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Abstract 

Introduction  This study aims to construct a mortality prediction model for patients with non-variceal upper gas-
trointestinal bleeding (NVUGIB) in the intensive care unit (ICU), employing advanced machine learning algorithms. 
The goal is to identify high-risk populations early, contributing to a deeper understanding of patients with NVUGIB 
in the ICU.

Methods  We extracted NVUGIB data from the Medical Information Mart for Intensive Care IV (MIMIC-IV, v.2.2) data-
base spanning from 2008 to 2019. Feature selection was conducted through LASSO regression, followed by train-
ing models using 11 machine learning methods. The best model was chosen based on the area under the curve 
(AUC). Subsequently, Shapley additive explanations (SHAP) was employed to elucidate how each factor influenced 
the model. Finally, a case was randomly selected, and the model was utilized to predict its mortality, demonstrating 
the practical application of the developed model.

Results  In total, 2716 patients with NVUGIB were deemed eligible for participation. Following selection, 30 out of a 
total of 64 clinical parameters collected on day 1 after ICU admission remained associated with prognosis and were 
utilized for developing machine learning models. Among the 11 constructed models, the Gradient Boosting Deci-
sion Tree (GBDT) model demonstrated the best performance, achieving an AUC of 0.853 and an accuracy of 0.839 
in the validation cohort. Feature importance analysis highlighted that shock, Glasgow Coma Scale (GCS), renal disease, 
age, albumin, and alanine aminotransferase (ALP) were the top six features of the GBDT model with the most signifi-
cant impact. Furthermore, SHAP force analysis illustrated how the constructed model visualized the individualized 
prediction of death.

Conclusions  Patient data from the MIMIC database were leveraged to develop a robust prognostic model 
for patients with NVUGIB in the ICU. The analysis using SHAP also assisted clinicians in gaining a deeper understand-
ing of the disease.
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Introduction
Non-variceal upper gastrointestinal bleeding (NVU-
GIB) refers to bleeding that develops in the esophagus, 
stomach, or proximal duodenum. The annual incidence 
of NVUGIB ranges from 19.4 to 57.0 cases per 100,000 
in the population, accompanied by a mortality rate of 
approximately 6–12%. This condition incurs an annual 
hospital cost exceeding $2.5 billion in the United States 
and is a common presentation in intensive care unit 
(ICU) worldwide [1–3]. Therefore, early risk stratification 
of patients with NVUGIB is imperative for the identifica-
tion of high- and low-risk individuals.

Various risk scores have been devised to anticipate the 
mortality associated with NVUGIB. In an international 
multicenter prospective study, a comparison was made 
among the Glasgow Blatchford score (GBS), Rockall 
score, Progetto Nazionale Emorragia Digestive (PNED) 
score, and AIMS65 score (AIM). The study revealed 
that GBS emerged as the most reliable predictor of the 
need for intervention, while the AIMS65 score demon-
strated the highest accuracy in predicting mortality [4]. 
Moreover, numerous clinical trials have demonstrated 
the substantial impact of factors such as coagulation, 
comorbidities, and low albumin levels on the progno-
sis of gastrointestinal bleeding [5, 6]. Simultaneously, 
various studies have endeavored to formulate scoring 
systems tailored to different patient populations experi-
encing gastrointestinal bleeding [7–9]. Nevertheless, as 
of now, no predictive model has been specifically crafted 
for application in the ICU.

Machine learning (ML) endeavors to replicate human 
abilities in recognizing patterns, constructing predic-
tive models from data, and discerning meaningful data 
groupings [10]. In divergence from traditional predictive 
models, which depend on selected variables for calcula-
tions, machine learning techniques exhibit the capac-
ity to seamlessly integrate a vast number of variables, 
given that all computations are executed by a computer 
[11]. ML algorithm utilized for mortality prediction 
facilitates impartial processing of extensive clinical vari-
ables, allowing for the identification of crucial factors in 
a non-supervised manner. These algorithms empower 
the identification of distinct patient phenotypes and 
enable the visualization of the quantitative contribution 
of each variable to the outcome [12]. Nevertheless, the 
’black-box’ nature inherent in ML algorithms poses chal-
lenges when it comes to elucidating the rationale behind 
specific predictions concerning patients or the particular 
patient characteristics influencing those predictions. To 
mitigate these challenges, this study integrates advanced 
ML algorithms with a framework founded on Shapley 
additive explanations (SHAP) [13]. SHAP offers intuitive 

explanations, enhancing the comprehensibility of risk 
predictions for patients.

The objective of this study is to formulate multiple pre-
dictive models utilizing machine learning techniques and 
identify the optimal-performing model. Following model 
selection, we will employ SHAP to interpret the chosen 
model, thereby unveiling the significant influential fac-
tors for NVUGIB in the ICU.

