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Abstract 

Tumorigenesis and progression of cancer are complex processes which transformed cells and 
stromal cells interact and co-evolve. Intrinsic and extrinsic factors cause the mutations of cells. The 
survival of transformed cells critically depends on the circumstances which they reside. The 
malignant transformed cancer cells reprogram the microenvironment locally and systemically. The 
formation of premetastatic niche in the secondary organs facilitates cancer cells survival in the 
distant organs. This review outlines the current understanding of the key roles of premalignant niche 
and premetastatic niche in cancer progression. We proposed that a niche facilitates survival of 
transformed cells is characteristics of senescence, stromal fibrosis and obese microenvironment. 
We also proposed the formation of premetastatic niche in secondary organs is critically influenced 
by primary cancer cells. Therefore, it suggested that strategies to target the niche can be promising 
approach to eradicate cancer cells. 
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Introduction 
It is widely accepted that tumorigenesis is a 

multistage process during which molecular 
alterations in the genome of somatic cells accumulate. 
Gene mutations force normal cells to grow 
abnormally. Although most DNA replicates with 
fairly high fidelity, mistakes do happen[1]. However, 
the link between mutation and cancer incidence 
appears to be more complex[2]. People also observed 
that only a fraction of cells within tumors were 
capable of clonogenic growth. The heterogeneity 
among cancer cells can arise in multiple ways. Two 
theories have been proposed to explain this 
heterogeneity: extrinsic factors and intrinsic factors[3]. 
Evolutionary theories are always applied to 
understand how cancers develop and how 
heterogeneity exists. In this way, carcinogenesis is 
viewed as a Darwinian process of successive rounds 
of selection leading to the accumulation of 
mutations[4, 5]. Cells face diverse selective pressures 

as they react to changes in their environment[6]. The 
Darwin theory of evolution has been determined by 
the match between the current environmental 
demand and the phenotypic manifestation of 
mutations[5]. The competitive advantage of 
mutations during tumor initiation is dependent on the 
context in which they arise. Below, we will focus on 
cooperative relationship between transformed cells 
and microenvironment on the initiation and 
development of cancer (Figure 1).  

Premalignant niche 
Mutations result either from DNA replication 

errors or from the damaging events. Accumulation of 
unrepaired mutations transforms normal cells. The 
survival of transformed cells critically depends on the 
circumstances which they reside. The niche at high 
risk of malignant transformation is associated with 
aging, fibrosis and obesity. 
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Senescence-messaging secretome (SMS) 
Aging is the biggest risk factor for cancer. By 

2030, 70% of the tumor will occur in the population of 
65 years and older[7]. In humans, cancer incidence 
rises with approximately exponential kinetics after 50 
years of old[8], partly due to accumulation of 
oncogenic mutations over time. Cellular senescence, 
which is associated with aging, is a state of 
irreversible growth arrest[9]. It was previously 
assumed that senescence was functionally similar to 
apoptotic cell death[10]. However, senescent cells 
show marked and distinct changes in their pattern of 
gene expression [8, 11]. It is reported that tissue 
microenvironment is the main cause of the occurrence 
of age-related tumors [12-14]. The senescence- 
associated secretory phenotype (SASP; also known as 
the senescence-messaging secretome (SMS)) provides 
senescent cells with diverse functionality[10]. The 
nature of the SMS and its targets, and the overall 
downstream outcomes, vary considerably depending 
on the cellular context[10]. On the one hand, SMS can 
aid tissue repair, but on the other hand, the SMS can 
do great damage to normal tissue structures and 
function, promote malignant phenotypes in nearby 
cells[8]. The SMS contains several families of factors 
that can be divided into the following 3 major 
categories: soluble signaling factors (interleukins, 
chemokines, and growth factors), secreted proteases, 
and secreted insoluble components[9]. These SMS 
accumulate with age that may change the tissue 
microenvironment and promote the occurrence of 
chronic inflammatory diseases or tumors. The most 
prominent soluble factors are Interleukin-1 (IL-1) and 
Interleukin-6 (IL-6). IL-1 and IL-6 have been 
proposed as major upstream regulators of the 
senescence-associated cytokine network[10]. 
Circulating IL-1 and IL-6 promote a variety of chronic 
degenerative diseases, as well as cancer[15-23]. There 
is little measurable IL-6 in the circulation in the 
absence of inflammation. With advancing age, 
however, serum IL-6 becomes detectable even 
without evidence of inflammation. It is proposed that 
this reflects an age-associated loss in the normal 
regulation of gene expression for this molecule. There 
is also speculation that IL-6 may contribute to the 
pathogenesis of several diseases that are common in 
late-life including lymphoma, osteoporosis, and 
Alzheimer's disease[24, 25]. Senescent fibroblast cells 
also express IL-8, GROα, GROβ, MCP-2, MCP-4, 
MCP-3, MCP-1, MIP-3α, MIP-1α, CCL-1, IGFBPs, 
GCSF, GM-CSF[9]. Aside from soluble signaling 
cytokines and growth factors, senescent cells also 
secrete increased levels of matrix metalloproteinases 
(MMPs) and other molecules such as reactive oxygen 
species(ROS), nitric oxide and transported ions.  

