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The WHO suggests that humans require an absolute
minimum of 7.5 L of water per day, while a minimum of
about 20 L of water per person per day is recommended
to ensure adequate hygienic standards. With a popula-
tion of 7.5 billion, this works out to 150 billion litres of
safe freshwater daily, globally. Much more than this is
generally consumed in developed nations, while less
than adequate amounts of safe water are available in
some regions. Although sufficient freshwater resources
exist to meet global water needs, the major limitation is
the lack of infrastructure in some regions for production
and distribution of safe water. The global provision of
safe water is a key aim of UN Sustainable development
goal (SDG) 6, but this goal also intersects closely with
SDG 13, climate change, requiring energy efficiency and
minimal GHG emissions, and SDG 12, requiring sustain-
able global water consumption and production patterns
and reductions in pollution of water resources. Safe
drinking water has a quality that would not present any
significant risk to health over a lifetime of consumption.
While physical and chemical disinfection processes may
remain essential to reduce the pathogenic burden during
water treatment, we believe that increased exploitation
of microbiological processes for drinking water treatment
is the most sustainable way forward for the global provi-
sion of safe water. Biological drinking water treatment
processes are available for the removal of a wide range
of chemical contaminants, are less costly and less
energy intensive than advanced chemical or physical
treatment methods and are robust over a wide range of
operating conditions and water qualities. Furthermore,
they reduce the use of potentially hazardous chemicals
and typically result in complete mineralization of contami-
nants, rather than concentration in a waste stream,

which then necessitates specialized treatment and/or
disposal. In addition, recent and ongoing research indi-
cates that providing biologically stable water can be
accomplished by fostering the presence of a natural resi-
dent, non-pathogenic drinking water microbiome that can
resist pathogen invasion in water supplies, which can be
achieved through the use of biological drinking water
treatment processes.
The major sources of drinking water are surface water

and groundwater. Both forms of water are generally not
safe at the source and require some form of treatment to
be considered potable. To ensure adequate water qual-
ity, regulatory guidelines exist for (i) biological contami-
nants (pathogenic bacteria, protozoa, viruses and
helminths), (ii) inorganic chemicals (metals, oxyanions,
nitrogen species and radionuclides), and (iii) organic
chemicals (natural organic matter and synthetic organic
chemicals from agricultural, industrial and residential
use). In regions where disinfection is used in drinking
water treatment, disinfectant residuals and disinfection
by-products are also typically regulated due to their
potential adverse health effects. In addition, physical
aspects of the water including colour, odour and taste
also contribute to water quality.
Historically and up to the present day, microbial pro-

cesses have been used in the production of potable
water. Biological drinking water treatment has been
widespread since the 1800s in the form of slow sand fil-
tration or bank filtration (Schubert, 2002; Logsdon et al.,
2011). While historically, biological water treatment was
empirical, we now have the technology and tools to
understand the structure and function of the microbial
communities involved in biological water treatment,
potentially enabling control and optimization, making
these processes even more attractive. Unfortunately, the
use of biological processes for drinking water production
has been in decline in recent years due to misconcep-
tions regarding a relationship between the presence and
exploitation of microbes in drinking water treatment and
the presence of pathogens. In North America (and many
regions around the world), disinfection is routinely used
in an effort to sterilize drinking water. Despite the use of
disinfectants and the presence of disinfectant residuals
in distribution systems, 103–109 bacteria per mL are still
present in drinking water at the tap (Hammes et al.,
2008; Lautenschlager et al., 2010; Nescerecka et al.,
2014). It is virtually impossible to completely remove
microbes in water while delivering a safe product to con-
sumers, and the use of disinfectants results in selection
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of (potentially pathogenic) bacteria that are resistant to
disinfectants in distribution systems (Chiao et al., 2014).
Disinfection can result in the creation of unfilled ecologi-
cal niches, increasing opportunities for invasion of water
supplies by foreign bacteria. The concomitant production
of assimilable organic carbon (AOC) from the reaction of
residual disinfectant with recalcitrant organic matter also
results in new niches and increased microbial carrying
capacity (Reckhow et al., 1990; Fass et al., 2003). With
long residence times in distribution systems, disinfectant
residual is often lost and is associated with microbial
regrowth, implying that disinfection merely delays micro-
bial growth rather than prevents it (Servais et al., 1995).
In all cases, this results in decreased biological stability
of water. Combined with potential long-term health
effects associated with disinfectants and disinfection by-
products (Sadiq and Rodriguez, 2004), this leads us to
propose that the use of disinfectants should be limited.
Removal of pathogens preferably takes place early and
is followed by biological treatment for the removal of dis-
infection by-products and other chemical contaminants.
In this way, a biologically stable product with low nutrient
concentrations is obtained in which the absolute abun-
dance and composition of the microbial community does
not vary substantially throughout the distribution network
(Prest et al., 2016). This drinking water microbiome can
be established using biological filtration steps that result
in a natural resident community in the distributed water
(Pinto et al., 2012; Lautenschlager et al., 2014). Ideally,
this microbial community will be diverse and therefore
will be more resistant to invasion than disinfected com-
munities where unfilled niches would exist (Kinnunen
et al., 2016). Nonetheless, further research on factors
that improve resistance to invasion, and examination of
the capacity of common pathogens to invade drinking
water microbiomes, needs to be conducted.
The most common use of microbial biotechnology in