Methods
Study design
In this retrospective study, patient data were extracted 
from the Medical Information Mart for Intensive Care 
IV (MIMIC-IV, v.2.2) database. Subsequently, ten distinct 
machine learning methods were applied to construct 
a predictive model for mortality. The model that exhib-
ited superior performance was chosen and further inter-
preted using the SHAP method.

Data
We collected data for this study from the Medical Infor-
mation Mart for Intensive Care IV (MIMIC-IV, v.2.2) 
database. MIMIC-IV is a large, freely accessible data-
base containing clinical data from adult patients (aged 
18 years and older) admitted to an ICU at a major tertiary 
care hospital in the US between 2008 and 2019. It encom-
passes over 70,000 ICU admissions [14]. One of our team 
members has effectively fulfilled the Collaborative Insti-
tutional Training Initiative (CITI) examination (Record 
ID: 47937607 for CH) and has been granted authoriza-
tion to access the MIMIC-IV database. Approval for our 
project has been secured from the Institutional Review 
Boards of Beth Israel Deaconess Medical Center (Boston, 
MA, USA) and the Massachusetts Institute of Technol-
ogy (Cambridge, MA, USA). The project was approved 
by the institutional review boards of the Massachusetts 
Institute of Technology (MIT) and Beth Israel Deacon-
ess Medical Center (BIDMC) and was granted a waiver of 
informed content. Additionally, our study adheres to the 
principles of the Declaration of Helsinki and follows the 
guidelines for Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis.

Participants
All patients presenting with NVUGIB were included in 
our study from the MIMIC-IV database. The diagnostic 
ICD codes are detailed in Table 1. Exclusion criteria for 
study participation comprised: (1) patients with multiple 
ICU admissions (only the initial admission was consid-
ered for analysis), and (2) patients with an ICU length of 
stay less than 24 h. The primary clinical outcome was in-
hospital mortality.
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Table 1  Demographic and clinical characteristics at baseline

Characteristics Survivors (n = 2231) Non-survivors (n = 485) P-value

Demographic

 Age, year 65 (54–78) 67 (55–77) 0.373

 Gender

  Male, n (%) 1368 (61.3) 302 (62.3)