Fibrotic niche 
Pathologic fibrosis is the feature of abnormal 

extracellular matrix (ECM) deposition caused by 
prolonged injury and deregulated processes of 
wound healing. Extracellular matrix proteins 
including collagen, elastin, fibronectin and laminin 
are abundant in ECM. Fibrotic diseases encompass a 
wide spectrum of entities including idiopathic 
pulmonary fibrosis (IPF),silicosis, asbestosis, ischemic 
heart disease, cirrhosis, splenic fibrous hyperplasia et 
al. It has long been observed that fibrosis is related to 
carcinogenesis. In some aspects, a tumor can be 
viewed as a fibrotic organ that contains cancer cells. A 
tumor cannot develop without the parallel expansion 
of a tumor stroma[26]. Fibroblasts are involved in 
tissue remodeling and repair. Physiologic fibroblasts 
maintain stromal homeostasis. Pathologic fibrosis 
always began with reaction to inflammation, 
characterized by pathologic fibroblasts and a stiff 
ECM[27]. Transforming growth factor-β (TGF-β) is 
the most predominant profibrotic growth factor, 
leading to an increase of collagen and fibronectin 
production by fibroblasts and the transition of 
fibroblasts into myofibroblasts. TGF-β also activates 
other stromal cells such as hepatic stellate cells (hStCs) 
to produce fibronectin (FN).  

The increased rigidity of ECM is an important 
determinant for cell behavior[28, 29]. Substrate rigid-
ity influences cell morphology, cell migration and cell 
growth[28]. Upon sensing force, cells react by active 
change in the actin cytoskeleton. The rigidity of ECM 
regulates localization and activity of YAP/TAZ[30]. 
The process of Epithelial-Mesenchymal-Transition 
(EMT) is known to result in a phenotype change in 
cells which are in a more invasive state[31]. Mechan-
ical stress induces EMT by both physical forces and 
biochemical signals[32, 33]. Mechanical stress induces 
Twist expression in a manner dependent on 
β-catenin[34]. Recent studies highlight a link between 
EMT and cancer stem cell formation[35].  

In denser, stiffer matrices (∼44 kPa), murine 
mammary epithelial cells displayed more invasive 
phenotypes, compared to the softer matrices of lower 
density (∼25 kPa)[36]. Pressure to osteocytes, the 
main mechanotransducing cells in bone, induces 
prostate cancer growth and invasion[29].The 
mechanical microenvironment may cause malignant 
transformation, possibly through stimulating intra-
cellular signaling pathways that promote cancer cell 
survival or invasion[28, 37]. Matrix density-induced 
stiffness regulates epithelial cell phenotype, promotes 
cellular adhesion through a FAK-ERK signaling[36]. 
Transmembrane cell adhesion proteins, mostly 
integrins link the extracellular matrix to the cell's 
cytoskeleton. Extracellular matrix rigidity causes 
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strengthening of integrin-cytoskeleton linkages[38]. 
Besides the roles in cell adhesion, integins have an 
activating role in intracellular signaling events as 
signaling receptors. The different heterodimer with 
alpha and beta subunits cause the functional and 
molecular diversity of integrins. Upon integrin 
aggregation, a number of signal transduction path-
ways, such as the Raf-ERK/MAPK, PI3K-Akt, nuclear 
factor–kappa B (NF-κB), and c-Jun are activated[39].  

In addition, substrate stiffness modulates genes 
expression, such as focal adhesion proteins (Itga6 and 
Parvb), cytoskeletal proteins (Dnah11 and Actb), and 
nuclear envelope protein Lbr and Nrm [40].The 
mechanisms how mechanical stresses affect the 
expression of genes that influence cell adhesion, 
migration can be explained by nucleus shape or 
LINC-mediated linking between cytoskeleton to the 
nucleoskeleton[40, 41]. Dynamic force-induced 
structural changes in Cajal bodies, a prominent 
nuclear body, may affect nuclear functions involved 
in gene expression[42]. Mechanical stresses can be 
transmitted from the cytoskeleton to the nucleus by 
LINC (linker of nucleoskeleton and cytoskeleton) 
complex that is composed by SUN1/2 proteins and 
regulates gene expression [40, 43].  

