more sensitive to identifying bacterial correlations
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in that there were more significant linear correlations
between the pathogen V. chlorellavorus and the putative
mutualist bacteria, compared to the biomass productivity
and AFDW (Fig. S12). While the latter two metrics are
widely used for assessing industrial biomass production
goals, applying the HI calculation developed in this study
provided a more accurate depiction of biological fitness
of the algal populations analysed here.
The goal of the RAFT project was to develop a global

cultivation system for the efficient production of algal bio-
mass. The microbial members of the phycosphere that
were identified in this study and associated with algal
health are possible targets for further assessment. The
means by which they influence algal health, whether
directly or indirectly, require further study, including
specifically how they function and whether they can be
utilized in culture augmentation. Further, some of these
taxa may prove to be reliable indicators of productivity
for C. sorokiniana and for other algal species as well. In
the near term, culture-independent analysis of the entire
bacterial community is not well-suited for monitoring, and
so the design of more specific assays is needed to
enable their easy adaptation for field use. For example,
a qPCR assay could be developed to monitor Rhizo-
biales using the 16S rRNA gene sequence identified in
this study as having a tight association with algal growth.
These approaches can feasibly provide the ability to
obtain rapid, quantitative measures of algal health for
the incorporation into models, along with other parame-
ters, that will sound a warning or an alert indicating a
need for intervention. With the increasingly economical
costs of PCR amplification and DNA sequencing for rou-
tine monitoring and microbiome analysis, the phyco-
sphere community composition can be routinely
monitored in reactors and the ‘sentinel ASVs’ easily
identified by specific qPCR amplification. Further, mod-
elling cultures with microbiome analyses coupled to algal
Health Index can facilitate more complete assessment of
algal culture health than is presently achieved by mea-
suring algal density alone.

Conclusion

Bacterial community composition was linked to the effi-
ciency of microalgal biomass production and algal health
in outdoor reactors that are representative of a practical
biofuel operation. The Rhizobia and Chitinophagales
bacteria identified here represent positive and negative
indicators of C. sorokiniana culture performance, respec-
tively. These are candidates for further experimentation
to determine whether they can be used to adjust culture
performance or monitored for predictions of biomass
accumulation or loss.

Experimental procedures

Algal culture

The C. sorokiniana strain DOE1412, previously referred
to as NAABB 2412 (Lammers et al., 2017), was isolated
from surface water at a collection site in Texas, USA
[provided by Dr. J. Polle, Brooklyn College] (Huesemann
et al., 2013). The culture was thereafter maintained in
the laboratory on BG-11 media containing 17.6 mM of
NaNO3, 0.22 mM of K2HPO4, 0.03 mM of MgSO4�7H2O,
0.2 mM of CaCl2�2H2O, 0.03 mM of citric acid�H2O,
0.02 mM of ammonium ferric citrate, 0.002 mM of
Na2EDTA�2H2O, 0.18 mM of Na2CO3, with the addition
of trace metals (Rippka and Herdman, 1992). Cultures
were maintained by periodic serial transfer on solid BG-
11 media containing 30 g l�1 of agar. For cultivation,
laboratory and outdoor reactor cultures were grown in a
modified media designed to obtain high yields while min-
imizing nutrient inputs, referred to as Pecos media
(PE07; Lammers et al., 2017). The PE07 media con-
tained 1.7 mM of urea ((NH2)2CO), 0.05 mM of
MgSO4�7H2O, 0.3 mM of NH4H2PO4, 1.4 mM of Potash
(KCl), 0.03 mM of FeCl and BG-11 trace metal solution.
Field experiments were conducted at the University of
Arizona outdoor test site (+32°16ʹ49.29ʺ, �110°56ʹ9.82ʺ)
in three freshwater reactors, two 762 L traditional pad-
dlewheel (PW) reactors (Crowe et al., 2012) and a larger
sunken basin style of reactor termed Algae Raceway
Integrated Design (ARID; Waller et al., 2012).

