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Background: The tumor microenvironment affects the occurrence and development of
cancers, including clear cell renal cell carcinoma (ccRCC). However, how the immune
contexture interacts with the cancer phenotype remains unclear.

Methods: We identified and evaluated immunophenotyping clusters in ccRCC using
machine-learning algorithms. Analyses for functional enrichment, DNA variation, immune
cell distribution, association with independent clinicopathological features, and predictive
responses for immune checkpoint therapies were performed and validated.

Results: Three immunophenotyping clusters with gradual levels of immune infiltration
were identified. The intermediate and high immune infiltration clusters (Clusters B and C)
were associated with a worse prognosis for ccRCC patients. Tumors in the immune-hot
Clusters B and C showed pro-tumorigenic immune infiltration, and these patients showed
significantly worse survival compared with patients in the immune-cold Cluster A in the
training and testing cohorts (n � 422). In addition to distinct immune cell infiltrations of
immunophenotyping, we detected significant differences in DNA variation among clusters,
suggesting a high degree of genetic heterogeneity. Furthermore, expressions of multiple
immune checkpoint molecules were significantly increased. Clusters B and C predicted
favorable outcomes in 64 ccRCC patients receiving immune checkpoint therapies from the
FUSCC cohort. In 360 ccRCC patients from the FUSCC validation cohort, Clusters B and
C significantly predicted worse prognosis compared with Cluster A. After
immunophenotyping of ccRCC was confirmed, significantly increased tertiary lymphatic
structures, aggressive phenotype, elevated glycolysis and PD-L1 expression, higher
abundance of CD8+ T cells, and TCRn cell infiltration were found in the immune-hot
Clusters B and C.
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Conclusion: This study described immunophenotyping clusters that improved the
prognostic accuracy of the immune contexture in the ccRCC microenvironment. Our
discovery of the novel independent prognostic indicators in ccRCC highlights the
relationship between tumor phenotype and immune microenvironment.

Keywords: clear cell renal cell carcinoma, immunophenotyping, immune checkpoint therapies, prognosis
(carcinoma), tumor microenvironment, machine-learning algorithms

HIGHLIGHTS

• This study identified immunophenotyping clusters that
show the prognostic accuracy of the immune contexture
in the ccRCC microenvironment.

• The immune-hot Clusters B and C showed a transcriptional
signature indicative of pro-tumorigenic immune infiltration
and show significantly worse survival compared with the
immune-cold Cluster A.

• Our discovery of the novel independent prognostic
indicators in ccRCC highlights the relationship between
tumor phenotype and the immune contexture.

INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
malignant tumors of the genitourinary system, accounting for
about 5% of all new cases in adult male patients and 3% of new
cases in female patients (Siegel et al., 2020). RCC is classified into
three main histological subtypes, including clear cell RCC
(ccRCC), papillary RCC, and chromophobe RCC, which are
considered to arise from different cell types in the nephron
(Linehan, 2012; Moch et al., 2016; Hsieh et al., 2017). ccRCC
is the predominant subtype of RCC, accounting for 70%–85% of
all RCC patients, and is highly malignant (Gerlinger et al., 2012;
Miller et al., 2019). Although classic histological heterogeneity has
been widely accepted in the research and treatment of RCC, the
latest advances in genomic technologies have revealed different
clinically relevant molecular subtypes, which have aided in
elucidating the molecular basis of RCC as well as mechanisms
underlying the occurrence and development of RCC. These
findings have led to improved targeted treatment measures for
patients with RCC.

Although satisfactory prognosis of localized ccRCC can be
achieved through radical or nephron-preserving nephrectomy,
metastatic or advanced ccRCC requires systematic treatment
strategies (Hofmann et al., 2020). The standard first-line
systematic treatment for metastatic or advanced ccRCC
includes tyrosine kinase inhibitors (TKIs) such as sunitinib or
pazopanib that target the vascular endothelial growth factor
receptor (VEGFR) (Motzer et al., 2007; Escudier et al., 2019;
Porta et al., 2019). While anti-angiogenic drugs effectively inhibit
tumor proliferation and prolong the overall survival of low-risk
ccRCC patients, the objective response rate of these treatments is
unsatisfactory (Heng et al., 2009; Motzer et al., 2009; Sternberg
et al., 2010). Recently, new immune checkpoint therapies (ICTs)
represented by PD-1/PD-L1 and CTLA-4 inhibitors have been

demonstrated in clinical trials as treatments for ccRCC (Motzer
et al., 2019). However, because of the high tumor heterogeneity
and low somatic mutation burden of ccRCC, an accurate and
effective model for the prediction of clinical treatment is required
(Grimm et al., 2019; Kotecha et al., 2019).