Obesity niche 
More and more evidence demonstrated obesity 

is linked to the increased risk of cancer incidence and 
mortality[44]. Obesity is excess fat in the body[45]. 
Obesity is closely related to type 2 diabetes, 
hyperlipidemia, hypertension and cardiovascular and 
cerebrovascular diseases[45-47]. Obesity is quickly 
overtaking tobacco as the leading preventable cause 
of cancer. Obesity contributes to the occurrence and 
development of cancer systemically or locally through 
affecting energy imbalance including insulin 
resistance, altered hormone signaling, and high 
circulating levels of proinflammatory mediators[44]. 
Hyperadiposity as a result of excess caloric intake or 
reduced caloric expenditure cause production of 
steroid hormones and adipokines. Adipose tissue has 
been considered to be the largest endocrine organ in 
the body, producing adipokines, cytokines and 
chemokines involved in metabolism and immune 
regulation[44-53]. A crosstalk between estrogen, 
insulin, insulin-like growth factor-1 (IGF-1) and 
adipokine signaling pathways plays an important role 
in the development of cancer[51]. Adipokines, 
including leptin and adiponectin, are hormones 
produced by adipocytes. There are conflicting data 
regarding the roles of adiponectin in the development 
of cancer. Circulating plasma concentrations of 
Adiponectin are inversely related to increased risks of 
malignancy. Decreased level of adiponectin are 

present in patients with breast cancer, prostate cancer, 
gastric cancer, et al[54]. Adiponectin inhibits cancer 
cell proliferation and promotes cancer cell apoptosis 
through inhibiting STAT3, PI3K/AKT, Wnt 
signaling[54]. However, increased adiponectin have 
been associated with increased risk of lung cancer and 
hepatic cancer[55, 56]. higher levels of adiponectin or 
higher adiponectin/leptin ratios in pancreatic cancer 
patients with positive or strongly positive expression 
of adiponectin receptor 1 and receptor 2[57, 58]. 
Adiponectin is also reported to have proliferative 
effect on cancer cells through enhancing ceramide 
catabolism and anti-apoptotic metabolite S1P[59]. 
Leptin and its receptor OB-R have been implicated in 
a number of malignancies through activating Janus 
kinase/Signal transducer and activator of transcrip-
tion (JAK/STAT), PI3K/Akt and extracellular 
regulated protein kinases(ERK). Leptin increases the 
expressions of the tumor necrosis factor-alpha(TNF-
α), interleukin-6(IL-6), vascular endothelial growth 
factor (VEGF) and hypoxia inducible factor-1alpha 
(HIF-α). It improves the ability of tumor cells to resist 
apoptosis, angiogenesis and hypoxia tolerance, which 
is beneficial to the progression and metastasis of 
tumor[60-62]. Besides, proinflammatory mediators 
such as C- reactive protein (CRP), TNF-α, IL-6, IL-8 
in the circulation which is produced by adipocytes 
promote neoplasia and tumor progression locally and 
systemically[63]. Obesity-induced interstitial fibrosis 
promotes breast tumorigenesis by altering mammary 
ECM mechanics with important potential implica-
tions for anticancer therapies[64]. Insulin resistance is 
associated with worse prognosis in several cancers 
and insulin can stimulate the synthesis of IGF-1, 
which is linked to tumor progression. Insulin and 
IGF-1 activate the PI3K/Akt/mTOR and Ras/Raf/ 
MAPK pathways[65-70]. Obesity enhances local 
myofibroblast content in mammary adipose tissue 
and that these stromal changes increase malignant 
potential by enhancing interstitial ECM stiffness[64]. 