Outdoor cultivation and benzalkonium chloride biocide
treatment

Reactors were inoculated with laboratory grown DOE
1412 cells at an optical density of 0.2 (OD750), equiva-
lent of between 3∙106 and 5∙106 cells ml�1, in PE07
media. Collected biomass was maximized by harvesting
75% of culture volume during exponential algal growth.
The algal density set for harvest was OD750 ≥ 1.5
based on growth dynamics observed for DOE1412 in
the local conditions (Ogden et al., 2019). The water and
19 equivalent media nutrients were immediately replen-
ished. Samples were collected for bacterial phycosphere
analysis every other day from selected experiments over
a two-year period. Cultures were scored as dying upon
observed decrease in algal cell density over two consec-
utive days. When V. chlorellavorous was considered a
risk, the established management practice was the addi-
tion of a biocide to abate the attack. To simulate this,
one reactor was treated with 2 ppm benzalkonium chlo-
ride (BAC) every fourth day, and the other was
untreated, and used as the negative control. Biomass
productivity was determined based on the ash-free dry
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weight (AFDW) (g). The AFDW was used to calculate
the areal productivity, which was determined by subtract-
ing biomass concentration (g l�1) from that of the previ-
ous measured time point, multiplied by the reactor
volume, and divided by the surface area and the number
of days from the last AFDW measurement, expressed as
g m�2 day�1 (Pedroni et al., 2004). A subset of repli-
cated experiments were sampled twice daily for bacterial
16S rRNA gene analysis to establish a baseline of typi-
cal phycosphere development at the RAFT experiment
site. DOE 1412 biomass was cultivated in duplicate
raised paddlewheel reactors during two runs treated with
BAC (RAFT 41 and 42), and two more runs without the
treatment (RAFT 43 and 45). The baseline experiments
were run as batches with addition of nutrients at the
beginning of the run and no further harvest and water
replenishment cycles.

Measure of culture health

The health of algal populations has been shown to be
partly dependent on its associated phycosphere, both
positively and negatively given different compositions. In
this study, the difference between the maximum biomass
growth rate and the suppressed, observed, biomass
growth rate was tested as a measure of culture health.
The growth of algae and other phycosphere cells were
subject to the constantly varying environmental conditions
such as sunlight intensity and water temperature. More-
over, the growth slowed down as the increased biomass
density induces more self-shading. Therefore, the maxi-
mum biomass growth rate of a healthy culture was con-
stantly evolving over time. In this study, a biomass growth
model (Huesemann et al., 2016) was employed to predict
the maximum biomass growth rate. The model was built
on the maximum specific growth rate as a function of light
intensity and water temperature. Self-shading caused light
attenuation is calculated based on biomass density. The
model was validated by healthy algae pond culture grown
under simulated outdoor conditions (Huesemann et al.,
2016). Therefore, it was expected that observed growth
rates of healthy cultures could match or exceed those that
the model predicted.
In the four outdoor experiments, samples were taken

twice daily for AFDW measurements, in the morning and in
the evening. The observed growth rate was calculated via,

lobs ¼
Ln AFDWe

AFDWm

� �

te � tm
(1)

where lobs is observed growth rate in day�1, AFDWm is
the morning AFDW in g l�1, AFDWe is the evening
AFDW in g l�1, tm is the morning sampling time, and te
is the evening sampling time.

The model simulates the growth during the day by set-
ting the initial AFDW to AFDWm at morning sampling
time. Using the measured solar radiation and water tem-
perature as inputs, by incorporating growth limiting fac-
tors (Gao et al., 2018; Khawam et al., 2019), the model
yields the AFDW for the evening sampling time, AFDWeʹ.
The modelled growth rate, lmodel, is calculated following
Equation (1) by replacing AFDWe with AFDWeʹ.
The culture Health Index (HI) is calculated via,

Health Index ðHIÞ ¼ � lobs � lmodel

lobs

����
���� (2)

Because the model only predicts growth under healthy
growth conditions whereas outdoor culture is exposed to
various stresses, for example, contamination, the pre-
dicted growth rate is sometimes larger than the observed
growth rate (lobs < lmodel). To facilitate interpretation
and visualization, the negative sign of each HI value
was taken for plotting and regression against log ratios
of 16S rRNA gene abundances such that greater values
reflect a higher degree of culture health.