To reveal the underlying molecular heterogeneity of ccRCC,
Brannon et al. analyzed the transcriptional expression profiles of
48 ccRCC patients and identified two molecular subtypes of
ccRCC (ccA and ccB) (Brannon et al., 2010). A meta-analysis
of large-scale ccRCC subsequently confirmed this classification
and identified a new subtype (cluster_3) associated with von
Hippel-Lindau (VHL) gene mutation (Brannon et al., 2012). The
Cancer Genomic Atlas (TCGA) analyzed extensive
transcriptional profiles of ccRCC patients and recognized four
molecular subtypes of ccRCC (m1–m4) with various somatic
mutations and distinct prognosis (Cancer Genome Atlas
Research Network, 2013). In the metastatic setting, four
molecular subtypes (ccrcc1–4) related to the objective response
rate and overall survival (OS) of angiogenesis inhibitors sunitinib
and pazopanib were identified. These subtypes differ not only in
mRNA expression profiles but also in somatic mutations,
methylation status, and immune cell infiltration in the tumor
microenvironment (TME) (Beuselinck et al., 2015).

The cells and molecules in the TME are in a process of
dynamic change, reflecting the evolutionary nature of cancer,
and together these factors promote the proliferation, apoptosis,
metastasis, and immune escape of cancer cells (Fridman et al.,
2017). A large amount of evidence has shown that not only does
the efficacy of immunotherapy depend on activation of the tumor
immune microenvironment, but the efficacy of traditional
targeted therapy also depends on the strength of the individual
antitumor immune response (Fridman et al., 2017; Kawakami
et al., 2017). ICTs combined with TKIs effectively inhibit the
occurrence and development of advanced ccRCC and induces the
normalization of antitumor immunity, which depends on a deep
understanding of the interaction between tumor cells and TME
(Chen and Mellman, 2017). ccRCC patients are mainly of
immune infiltrating type (73%), enriched with antitumor M1
macrophages, activated CD4+ memory T cells, and activated NK
cells, but the immune contexture failed to accurately predict the
efficacy of anti-PD-1 therapy and mTOR inhibitors (Braun et al.,
2020). Our previous studies identified a relationship between
immune component infiltration in TME and prognosis of ccRCC
patients as well as TME regulatory cytokines and emphasized the
role of TME-related markers in the prognosis of ccRCC patients;
our findings also supported the use of precise immunotherapy for
high-risk ccRCC patients (Xu et al., 2019). Therefore, exploring
the underlying mechanism of TME-driven tumorigenesis and
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development is of great significance for developing potential
therapeutic prediction models, improving the effectiveness of
existing treatment strategies, and discovering novel precise
targets for ccRCC treatment.

The TME affects the development, occurrence, and treatment
resistance of cancers including ccRCC. However, how the
immune cell mixture interacts with the cancer phenotype and
affects pathogenesis remains unclear. We therefore sought to
identify novel immunophenotyping subtypes of ccRCC that may
help improve the prognostic accuracy and of immune contexture
in the ccRCC microenvironment based on large-scale data, with
the aim of providing a theoretical basis for the development of
individual precise treatment strategies of ICTs.

METHODS

Data download and preprocessing from the
training, testing, and validation cohorts
The RNA sequencing data of 531 ccRCC patients were obtained
from The Cancer Genome Atlas (TCGA, https://portal.gdc.
cancer.gov) with gene IDs converted from Ensembl ID to gene
symbol matrix. The FPKM gene expression profile was measured
experimentally using the Illumina HiSeq 2000 RNA Sequencing
platform by the University of North Carolina TCGA genome
characterization center. Level 3 data were downloaded from the
TCGA data coordination center, with available
clinicopathological and survival data. In addition, the
phenotypic and clinical data of 531 ccRCC patients were
obtained from the TCGA training cohort and 91 ccRCC
patients from the International Cancer Genome Consortium
(ICGC, https://dcc.icgc.org/) testing cohort. A total of 770
genes were downloaded from The nCounter® PanCancer
Immune Profiling panel (https://www.nanostring.com/
products/ncounter-assays-panels/oncology/pancancer-immune-
profiling/) and 758 immune genes were matched in the TCGA
database for further analysis (Cesano, 2015).

A total of 64 ccRCC patients receiving ICTs alone or combined
with TKI treatments were enrolled from the Fudan University
Shanghai Cancer Center (FUSCC, Shanghai, China) cohort. A
total of 360 ccRCC patients with long-term follow-up
information from FUSCC cohort were enrolled as prognostic
validation cohort of immunophenotyping clusters.

Construction of immune-phenotyping and
subgroup analysis
To identify prognostic clusters based on tumor immune
microenvironment features, we enrolled large-scale ccRCC
cohorts with available RNA-seq data and constructed immune
clusters based on 758 immune genes; the association between the
immune clusters and tumor heterogeneity was then explored.

The correlation matrix was calculated based on the
expression of 758 genes. The R “pheatmap” package was
utilized to hierarchically cluster the correlation matrix of
patients, where the correlation was used as the clustering
distance and ward.D as a link (Galili et al., 2018). Besides,

cutree function was utilized to identify subgroups of ccRCC
samples. In order to determine the optimal number of clusters
for each queue, “Cluster” package of R software was used to
perform a contour analysis on KMeans. The subgroup myeloid
infiltration score, dryness index score, immune score, and
mutation were calculated, and the survival analysis of the
subgroups was performed using the Kaplan–Meier method.