drinking water treatment is biological filtration. This
involves the filtration of oxic or oxygenated water
through granular media such as sand, granular activated
carbon (GAC) or anthracite and may include slow sand
filtration, rapid sand filtration (gravity or pressurized) or
bank filtration. Microorganisms grow on the surface of
the medium and are involved in removing a range of
substances depending on the source water (G€ulay et al.,
2014). Biological filtration is used for the removal of inor-
ganic compounds (e.g. ammonium, nitrite, sulphide,
methane, iron and manganese; de Vet et al., 2011;
Tatari et al., 2012, 2016; Lee et al., 2014), organic
compounds (with or without prior ozonation) including
natural organic matter (DeVries et al., 2012) as well as a
wider array of organic pollutants such as pesticides
(Hedegaard and Albrechtsen, 2014; Hedegaard
et al., 2014), pharmaceuticals (Petrovic et al., 2009),

disinfection by-product precursors (McKie et al., 2015)
and arsenic (Katsoyiannis and Zouboulis, 2004). Adapta-
tion of biological filtration systems with zero valent iron
can also be used for the removal of radionuclides such
as uranium (Gottinger et al., 2013), and other adsor-
bents could be incorporated into biological filters for the
removal of heavy metals such as lead and cadmium (Ali
and Gupta, 2007). In some regions, biological filtration is
used as the sole means of water treatment in single or
successive rapid sand filters for the treatment of aerated
groundwater (e.g. Denmark) or as a sequential ozona-
tion, and filtration treatment train for surface water treat-
ment (e.g. Zurich). In regions where oxidative treatment
is used, biological filtration is commonly used after oxi-
dation to remove the produced AOC. Bioaugmentation of
biological filters is increasingly being investigated for the
removal of recalcitrant contaminants (Ho et al., 2007;
Benner et al., 2013; Horemans et al., 2017). Bioaugmen-
tation has the potential to increase the diversity of pollu-
tants and micropollutants that are degradable in
biological filters. This is an important development, as
increasing water re-use necessitates improved technolo-
gies for pollutant removal. For bioaugmentation to be a
successful strategy in the long-term, further research is
needed to understand the ability of bioaugmented organ-
isms to invade and establish in a resident microbial com-
munity, and then grow under the oligotrophic conditions
typical of drinking water filters. The current effort at eluci-
dating the complete composition and metabolic potential
of biofiltration communities (e.g. G€ulay et al., 2016;
Palomo et al., 2016), the availability of different granular
media types, and the lower footprint of pressurized filtra-
tion units, is leading the way towards truly engineered
biofiltration processes for potable water preparation.
Membrane-based biofilm reactors have also been

investigated for the removal of a wide range of recalci-
trant drinking water contaminants. Reductive treatment
of oxidized compounds such as bromate, nitrate, sele-
nate/selenite, chromate, perchlorate/chlorate/chlorite and
arsenite – which can be primary pollutants in various
groundwater sources – can be achieved using mem-
brane biofilm reactors (MbfR) fed with hydrogen or
methane as electron donor (Nerenberg and Rittmann,
2004; Rittman, 2006). In these cases, the pollutant to be
removed is respired by the microbial community, which
grows on the membrane surface, and electron donor is
supplied via the membrane lumen. MbfRs have also
been tested for the treatment of diverse organic contami-
nants including BTEX and chlorinated solvents (Syron
and Casey, 2008) and pharmaceuticals (Kim et al.,
2010). While the MbfR allows for very small footprint
reactors, where exact dosing control of electron donors
can lead to cost-efficient biotreatment technologies with
engineered biofilms (Nerenberg, 2016), it remains to be
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examined whether the increased operational complexity
(supply of gasses) and investment costs (membranes)
provides a sufficient advantage over traditional biofiltra-
tion solutions that would depend on soluble electron
donor additions (e.g. Upadhyaya et al., 2010).
In summary, biological methods for the removal of

common as well as context-specific and recalcitrant
contaminants are available. We believe that increased
exploitation of biological processes for drinking water
treatment is the best way to achieve the provision of
safe water globally. Biological processes are generally
less costly and less energy intensive than advanced
chemical and physical removal processes and can be
effective for the removal of the majority of relevant
contaminants. Furthermore, biological filtration pro-
cesses at the end of treatment trains ensure the pres-
ence of a biodiverse drinking water microbiome that
may be more effective than disinfection at reducing
pathogen invasion.
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