Total DNA isolation

Total genomic DNA was isolated from algal samples
using a modified cetyltrimethylammonium bromide
(CTAB) method according to Phillips et al. (2001). Sam-
ples were collected from turbulent sections of outdoor
reactors into 50 ml tubes, and the biomass was col-
lected by centrifugation at 4500 9 g for 5 min. The
supernatant was discarded, and 20 mg of 1.4 mm stain-
less steel beads was added to the pellet, with 1 ml
CTAB buffer containing 20 ll b-mercaptoethanol. The
cells were disrupted using a Mini-Beadbeater-96 (Bio
spec. Products, Bartlesville, OK). The supernatant was
transferred to a sterile microfuge tube, to which an equal
volume of chloroform: isoamyl alcohol (24:1) was added,
and the contents were mixed by inverting each tube ten
times. The emulsion was broken by centrifugation at
7500 9 g for 10 min, and the supernatant was trans-
ferred to a microfuge tube. The supernatant was trans-
ferred to a sterile microfuge tube, and total nucleic acids
were precipitated by the addition of 2/3 vol of cold iso-
propanol. After an overnight (~16 h) incubation at
�20°C, the nucleic acids were collected by microcen-
trifugation, at 7500 9 g for 10 min. The pellet was
washed with 70% ethanol, air-dried and dissolved in
20 ll Tris-HCl buffer (TE), pH 7.2.

16S rRNA gene high-throughput sequencing

The V4 region of the 16S rRNA gene (250 bp) was
amplified from the purified DNA preparations by PCR
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using 515F and 806R primers (Parada et al., 2016),
each harbouring a barcode such that each product
received a unique tag corresponding to the sample
(Caporaso et al., 2012) and 5 PRIME HotMasterMix (5
PRIME, Hamburg, Germany). Amplicons were quantified
using Picogreen (Invitrogen, Carlsbad, CA, USA), and
240 ng of PCR amplicons from each sample was
pooled. 500 µl of pooled library material was run on an
electrophoresis gel to remove primer dimers and non-
specific PCR amplicons. An ~ 400 bp band was excised
from the gel using the UltraClean DNA Purification and
UltraClean PCR Clean-Up Kits (Qiagen, Hilden, Ger-
many). The pooled library was analysed by quantitative
PCR amplification using the KAPA Library Quantification
Kit (KAPA Biosystems, Wilmington, MA, USA), and 5%
of control PhiX library (Illumina) was added to improve
sequencing quality due to the low complexity of 16S
rRNA gene amplicon libraries (Kozich et al., 2013).
Paired-end sequencing was carried out using 7pM of the
pooled libraries as input on an Illumina MiSeq (Illumina,
San Diego, CA, USA).

16S rRNA gene amplicon sequence analysis

The raw 16S rRNA gene sequence reads were first
demultiplexed by assigning each read to the sample of
origin according to their unique primer barcode
sequences using the ‘demux’ plugin of QIIME2 (Bolyen
et al., 2019). Forward and reverse reads were trun-
cated at 150 bp to remove low-quality reads, and Illu-
mina base calling errors were resolved with the DADA2
algorithm as implemented by the ‘denoise-paired’
method in QIIME2 (Callahan et al., 2016). These steps
produced amplicon sequence variants (ASVs) by col-
lapsing high-quality reads with 100% sequence identity
into groups, conceptually analogous to operational taxo-
nomic units (OTUs). Each ASV was assigned a taxon-
omy by a na€ıve Bayes machine learning algorithm that
was trained on the SILVA database (https://www.arb-sil
va.de/, version 132) implemented in the q2-feature-classi-
fier plugin for QIIME2 (Bokulich et al., 2018). Subsequent
analysis of the ASVs was restricted to sequences pre-
sumed to represent bacteria associated with the algal
cultures, by removing (filtering) those identified as
chloroplast or mitochondria sequences. The bacterial
ASVs were aligned using the MAFFT algorithm (Katoh
and Standley, 2013), and a phylogenetic tree was
reconstructed using FASTTREE 2, with a maximum-likeli-
hood nearest-neighbour interchange calculation (Price
et al., 2010). The alpha diversity of the bacterial ASVs
identified in each sample was calculated based on fre-
quency, occurrence and phylogenetic distances using
the Faith’s phylogenetic diversity (PD) metric (Faith,
1992).