Construction of a classifier to predict
immunophenotyping clusters
Next, the immunophenotyping clusters were established using a
machine-learning algorithm and used to categorize ccRCC
patients for easier clinical application. Immune subgroups
were predicted by binomial logistic regression using R
software “glmnet” package (Engebretsen and Bohlin, 2019),
which could assign samples divided into groups without
unsupervised clustering. The risks score of 28 hub immune
genes used for predicting immunophenotying clusters of
ccRCC are shown in the supplementary tables and mentioned
in the results section.

The binomial distribution was used to develop a logistic
regression predicting the classification based on the gene
expression profile. Besides, operating characteristic curve
(ROC) curves were plotted using the R software “pROC”
package. The area under the curve (AUC) is used to evaluate
the specificity and sensitivity of the clusters. Logistic regression
coefficients were used to calculate the risk scores of each ccRCC
sample.

Assessment of immune cell infiltration
To assess the absolute proportion of 22 infiltrating immune cells
in ccRCC samples from TCGA, we performed the CIBERSORT
algorithm (Chen et al., 2018). As a deconvolution algorithm,
CIBERSORT utilizes a set of reference gene expression values
(547 genes) to predict the proportion of immune cell types using
support vector regression. In order to evaluate the reliability of
the deconvolution method, the “CIBERSORT” R package
provides a p value for each sample using a default feature
matrix with perm � 100 times for analysis.

Single sample gene set enrichment analysis
The GSVA Bioconductor R package was used for genome
functional enrichment analysis. The C2 and hallmark datasets
were downloaded from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb), collecting a variety of function
annotations including epithelial–mesenchymal transitions
(EMTs), stem cell proliferation, and cell cycle-related pathways.

Assessment of DNA variation
The single-nucleotide polypeptide (SNP) data andMAF profile of
ccRCC patients were downloaded from FireBrowse (http://
firebrowse.org/) and analyzed using the R “maftools” package.
The copy number variation (CNV) data with level 3 was
downloaded from Broad Institute and analyzed using the
GISTIC2 module in the GenePattern cloud platform, with
Reference Genome Fileselects selecting “hg19.”
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Assessment of immunotherapy efficacy and
long-term prognostic implications
Differential immune checkpoint molecular expression, including
PD-L1, PD-L2, LAG-3, IL-8, PDCD1, CTLA4, and TIGIT, and
PBRM1 expression were enrolled between immunophenotyping
clusters. Then, we enrolled 35 ccRCC patients receiving ICTs
from the CA209-009 cohort with gene-specific enrichment in
clinical benefits. Moreover, RT-qPCR was utilized to evaluate the
relative expression of hub genes and immunophenotyping
clusters. A total of 64 ccRCC patients receiving ICTs alone or
combined with TKI treatments were enrolled from the Fudan
University Shanghai Cancer Center (FUSCC, Shanghai, China)
cohort. A total of 360 ccRCC patients with long-term follow-up
information from the FUSCC cohort were enrolled as a
prognostic validation cohort of immunophenotyping clusters.

Evaluation of tumor immune
microenvironment characterizations
The tertiary lymphoid structure (TLS) was assessed using
hematoxylin–eosin (HE) staining, and immunohistochemistry
(IHC) was utilized to evaluate the expression level of Ki-67
(ab15580; Abcam), Glut-1 (ab115730; Abcam), and PD-L1
(ab205921; Abcam) according to procedures, as previously
described (Wang et al., 2020). Then, an opal multispectral was
used to identify differential immune cell infiltration. CD3 (Kit-
0003, Maxim, Shenzhen, China), CD4, (RMA-0620, Maxim,
China), CD8 (RMA-0514, Maxim, China), CK (Kit-0009,
Maxim, China), FoxP3 (98377, CST), and PD-L1 (13684, CST)
antibodies were added to the slide and incubated overnight in a
humidified chamber at 4°C. An HRP-labeled goat anti-rabbit/
mouse secondary antibody was added dropwise and incubated at
37°C for 30 min. Finally, the slices are imaged and quantitatively
analyzed on a multispectral imaging system (Vectra® Polaris™,
Shanghai, China).

Statistical analysis
In the statistical analyses, theWilcox test was used to compare the
differences between the two groups of samples. The survminer of
the R package and X-tile, a single-function software developed by
Yale University, were utilized to take the best cutoff value for all
survival analyses. The survival curve was analyzed by
Kaplan–Meier, and the log-rank test was used to determine
the significance of the difference. The receiver operating
characteristic (ROC) is used to evaluate prediction sensitivity
and specificity of immunophenotyping clusters in the disease
progression, and the AUC is used to evaluate the specificity and
sensitivity of the model.