Suitable microenvironment for cancer 
progression  
Premetastatic niche 

Metastasis is the most life threatening event in 
cancer patients[71]. Metastasis can occur when cells 
break away from a primary tumor and travel through 
blood stream or through lymph vessels to other areas 
of the body, which is responsible for approximately 
90% of cancer deaths[72]. The earlier theories 
regarded metastasis as a process of orderly anatomic 
spread[73]. In contrast, Fisher hypothesized that 
whether distant relapse occurs is predetermined from 
the onset of tumorigenesis[74]. It has been also 
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noticed clinically that cancer metastasis does not scale 
with primary tumor size. Circulating cancer cells can 
be detected in varied cancers. However, metastasis is 
largely an inefficient process in which most 
circulating cancer cells fail to mature in a clinically 
meaningful fashion[75]. Researchers have identified 
dormant cancer cells in metastasis-free organs[76]. 
Disseminated tumor cells were detected in 30% of 
patients diagnosed with early stage (I-III) breast 
cancer, however, patients with disseminated tumor 
cells did not uniformly develop metastatic 
disease[77]. In 1889, Dr. Stephen Paget stated that 
metastasis did not occur randomly. His study which is 
published in The Lancet, demonstrated that 
metastasis only develop when the seed and soil are 
compatible. In this respect, tumors may have greater 
or lesser ability to colonize lymph nodes and distant 
organs, as driven by their match to the distant 
microenvironment[78]. Such permissive environment 
is always formed before arrival of cancer cells, which 
is called “premetastatic niche”[79].  

Premetastatic niche is also composed of a 
heterogeneous mixture of stromal cells, vasculature, 
other supportive cells and extracellular matrix[75]. 
Bone marrow-derived cells (BMDC) including 
haematopoietic progenitors, mesenchymal stem cells, 
endothelial progenitor cells comprise the main 
component in the premetastatic niche. Bone 
marrow-derived cells (that is, macrophages and 
granulocytes) bind to FN-enriched hepatic sites, 
ultimately leading to liver pre-metastatic niche 
formation[80]. Metastatic cancer cells which 
overexpress Jagged activate both haematopoietic 
osteoclasts and mesenchymal osteoblasts by binding 
to Notch and promote both tumor cell growth and 
invasion in the bone. Tumor-derived secreted factors 
(TDSFs) are crucial in creating a supportive 
microenvironment at the metastatic site. Chemokines 
or cytokines derived from the primary cancer cells 
reprogramming the distant organs and contribute to 
the establishment of premetastatic niche[81]. Besides 
chronic inflammation, acute inflammation in the lung 
can foster metastatic seeding[82, 83]. Bacteria- and 
LPS-induced acute inflammation significantly 
enhanced lung metastasis. Acute lung infection 
dramatically increased cancer cell homing to the lung. 
A large number of the recent exosome literature 
highlights the roles of cancer cell-derived or stroma 
cell-derived exosomes on the reprogramming of 
microenvironment[80, 84, 85]. Exosomes are small, 30 
to 100-nm membrane vesicles formed by the inward 
budding of late endosomes[86-88]. Exosomes contain 
cytokines, transcription factor, growth factor, and 
other bioactive molecules such as miRNA, LncRNA et 
al [89-91]. They participate in cell-to-cell communi-

cation by the molecules enriched in their membrane, 
remodeling the microenvironment of target organs 
and help the formation of premetastatic niche [80, 
92-102](Table 1). Exosomes are widely distributed in 
various human body fluids, such as blood plasma/ 
serum, saliva, breast milk, cerebrospinal fluid and 
urine. Exosomes that are enriched with cancer-specific 
miRNAs, LncRNAs can be used as biomarkers for 
cancer progression [103-107]. 

There are 6 characteristics and traits that define 
pre-metastatic niche including immunosuppression, 
inflammation, high angiogenesis and vascular perme-
ability, active lymphangiogenesis, specific organo-
tropism and high reprogramming efficiency[81].  

Angiogenesis niche 
Formation of vascular network is important to 

the proliferation and dissemination of cancer cells. 
Stable microvessels form a "dormant niche". Factors 
that sustain the homeostasis such as endothelial- 
derived thrombospondin-1 induce sustained cancer 
cells quiescence. When blood vessels begin to sprout, 
the new tips produce molecules that transform 
dormant cancer cells into metastatic tumors[108], in 
which process the thrombospondin-1 proteins give 
way to tumor necrosis factor (TNF) and periostin 
proteins in the neovasculature. Many proinflamma-
tory chemokines generated by cancer cells support the 
development of vessels. TNF- acts indirectly by 
inducing the production and release of VEGF and 
bFGF[109, 110]. CXCR4 promotes the migration of 
endothelial cells toward stromal cells derived factor 
SDF-1 to branch and develop new vessels. SDF-1– 
CXCR4 interaction increases VEGF production by 
endothelial cells, and VEGF and bFGF in turn 
enhances SDF-1[109, 110]. VEGFR1+VLA-4+ haemato-
poietic progenitors move from bone marrow and 
home to tumour-specific pre-metastatic sites and form 
cellular clusters before the arrival of tumour cells. 
These haematopoietic progenitors dictate organ- 
specific tumour spread through angiogenesis and 
chemotaxis.  