Longitudinal analysis of phycosphere development in
baseline experiments

The baseline samples (n = 165) were grouped by simi-
larity of membership in the phycosphere using unsuper-
vised clustering and fit to Dirichlet multinomial models
(DMM) and the ASV frequency per sample as input val-
ues. The DMMs were calculated using the Dirichlet
Multinomial package for R (Morgan, 2020), using a previ-
ously described method (Holmes et al., 2012). The fit-
ness of the model was evaluated by calculating the
Laplace approximation on a range of possible Dirichlet
components or number of sample clusters. The samples
were ordered by time in culture and assembled into a
matrix of DMM cluster membership changes between
each day. Transition frequencies were visualized by the
adjacency method of the igraph R library (https://www.rd
ocumentation.org/packages/igraph).

Statistical analyses of relationships between
phycosphere content and variables over two growing
seasons

A table of ASV frequency for each sample (n = 575) and
eight variables from the associated metadata file
(Table S6), including benzalkonium chloride treatment
(BAC), days after inoculation (DAI), ash-free dry weight
(AFDW), dissolved oxygen (DO), biomass productivity,
temperature, precipitation, solar radiation and wind
speed were used as inputs to build a multinomial regres-
sion model based on the Multinomial function in Tensor-
flow (https://github.com/biocore/songbird/tree/9ed4ede
40d8bd8188e93b71d1300c5a1a0a19320; Morton et al.,
2019). The result of the multinomial model was a
weighted differential value assigned to each ASV for
each of the eight variables. The ASVs with Z-scores
greater than 3 (i.e. three standard deviations from the
mean) were identified as being significantly associated
with each of the variables and were summarized by bar
plots of their membership to bacterial orders. The rela-
tionships between selected bacterial taxa and continuous
variables were further corroborated by drawing scatter-
plots between the log ratios of sequence counts and the
variable of interest. Linear relationships were tested by
Pearson correlation calculation in base R after testing
assumptions for normal distribution and homoscedastic-
ity of residuals.
Pairwise distance metrics were calculated between all

samples by the Jaccard, Bray–Curtis, unweighted unifrac
and weighted unifrac methods (Faith et al., 1987; Chang
et al., 2011), and principal analyses of the resulting
matrices were constructed in QIIME2 (Halko et al., 2011)
and then visualized using emperor (V�azquez-Baeza
et al., 2013). The effect of BAC treatment on bacterial

ª 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial
Biotechnology, 13, 1546–1561

Bacterial influence on algal health and production 1557

https://www.arb-silva.de/
https://www.arb-silva.de/
https://www.rdocumentation.org/packages/igraph
https://www.rdocumentation.org/packages/igraph
https://github.com/biocore/songbird/tree/9ed4ede40d8bd8188e93b71d1300c5a1a0a19320
https://github.com/biocore/songbird/tree/9ed4ede40d8bd8188e93b71d1300c5a1a0a19320


phycospheres was investigated by comparing the ASV
content of samples (n = 476) using the PERMANOVA
method as implemented in QIIME2 (Anderson, 2001).
The ASVs with significantly different relative abundances
between untreated and BAC-treated samples were iden-
tified by conducting analysis of composition of micro-
biomes (ANCOM) with a centred log ratio transformation
(Mandal et al., 2015).
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Fig. S1. Baseline phycosphere diversity is positively corre-
lated with duration in outdoor reactors. 16S rRNA gene
sequence diversity data plotted by days after inoculation in
outdoor reactor. Lines indicate linear regression with 95%
confidence intervals in grey. The R fit values and p values
were determined by Pearson correlation analyses.
Fig. S2. Optimal Dirichlet Multinomial Model cluster number
for baseline data set. Goodness of fit measured by Laplace
approximation as a function of the number of Dirichlet com-
ponents. Lower Laplace values indicate increased model fit-
ness to the data set.
Fig. S3. Monthly distribution of survey data set sample col-
lections.
Fig. S4. Correlation between sequence variants and vari-
ables measured in the outdoor RAFT reactor during cultiva-
tion of Chlorella sorokiniana. Boxplots indicate the
distribution of differential constants assigned to each 16S
ribosomal RNA gene sequence variant, based on the multi-
nomial regression against nine variables. Values outside the
� 1.5 interquartile range were designated as outliers and
denoted as points outside the whiskers for each variable.
Fig. S5. Comparisons of algal growth metrics. Scatter plots
of ash free dry weight (AFDW), biomass productivity (bio-
mass_prod), daily average dissolved oxygen (DO), and
days after inoculation (DAI) were drawn based on measure-
ments taken during phycosphere sampling time points.