RESULTS

The TME has been implicated in various malignant biological
processes, including carcinogenesis, irregular cellular
metabolism, and abnormal immune regulation. This study was
conducted in three phases to explore immunophenotyping

clusters of ccRCC, and the study flow is shown in Figure 1.
First, we enrolled large-scale ccRCC cohorts with available RNA-
seq data and constructed immune clusters based on 758 immune
genes; the association between the immune clusters and tumor
heterogeneity was then explored. Second, the
immunophenotyping clusters were established using a
machine-learning algorithm and used to categorize ccRCC
patients; the clusters showed differences in DNA variation,
functional enrichment, clinical features, survival benefits,
immunotherapy responses, immune cell distribution, and the
tumor immune microenvironment in silico. Third,
immunophenotyping clusters were used to estimate TME
characterizations, long-term prognosis, and predictive
responses to ICTs for ccRCC patients from public to real-
world validation cohorts.

Screening and initial construction of
subgroups based on 758 immune genes
First, we matched immune genes in the nCounter® PanCancer
Immune Profiling panel with those in transcriptome data from
the TCGA database and obtained the expression profile of 758
immune genes (Supplementary Table S1A,B). We then obtained
the correlation matrix, hierarchically clustered the correlation
matrix of ccRCC patients, and confirmed three subgroups
(Clusters A, B, and C) as the optimal clustering (Figures
2A,B; Supplementary Table S1C). We enrolled traditional
clinicopathological indicators of 531 ccRCC samples from the
TCGA database and found that the expression of immune genes
in Cluster C patients was markedly higher than that of the other
two subgroups, and the expression of immune genes in Cluster A
was at an intermediate level (Figure 2C).

Relation between immune clusters and
tumor heterogeneity of ccRCC
We next analyzed the immune clusters and tumor heterogeneity
information at genetic and epigenetic levels (Figure 3A). The
results indicated that VHL and PBRM1 genes were the most
frequently mutated genes in ccRCC, and Cluster A showed a
relatively higher mutation rate than Clusters B and C. We also
performed subgroup analysis of ccRCC and found significantly
differential heterogeneity in methylation, miRNA, and mRNA
levels among the three subgroups (p < 0.05). Next, we
measured the myeloid infiltration score (StromalScore), immune
score (ImmuneScore), tumor purity (ESTIMATEScore), and
stemness index score (mRNAsi) among subgroups based on
RNA expression data from the TCGA database (Figures 3B–E;
Supplementary Table S2A). Overall, these results revealed
significant differences in tumor heterogeneity among the three
immune clusters using the Kruskal–Wallis test (p < 0.001).

Immune clusters predict outcomes of
ccRCC in training and testing cohorts
We analyzed the prognosis of the three immune subgroups and
found that patients in Clusters B and C showed similar outcomes
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and significantly poorer survival compared with Cluster A (p <
0.0001; Figure 3F). We then combined Clusters B and Clusters C
into the newly defined Clusters B and C (Supplementary Table
S2B) and compared the prognosis between Cluster A and Cluster
B and C. The results revealed markedly poor survival in Clusters
B and C compared with Cluster A (p < 0.0001; Figure 3G). To
validate the prognostic value of the immune clusters, we enrolled
91 ccRCC patients with available RNA-seq data from the ICGC
cohort (Figure 3H; Supplementary Table S3). The clinical
outcomes among three subgroups showed no significant
differences (p � 0.085; Figure 3I). However, significantly
poorer prognosis was observed in Clusters B and C compared
with Cluster A (p � 0.049; Figure 3J).

Construction of a classifier to predict
immune subgroups using machine-learning
algorithms
To further explore differences between the subgroups and
improve the clinical translational efficacy, we implemented a
series of machine-learning algorithms to develop a simple
predictor predicting immune clusters, thereby randomly
assigning all samples to the group with poor or good
prognosis until the best prediction efficiency is obtained. A
total of 28 hub immune genes were identified for the
prognostic predictor for subgroup classification, named
immunophenotyping clusters (AUC � 0.914; Figure 4A;
Supplementary Table S4A). As shown in Supplementary

Figure S3, we summarized prognostic implications of
significant hub immune genes in ccRCC. The K–M survival
analysis emphasized the prognostic significance of SOCS1,
SAA1, TLR3, PRKCE, HNRNPA2B1, PDCD1, IL1R2,
FCGR1A, CD36, CASP3, CARD11, and BCL2 as cancer-
promoting factors of ccRCC. For the training set samples,
immunophenotyping clustering was used to analyze whether
the samples belonged to Cluster A or Clusters B and C.
Through model prediction, 91.9% of the samples were
assigned to Cluster A, and 90.8% of samples were assigned to
clusters B and C (Figure 4B; Supplementary Table S4B). We
observed significant differences in survival between the
immunophenotyping clusters of ccRCC patients (p < 0.0001;
Figure 4C). The logistic regression coefficient was further used to
calculate the risk score of each sample; the risk score of Clusters B
and C was significantly higher than that of Cluster A (p < 2e-16;
Figure 4D; Supplementary Table S4C).