Immunosuppression niche 
Cancer cells somehow are like “foreign” 

material. Immune system recognizes and eliminates 
the cancer cells during the early phase of cellular 
transformation. The process of tumor immuno-editing 
includes the following three key phases: elimination, 
equilibrium, and escape[111]. During the escape 
phase, cancer cells resist the selective pressure from 
the immune system by acquiring mutations or 
undergoing other changes that allow for tumor 
progression in the face of an ongoing immune 
response[111-114]. The escaped cancer cells shape the 
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immune system to be immunosuppressive to allow 
themselves to grow. Myeloid-derived suppressor cells 
(MDSC) and regulatory Treg cells are major 
components of the immune suppressive cells. These 
suppressor cells alter the microenvironment through 
the secretion of inflammatory and immunosupp-
ressive cytokines to promote metastasis. There is an 
accumulation of metabolic enzymes that suppress T 
cell proliferation and activation, including IDO and 
arginase, and high expression of tolerance-inducing 
ligands like FasL, PD-1, CTLA-4, and B7[115-117]. 

Tumor-derived vesicles known as exosomes have also 
been implicated promoting differentiation of iTreg 
cells and myeloid derived suppressor cells 
(MDSCs)[118]. Suppressive immune cell populations 
such as Gr1+CD11b+ myeloid cells at secondary organ 
sites increase regional inflammatory cytokines such as 
S100A8 and S100A9 that promotes metastatic 
seeding[119, 120]. Primary tumor induction of S100A8 
and S100A9 expression has also been shown to recruit 
Mac1+ myeloid cells via TLR4 to premetastatic 
sites[121, 122]. 

 

Table 1. Exosomes and the formation of premetastatic niche 

Diseases Exosomal moleculres Type Source cell Target cell Mechanisms Reference 
PDAC MIF protein PDAC cells  macrophages Fibrotic niche [80] 
BCa miR-122 miRNA BCa cells  fibroblasts Glucose metabolism niche [92] 
PC miR-301a-3p miRNA PC cells  macrophages Inflammatory niche [93] 
HCC miR-103 miRNA Hepatoma cells  Endothelia Angiogenesis niche [94] 
NPC miR-23a miRNA NPC cells endothelia Angiogenesis niche [95] 
HCC miR-1247-3p miRNA HCC cells fibroblasts Fibrotic niche [96] 
Gastric cancer EGFR protein gastric cancer cells stromal cells Fibrotic niche [97] 
BCa  miR-23b miRNA MSCs BCa cells dormancy niche [98] 
HCC miR-210 miRNA HCC cells endothelial Angiogenesis niche [99] 
Colon cancer CEACAMs protein Colon cancer cells endothelial  T-cells  Immunosuppression niche [100] 
Notes: PDAC: Pancreatic ductal adenocarcinomas; MIF: macrophage migration inhibitory factor; BCa: breast cancer; PC: pancreatic cancer; HCC: hepatocellular 
carcinoma.NPC:nasopharyngeal carcinoma;EGFR:epidermal growth factor receptor;MSC:mesenchymal stem cell; CEACAMs: carcinoembryonic antigen related cell 
adhesion molecules; 

 

 
Figure 1. Schematic diagram of formation of the premalignant niche and premetastatic niche. Mutations result either from DNA replication errors or 
from the damaging events. Accumulation of unrepaired mutations transforms normal cells. The survival of transformed cells critically depends on the circumstances 
which they reside. The niche at high risk of malignant transformation is associated with aging, fibrosis and obesity. Bone marrow-derived cells (BMDC) including 
haematopoietic progenitors, mesenchymal stem cells, endothelial progenitor cells comprise the main component in the premetastatic niche. Tumor-derived secreted 
factors (TDSFs) are crucial in creating a supportive microenvironment at the metastatic site. Chemokines or cytokines derived from the primary cancer cells 
reprogramming the distant organs and contribute to the establishment of premetastatic niche. Exosomes participate in cell-to-cell communication by the molecules 
enriched in their membrane, remodeling the microenvironment of target organs and help the formation of premetastatic niche. 
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Directional movement of cancer cells to the 
premetastatic niche 