ª 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd, Microbial
Biotechnology, 13, 1546–1561

1560 S. A. Steichen, S. Gao, P. Waller and J. K. Brown



Lines represent Pearson correlation with shaded areas indi-
cating the 95% confidence intervals.
Fig. S6. The bacterial orders identified as most highly corre-
lated with biomass productivity of the algal cultures. Counts
of sequence variants with multinomial regression differential
values for biomass productivity are indicated by a z score of
greater than three. The sequence variants are grouped by
the assigned taxonomy at the order-level, and bars are
color-coded based on the direction of the correlation.
Fig. S7. Log ratio relationship of select bacterial orders to
biomass productivity. The log ratios of the relative abun-
dance of (a) Betaproteobacteriales ASVs and (b) Rhizo-
biales to Vampirovibrionales for each sample are plotted by
their corresponding biomass productivity measure. Lines
and grey areas represent linear regression and 95% confi-
dence intervals, respectively, and R fitness and p signifi-
cance values, based on the Pearson’s correlation test.
Fig. S8. Bacterial orders most highly correlated with the
duration algal cultivation in the outdoor RAFT reactors.
Counts of sequence variants with multinomial regression dif-
ferential values for days after inoculation are indicated by a
z score of greater than three. The sequence variants are
grouped by their assigned taxonomy at the order-level, and
bars are color-coded by the direction of the correlation.
Fig. S9. Log ratio relationships of selected bacterial taxa to
algal biomass productivity. The log ratios of the relative
abundance of (a) Rhizobium sp. (accession no. JX255399),
(b) Vampirovibrionales, (c) Burholderiaceae ASV 21c587e985
37024a404d6f041c0fb693, (d) Rhodobacterales, (e) Burkholderi-
aceae, and (f) Cytophagales to Sphingobacteriaceae for each
sample are plotted by their corresponding biomass productivity
measure. Lines and grey areas represent linear regression and
95% confidence intervals, respectively, and R fitness and P signif-
icance values, based on the Pearson’s correlation test.
Fig. S10. Comparisons of simulated and observed algal
growth rates during RAFT baseline experiments. Observed
and simulated algal culture growth rates for all four runs are
shown (a) with correlation curves drawn based on loess
approximation and 95% confidence intervals indicated by

shaded areas. Boxplots (b) indicating the distributions of
calculated absolute relative error of growth rates (mu) are
displayed by days after inoculation, and the relationship
between observed growth rate and calculated absolute rela-
tive error of growth rate (c) for the four duplicate runs.
Fig. S11. Bacterial orders most highly correlated with algal
Health Index (HI). Counts of sequence variants with multino-
mial regression differential values for days after inoculation
that have a z score greater than three. The sequence vari-
ants are grouped by their assigned taxonomies at the order
level, and bars are color coded by the direction of the corre-
lation.
Fig. S12. Comparisons of putative algal culture performance
metrics for identification of bacterial interactions. The log
ratios of the relative abundance of (a–c) Allorhizobium-
Neorhizobium-Pararhizobium-Rhizobium (ANPR) and (d–f)
Vampirovibrio sp. to Methylophilus for each sample are plot-
ted by their corresponding algal HI measure, biomass pro-
ductivity, and ash free dry weight (AFDW). Lines and grey
areas represent linear regression and 95% confidence inter-
vals respectively, along with the R fitness and p significance
values based on a Pearson correlation test.
Fig. S13. Distributions of (A) biomass productivity
(P = 0.51) and (B) temperature (P = 2.32e�10) measure-
ments for samples collected from cultures treated (blue) or
untreated (orange) with benzalkonium chloride.
Table S1. RAFT baseline experiments continuous data
summary.
Table S2. Multinomial model differentials for all amplicon
sequence variants and their taxonomic assignments.
Table S3. Benzalkonium beta group significance PERMA-
NOVA results.
Table S4. Most significant sequence variants to biomass
productivity according to multinomial model.
Table S5. Comparison of bacterial phyla significantly chan-
ged by benzalkonium chloride treatment to total amplicon
sequence variant taxonomic assignments.
Table S6. RAFT 16S rRNA gene sample metadata table.
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