Clinicopathological characteristics of
immunophenotyping clusters
Next, we analyzed the differences of various clinical indicators in
the different immunophenotyping clusters. Interestingly, we
found a significantly decreased tumor purity in Clusters B and
C, which showed with worse prognosis, compared with Cluster A
(p � 2.9e-08; Supplementary Figure S2A). The methylation and
mRNA expression levels of CDKN2A in Clusters B and C were
significantly higher than in Cluster A (p < 1e-04; Supplementary

FIGURE 1 | Computational and experimental workflow for immunophenotyping clusters.
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Figure S2B,C), while the total number of mutations between the
two clusters did not show significant differences (p � 0.16;
Supplementary Figure S2D).

We also analyzed other phenotypic indicators between the
immunophenotyping clusters, such as sex, age, tumor stage,
smoking status, microsatellite instability (MSI), resection, or
biopsy site. We found significantly more ccRCC patients from
Clusters B and C in the smoker group and fewer patients from
Clusters B and C in the non-smoker group (p < 0.05;

Supplementary Figure S2E). Clusters B and C also showed a
significantly elevated risk score compared with Cluster A
regardless of smoking status (p < 0.001; Supplementary
Figure S2F). Significantly higher numbers of male patients
were present in Clusters B and C (p < 0.05; Supplementary
Figure S2G). MSI and age did not show differences in the two
subgroups (p < 0.05; Supplementary Figure S2H,I). As shown in
Supplementary Figure S2J, more patients from Clusters B and C
were in advanced stages compared with patients in Cluster A.

FIGURE 2 | Screening and initial construction of subgroups based on 758 immune genes. (A, B)Hierarchically clustering of 758 immune genes from the nCounter
®

PanCancer Immune Profiling panel. (C) Construction of subgroups based on 758 immune genes enrolled traditional clinicopathological indicators of 531 ccRCC
samples from the TCGA database.
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FIGURE 3 | Immune clusters predict tumor heterogeneity and outcomes of ccRCC in training and testing cohorts. (A) Association between the immune clusters
and tumor heterogeneity in genetic and epigenetic levels. (B–E) The myeloid infiltration score (StromalScore), immune score (ImmuneScore), tumor purity
(ESTIMATEScore), and stemness index score (mRNAsi) based on RNA expression data from the TCGA database were measured among subgroups using the
Kruskal–Wallis test. (F) Prognosis was compared in the three immune subgroups in the TCGA-ccRCC cohort. (G) Prognosis was compared between Cluster A and
the newly defined Clusters B and C in the training cohort. (H–J) Prognostic value of the immune clusters in 91 ccRCC patients from the ICGC testing cohort.
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Immune cell infiltration analysis of
immunophenotyping clusters
To explore differences in immune cell distribution, the
CIBERSORT algorithm was used to analyze the absolute
proportion of 22 infiltrating immune cells in ccRCC samples
from the TCGA database (Supplementary Table S5). There were
significant differences in immune cell infiltration between the
immunophenotyping clusters, especially in plasma cells, CD4
memory resting T cells, follicular helper T cells, regulatory T cells
(Tregs), resting dendritic cells, and resting mast cells (Figures
5A,B). A significant increase of CD8+ T cells was found in
Clusters B and C compared with Cluster A. We also assessed
the distribution of risk ratios in each immune cell infiltration and
identified the prognostic implications. As shown in
Supplementary Figure S3, there were significantly differences
in survival associated with CD4 memory-activated T cell,
follicular helper T cell, Tregs, CD4 memory resting T cell, and
resting mast cell infiltration. In addition, we examined the
prognostic value of lymphocyte-derived and myeloid-derived
immune cell infiltration using univariate Cox analysis, as
shown in Figure 5C. The results suggested that elevated
lymphocyte-derived CD4+ memory activated T cells (HR �
1.15), Tfh cells (HR � 1.12), and Treg cells (HR � 1.10) were
significantly correlated with poor outcomes for ccRCC patients,
while elevated myeloid-derived resting mast cells (HR � 0.89)
predicted favorable prognosis for ccRCC patients.

Function enrichment analysis of
immunophenotyping clusters
To evaluate the differences in biological function between the
two immunophenotyping clusters, we performed genomic
function enrichment analysis using GSVA. The Wilcox test
was used to identify differentially expressed genes (DEGs) in
the two immunophenotyping clusters. According to the
screening criteria of |log2FC|>1 and adj.pvalue<0.01, we
screened out 1,045 DEGs, with 157 genes upregulated in
Cluster A and 888 genes upregulated in Cluster B and C
(Supplementary Table S6A). GSEA was used to explore the
functional annotations of the upregulated DEGs in Clusters B
and C, and these DEGs were significantly enriched in C2
functions such as TP53 targets, REACTOME innate immune
system, and tumorigenesis hallmarks such as estrogen response
late and KRAS signaling down (Figures 5D,E; Supplementary
Table S6B,C). Furthermore, the GSVA algorithm suggested that
samples in Cluster A were highly enriched in immune and
metabolic hallmarks such as hedgehog signaling, pancreas beta
cells, and fatty acid metabolism. In Clusters B and C, samples
were highly enriched in proliferation functions such as the
mitotic cell cycle, hypoxia, and EMT process (Figure 5F,
Supplementary Table S6D). Next, the generalized linear
model Cox regression model was used to test the
contribution of each function to risk of prognosis for
patients with ccRCC (Figure 5G). These results indicated