Homing to and seeding in the secondary sites are 
the most important steps in the process of metastasis. 
Homing is a rapid process in which cancer cells 
actively cross the blood/endothelium barrier by 
adhesion interaction. Cell adhesion molecules 
(CAMs) are glycoproteins synthesized by cells, which 
are involved in interaction between cells and cells or 
cells and matrix, and involve in cell signal transduc-
tion and cell migration. CAMs can be divided into 
four main groups: selectins, integrins, Ig superfamily 
and cadherins. Integrins are heterodimeric transmem-
brane adhesion receptors that bind to ECM ligands 
outside a cell to the actin cytoskeleton inside the 
cell[123]. There are several types of integrins on the 
cell surface. The binding specificity allows cells 
expressing certain integrin heterodimers pass through 
an ECM containing specific components[124]. Cells 
sense and respond to their environment through 
spatio-temporal patterns of integrin versus ligand 
expression[124]. Ligands of integrins are fibronectin, 
vitronectin, collagen, and laminin. Integrins play 
physiological or pathological roles depending on the 
components of ECM. Integrin αvβ5, α5β1, α6β4, α9β1 
on the cell surface help to maintain normal 
homeostasis through binding to fibronectin TSP-1. 
Stromal compartment initially inhibit cancer 
progression by maintaining architecture[125]. 
Alterations in integrin including aberrant expression 
and activation of downstream effectors are involved 
in carcinogenesis[39]. Most circulating cancer cells die 
in circulation as a result of shear stress and/or 
anoikis[126]. Activated αvβ3 can keep circulating 
cancer cells from shear stress by binding to leukocytes 
and platelets[127]. When circulating cancer cells once 
arrive at distant organs, integrin-ligand interactions 
help cancer cells colonize to the metastatic 
environment[39]. Cancer cell invasion are heavily 
dependent on integrin-mediated adhesion to the 
ECM[128]. Intergrin α4β1 permits cancer cell 
engagement of fibrinogen, ICAM and VCAM are 
expressed by the vascular and stromal cells of bone 
marrow[129]. Integrin α5β3 on cancer cells not only 
helps the cancer cells home to bone marrow through 
adhering to the vitronectin, osteopontin, bone 
sialoprotein, fibronectin and thrombospondin in bone 
marrow but also serves as physical anchors 
permitting metastatic cells to establish footholds in 
the bone marrow. α6β4, α6β1 and αvβ5 have been 
showed to be expressed in exosomes and mediated 
lung cancer cell metastasis[130]. Exosomal integrins 
can activate the phosphorylation of Src and the 
expression of the pro-inflammatory S100[130]. Cancer 
cell invasion can occur as individual cell migration or 

collective cell migration, both of which are dependent 
on downregulation of E-cadherin induced loosening 
of cell junction[128]. The crosstalk between integrins 
and E-cadherin mediate epithelial cell-cell adhesion 
and cell-matrix adhesion signaling. The balance 
between E-cadherin-mediated adhesion junctions and 
integrin-mediated cell-matrix contacts determine the 
metastasis process. α-catenin has a pivotal role in the 
crosstalk between E-cadherin adhesions and 
integrin-mediated cell–ECM interactions[131]. 

Tumor cell homing to secondary organs is 
regulated by cytokines, chemokines, and their 
receptors [78]. The chemokines, such as CXCL12, have 
been demonstrated a driving role in the directional 
movement of cancer cells which overexpressed 
CXCR4[132]. Lungs, bone, liver, brain, and regional 
lymph nodes that express high levels of stromal 
cell-derived factor-1 (SDF-1α/CXCL12) are the most 
common sites for residence of breast cancer cells 
expressing CXCR4[133, 134]. CXCL12 is also a ligand 
that promotes chemotaxis of endothelial cells and 
hematopoietic progenitors to bone marrow from 
circulation[135, 136]. Factors including VEGF-A, 
TGF-β, and TNF-α attract tumor cells by upregulating 
the expression of S100A8 and S100A9[137].  

Conclusion 
Tumorigenesis and progression of cancer are 

complex processes which transformed cells and 
stromal cells interact and co-evolve. Intrinsic and 
extrinsic factors cause the mutations of cells. A niche 
in high-risk localized cancer cells is characteristics of 
senescence, stromal fibrosis and obese microenviron-
ment which contribute on the survival of mutated 
cells. Cancer cells reprogram the microenvironment 
locally and systemically. The formation of premetast-
atic niche in the secondary organs facilitate the cancer 
cells survival in the distant organs. Strategies to target 
the niche can be promising approach to eradicate 
cancer cells. 
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