FIGURE 4 | Construction of a classifier to predict immune subgroups using machine-learning algorithms. (A)Machine-learning algorithms were used to develop a
simple predictor to predict immune clusters, thereby randomly assigning all samples to the group with poor or good prognosis until the best prediction efficiency is
obtained. A total of 26 hub immune genes were identified for the prognostic predictor for subgroup classification. (B) For the training set samples, immunophenotyping
clustering was used to determine whether the samples belonged to Cluster A or Clusters B and C. (C). Survival difference between immunophenotyping clusters of
ccRCC patients in the training cohort. (D) The logistic regression coefficient was further used to calculate the risk score of each sample.
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FIGURE 5 | Immune cell infiltration and function enrichment analysis of immunophenotyping clusters. (A, B) The CIBERSORT algorithm was performed to analyze
the absolute proportion of 22 infiltrating immune cells and explore differential immune cell distribution in ccRCC samples from TCGA. (C) Prognostic value of lymphocyte-
derived and myeloid-derived immune cell infiltration using univariate Cox regression analysis in a forest plot. (D, E) To evaluate the differences in biological function
between the two immunophenotyping clusters, the Wilcox test was used to identify DEGs in the two immunophenotyping clusters. According to the screening
criteria of |log2FC|>1 and adj.Pvalue<0.01 (SupplementaryMaterials), GSEAwas used to explore the functional annotations of upregulated DEGs in Clusters B and C.
(F) The GSVA algorithm suggested significantly enriched hallmarks in Cluster A and Clusters B and C. (G) Generalized linear model Cox regression model was used to
test the contribution of each function to Clusters B and C and Cluster A.
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that inflammatory response signaling has a positive effect on
prognosis, while the mitotic cell cycle and IL6/JAK/STAT3
signaling are prominent risk factors for ccRCC patients.

Based on these results, we hypothesized that IL6/JAK/STAT3
signaling or proliferative phenotype could be a factor leading to
the poor prognosis of Clusters B and C.

FIGURE 6 | Clinicopathological characteristics of immunophenotyping clusters. (A) Differences of various clinical indicators in different immunophenotyping
clusters. (B, C) Methylation and mRNA expression level of CDKN2A in immunophenotyping clusters. (D) Total number of mutations in immunophenotyping clusters.
(E–I) Phenotypic indicators, such as gender, age, tumor stage, smoking status, MSI, resection, and biopsy site, in the immunophenotyping clusters. (J) Patients in
immunophenotyping clusters distributed according to AJCC stages.
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DNA variation landscape of
immunophenotyping clusters
To further explore DNA variation profiles of the two
subgroups, we analyzed the differences in single-nucleotide
polymorphisms (SNPs) and CNVs between groups. We found
marked differences between copy number amplification and
deletion in the two subgroups (Figure 6A). Amplified regions
in Cluster A were largely located in 5q11.4, 5q21.3, and
5q35.2, while deleted regions were mainly located in
1q42.3, 2q37.1, 3p14.3, and 6q27. Amplified regions in

Clusters B and C were largely located in 3q26.33, 5q21.3,
and 5q35.3, which is similar with Cluster A, while deleted
regions were mainly located in 1p36.11, 3p25.3, 3q12.3,
9q21.3, and 10q23.31, which were different compared with
Cluster A. Additionally, there were significant differences in
the Gistic score of the two groups (Figures 6B,C;
Supplementary Table S6E,F). We next performed
clustering analysis between the immunophenotyping
clusters based on SNP, genes with frequent mutations or
alterations, and clinical characteristics (Figure 6D). The

FIGURE 7 | Immunotherapy efficacy analysis of immunophenotyping clusters. (A–H) Expressions of immune checkpoint molecules, including PD-L1, PD-L2,
LAG3, IL-8, PDCD1, CTLA-4, and TIGIT, and PBRM1, were compared using Students’ t test. (I) A total of 35 ccRCC patients receiving ICTs from the CA209-009 cohort
with RNA-seq data and clinical responses to treatment. (J) Response status in 64 ccRCC patients receiving ICTs alone or combined with TKIs from the FUSCC cohort.
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results indicated that Clusters B and C were accompanied
with advanced clinical indicators and frequent TTN, SETD2,
and BAP1 gene mutations.

Immunotherapy efficacy analysis of
immunophenotyping clusters
To further investigate the predicted responses of
immunophenotyping clusters to ICTs, we compared immune
checkpoint gene expressions and found that expressions of PD-
L1, PD-L2, LAG-3, IL-8, PDCD1, CTLA-4, and TIGIT were

significantly elevated in Clusters B and C compared with
Cluster A, suggesting an immune-infiltrated TME of ccRCC
(Figures 7A–G). No differences in PBRM1 expression were
observed in the two subgroups (Figure 7H). We then enrolled
35 ccRCC patients receiving ICTs from the CA209-009 cohort
with specific RNA-seq data and clinical response data. Patients in
Clusters B and C were significantly inclined to clinical or
intermediate benefit (n � 22) rather than the no clinical
benefit group (n � 13) (p � 0.035; Figure 7I). Moreover, after
grouping 64 ccRCC patients receiving ICTs alone or combined
with TKI in the FUSCC cohort, we found prominently increased

FIGURE 8 | Prognostic implications and TME characterizations of immunophenotyping clusters in a real-world validation cohort. (A, B) A total of 360 ccRCC
patients with long-term follow-up information from the FUSCC cohort were enrolled to identify the prognostic value of immunophenotyping clusters in the validation
cohort. (C–G) Characteristics of the tumor microenvironment between immunophenotyping clusters were explored using (H, E) and immunohistochemical staining
analysis in different clusters. (H) Opal multi-label IHC staining was used to identify the abundance of CD8+ T cells, CD4+FOXP3+ Treg cells, and CD3+CD4+CD8+

TCRn immune cell infiltration and PD-L1 expression in clusters.
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ccRCC patients from Clusters B and C (13/32) with CR/PR status
than patients in Cluster A (6/32) (Figure 7J).

Prognostic implications of immunophenotyping clusters in
360 ccRCC patients from the FUSCC validation cohort.

Although immunophenotyping clusters markedly defined the
poor prognosis of ccRCC patients in the training cohort (TCGA,
n � 531) and testing cohort (ICGA, n � 91), large-scale real-world
validation evidence was required to confirm the clinical
translational value. We thus identified immunophenotyping
clusters of 360 ccRCC patients with long-term follow-up
information from the FUSCC validation cohort and performed
survival analysis (Supplementary Table S7). The results showed
that Clusters B and C significantly predicted worse OS compared
with Cluster A (p < 0.0001, HR � 2.675). The median OS time in
Clusters B and C was 66 months compared with 11 months in
Cluster A (Figure 8A). In addition, Clusters B and C significantly
correlated with poor PFS compared with Cluster A (p < 0.0001,
HR � 2.822). The median PFS in Clusters B and Cwas 38 months,
while that in Cluster A was 104 months (Figure 8B).

The TME characterizations differ in
immunophenotyping clusters
To provide more experimental evidence for clinical translation,
we explored characteristics of the TME in the
immunophenotyping clusters. After identification and
classification of 64 ccRCC samples receiving ICTs in the
FUSCC cohort, we performed H&E and immunohistochemical
(IHC) staining analysis in the different clusters (Figure 8C). We
found markedly more cases containing TLS in Clusters B and C
(37.5%) than in Cluster A (37.5%), suggesting a relatively
immune-enriched microenvironment with increased
accumulation of mature tumor-infiltrated lymphocytes, such as
CD8+ T cells (Figure 8D). IHC analysis revealed a significantly
more aggressive malignant phenotype, elevated activated
glycolysis effect, and PD-L1 expression in Clusters B and C
(Figures 8E–G). After opal multi-label IHC staining, we found
an increased abundance of CD4+FoxP3+ Treg cells, CD8+ T cells,
and CD-predicted favorable response to ICTs for patients with
3+CD4+CD8+ TCRn immune cell infiltration in immune-
excluded Clusters B and C compared with immune-desert
Cluster A (Figure 8H). Besides, the expression level of PD-L1
was also significantly increased in the Cluster B and C group.
Overall, the findings suggested that the pro-tumorigenic Clusters
B and C may be associated with an immune-enriched TME and
the ccRCC.

DISCUSSION

This study identified three immunophenotyping clusters in
ccRCC with gradual levels of immune infiltration using
758 immune-related genes. As an immune-hot Cluster,
Clusters B and C were associated with worse prognosis
independent of known clinicopathological indicators, such as
myeloid infiltration score, immune score, dryness index score,
and mutation. The relatively immune-hot Clusters B and C

showed a transcriptional signature indicative of pro-
tumorigenic immune infiltration in tumors, and these patients
showed significantly worse survival compared with the immune-
cold Cluster A. To improve the clinical translational value of the
model, we constructed a logistic regression algorithm and
identified 26 immune genes constituting a prognostic predictor
for subgroup classification. In addition to the distinct immune
cell infiltrations in immunophenotyping, there were significant
differences in SNVs and CNVs, suggesting a high degree of
genetic heterogeneity between the subgroups. We identified
two mutually exclusive aggressive tumor phenotypes in
ccRCC. Through phenotypic analysis, we found that
proliferation and mitotic cell cycle and IL6/JAK/STAT3
signaling were risk factors for Clusters B and C, and multiple
metabolic pathways contributed to the survival benefits of Cluster
A. Furthermore, the expressions of multiple immune checkpoint
molecules, such as PD-1, PD-L1, PD-L2, CTLA-4, and TIGIT,
were significantly increased. Importantly, Clusters B and C
predicted favorable outcome in 64 ccRCC patients receiving
ICTs in the FUSCC cohort. In 360 ccRCC patients in the
FUSCC cohort, Clusters B and C significantly predicted worse
prognosis compared with the immune-cold Cluster A. After
immunophenotyping of ccRCC was confirmed, significantly
abundant tertiary lymphatic structures, aggressive phenotype,
elevated glycolysis and PD-L1 expression, higher abundance of
CD8+ T cells and CD4+ FOXP3+ Treg cells, and M1 macrophage
cell infiltration was found in the immune-infiltrated Clusters B
and C compared with immune-excluded Cluster A. Therefore,
under a paradigm of targeted therapies, such as TKIs, two of the
clusters that are “immune-hot” exerted poorer prognosis but
might be uniquely responsive to immune checkpoint blockade,
thereby improving treatment outcomes for ccRCC patients.

Previous studies have demonstrated that molecular
classification of ccRCC showed a prognostic impact in patients
treated with VEGFR-TKIs (Beuselinck et al., 2018). The
molecular ccrcc1–4 classification of metastatic ccRCC revealed
a high predictive value with a significantly higher PFS and OS in
patients who received targeted therapy with sunitinib (Verbiest
et al., 2018). Mutation of PBRM1 and tumor mutation burden
were significantly correlated with poor and good outcome,
respectively, which is clinically instructive for the application
of molecular targeted therapy and ICTs (Kapur et al., 2013). A
previous investigation identified 34 prognosis-related genes
through analyzing RNA sequencing expression data and
constructed a classifier that divides ccRCC patients into low-
(ccA) and high-risk (ccB) groups (Brannon et al., 2010). When
the ccrcc1–4 classifier was used to verify the ccA and ccB clusters,
a high degree of similarity was found between ccrcc2 and ccA
clusters, as well as ccrcc1/4 and ccB clusters (de Velasco et al.,
2017). Different from other tumors, in ccRCC, non-synonymous
mutations, neoantigens, insertions, or deletions caused by
chromosomal structural changes and somatic CNVs were not
associated with the efficacy of PD-1 inhibitors (Braun et al., 2020).
In addition, the higher level of CD8+ T cell infiltration in ccRCC
was associated with a poorer prognosis, which was also observed
in patients from the Cluster B and C group in this study (Darrow
et al., 2020; Black and McGranahan, 2021). However, a large
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amount of evidence has suggested that not all TMB-high solid
tumors are sensitive to ICTs, and high tumor neoantigens are not
necessarily accompanied by an increased abundance of CD8+

T cell infiltration (McGrail, 2021). Therefore, further tumor type-
specific studies are warranted in investigating biomarkers
for ICTs.

This study is the first that accurately groups the immune
microenvironment in the ccRCC microenvironment. We found
that the immune-hot Clusters B and C have pro-tumorigenic
immune infiltration and a significantly worse survival than the
immune-cold Cluster A, which can be implemented as a novel
independent prognostic indicator, highlighting the close
relationship between tumor phenotype and the immune
contexture. We also developed the construction of classifiers
for different immunophenotyping clusters and identified a
simple prediction classifier through machine-learning
algorithms. The prediction efficiency of the original model
was highly consistent, which greatly improved the clinical
transformation efficiency. Further phenotypic analysis and
functional annotation revealed two mutually exclusive
invasive tumor phenotypes in ccRCC: one is related to
mitotic cell cycle process, and the other is related to
metabolism, suggesting heterogeneity between the ccRCC
immunophenotyping clusters. In addition, a high-quality
signature for ccRCC to predict the efficacy of
immunotherapy was developed. A large amount of evidence
in this study shows that the new immunophenotyping of ccRCC
significantly predicts the response to ICTs. Besides, describing
the correlation between TLS and the clinical benefit of cancer
patients, indicating that TLS may be a prognostic and predictive
factor, could arouse strong interest in studying the role of TLS in
ccRCC.

This study had several limitations. First, this study has not
clarified the underlying mechanism of the
immunophenotyping clusters of ccRCC. Our future studies
will include ccRCC specimens receiving ICTs to explore
differences in the immune environment and intratumoral
heterogeneity of TME between clusters. Second, although
the classifier was constructed and validated using multiple
public and real-world datasets, because of the limitation of
retrospective analysis, further multicenter studies and
prospective trials are warranted for clinical application for
patients with ccRCC.

CONCLUSION

This study described immunophenotyping clusters that improve
the prognostic accuracy of the immune contexture in the ccRCC
microenvironment. The immune-hot Clusters B and C showed a
transcriptional signature indicative of pro-tumorigenic immune
infiltration and significantly worse outcome than the immune-
cold Cluster A. Our discovery of novel independent prognostic
indicators in ccRCC highlights the relationship between tumor
phenotype and the immune contexture.
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