  Female, n (%) 863 (38.7) 183 (37.7) 0.697

 Weight, kg 76.6 (64.8–90.8) 77.5 (64.2–92.8) 0.700

Comorbidities

 Cerebrovascular disease, n (%) 242 (10.8) 70 (14.4) 0.025

 Chronic pulmonary disease, n (%) 246 (11) 73 (15.1) 0.013

 Diabetes, n (%) 738 (33.1) 146 (30.1) 0.205

 Heart failure, n (%) 619 (27.7) 162 (33.4) 0.013

 Hypertension, n (%) 830 (37.2) 153 (31.5) 0.019

 Liver disease, n (%) 744 (33.3) 367 (55.1) < 0.001

 Renal disease, n (%) 1192 (53.4) 406 (83.7) < 0.001

 Sepsis, n (%) 362 (16.2) 245 (50.5) < 0.001

 Shock, n (%) 472 (21.2) 313 (64.5) < 0.001

 Tumor, n (%) 28 (1.3) 18 (3.7) < 0.001

Diagnose

 Acute, n (%) 65 (2.9) 8 (1.6) 0.161

 Chronic, n (%) 551 (24.7) 64 (13.2) < 0.001

 Duodenum, n (%) 504 (22.6) 72 (14.8) < 0.001

 Esophagus, n (%) 412 (18.5) 60 (12.4) 0.001

 Inflammation, n (%) 181 (8.1) 27 (5.6) 0.056

 Location unknown, n (%) 1047 (46.9) 337 (69.5) < 0.001

 Stomach, n (%) 623 (27.9) 66 (13.6) < 0.001

 Ulcer, n (%) 1047 (46.9) 337 (69.5) < 0.001

 Obstruction, n (%) 12 (0.5) 2 (0.4) 1

 Perforation, n (%) 13 (0.6) 5 (1) 0.348

Vital signs on day 1

 Heart rate, bpm 91 (78–105) 94 (78.5–110) 0.002

 Systolic blood pressure, mmHg 121 (106–139) 112 (98–130.5) < 0.001

 Diastolic blood pressure, mmHg 66 (55–78) 62 (51–75) < 0.001

 Mean arterial pressure, mmHg 79 (69–92) 74 (63.5–88) < 0.001

 Respiratory rate, times/min 18 (15–22) 20 (17–25) < 0.001

 Body temperature, ℃ 36.78 (36.44–37.06) 36.67 (36.28–37) < 0.001

 SPO2, % 98 (96–100) 98 (95–100) < 0.001

Laboratory findings on day 1

 Alanine aminotransferase, mg 25 (15–48) 37 (20.25–95) < 0.001

 Albumin, g/dL 3.0 (2.6–3.4) 2.7 (2.3–3.2) 0.656

 Alkaline phosphatase, U/L 77 (55–119) 104 (73–162) < 0.001

 Anion gap, mmol/L 14 (12–17) 16 (13–21) < 0.001

 Aspartate aminotransferase, U/L 39 (23–85) 76.5 (34–203.5) < 0.001

 Blood glucose, mg/dL 122 (100–158) 130 (103–175.5) 0.011

 Blood urea nitrogen, mg/dL 29 (18–49) 36 (22–60.5) < 0.001

 HCO3, mmol/L 23 (20–25) 21 (17–24) 0.002

 Hematocrit, % 27.8 (24–32.2) 28.9 (24.2–33.9) 0.008

 Hemoglobin, g/dL 9.3 (8.0–10.8) 9.4 (8.1–11.1) 0.287

 International normalized ratio 1.3 (1.2–1.7) 1.6 (1.3–2.2) < 0.001

 Lactate, mmol/L 1.1 (0–2.1) 2.3 (1.4–4.25) < 0.001
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Variable selection
We meticulously selected 64 candidate variables based on 
their association with the outcome. These encompassed 
demographic factors such as age, gender, body weight, 
and height; comorbidities including cerebrovascular dis-
ease, heart failure, hypertension, shock, chronic pulmo-
nary disease, liver disease, renal disease, tumor, diabetes, 
hepatic failure, melena, and syncope; vital signs (mean 
values in the ICU) such as heart rate, systolic blood pres-
sure, diastolic blood pressure, mean arterial pressure, res-
piratory rate, and body temperature; laboratory findings 
(maximum values) encompassing blood glucose, lactate, 
pH, PCO2, white blood cell count, anion gap, bicarbo-
nate, blood urea nitrogen, serum chloride, serum creati-
nine, serum sodium, serum fibrinogen, serum potassium, 
international normalized ratio, prothrombin time, partial 
thromboplastin time, alanine aminotransferase (ALT), 
alkaline phosphatase (ALP), aspartate aminotransferase 
(AST), total bilirubin, amylase, creatine phosphokinase, 
creatine kinase MB, and lactate dehydrogenase; as well 
as the minimum values for SPO2, PO2, PaO2/FiO2 ratio, 
hematocrit, hemoglobin, platelets, and albumin. Addi-
tionally, we incorporated the Glasgow Coma Scale (GCS) 
and AIMS65 (albumin level < 30  g/L (A), international 
normalized ratio > 1.5 (I), altered mental status (M), sys-
tolic blood pressure ≤ 90  mm Hg (S), and age > 65  years 
(65)) score (Table S1).

For each aforementioned variable, we extracted the 
value recorded within the initial 24  h of ICU admis-
sion. Features exhibiting more than 30% missing data 
were excluded, as illustrated in Supplementary Figure 
S2. To address missing values in the remaining features, 
we applied multiple imputation by chained equations 

(MICE). Given the substantial number of features in the 
cohort, variable selection was executed using the least 
absolute shrinkage and selection operator (LASSO) 
regression, a method adept at preventing overfitting. 
The comprehensive list of input variables utilized in 
the model development is available in Supplementary 
Table S2.

Statistical analysis
Categorical data are presented as counts and percentages, 
and between-group differences were evaluated using the 
Chi-squared test or Fisher’s exact test. Continuous data 
are expressed as means with standard deviations (SDs) or 
medians with interquartile ranges (IQRs), depending on 
the distribution of the data. Group differences for contin-
uous data were analyzed using either analysis of variance 
or the Mann–Whitney U test.

To address missing data with less than 30% in each fea-
ture, we utilized multiple imputation via the ’mice’ pack-
age in R. Feature selection was executed through LASSO 
regression. The population was randomly divided into 
two segments, with 80% designated as the derivation data 
and 20% as the validation data. Our feature engineering 
process for the variables includes two main steps: outlier 
processing and normalization. Firstly, we employ a robust 
similarity measure based on the absolute deviation of the 
median to handle outliers. This approach ensures that 
our datasets are more resilient and dependable during the 
modeling process. Secondly, we normalize the continu-
ous variables by converting them to the Z-scal, result-
ing in a mean of 0 and a standard deviation of 1. After 
tuning hyperparameters for 11 common machine learn-
ing methods, including Support Vector Machine (SVM), 

Table 1  (continued)

Characteristics Survivors (n = 2231) Non-survivors (n = 485) P-value

 Platelet, × 103 /µL 178 (115–244) 150 (83–226) < 0.001

 Prothrombin time, s 14.6 (12.8–18.1) 17.5 (14.25–23.7) < 0.001

 Partial thromboplastin time, s 30.2 (26.8–36.1) 36.85 (29.9–50.88) < 0.001

 Serum potassium, mmol/L 4.1 (3.7–4.6) 4.3 (3.75–4.9) < 0.001

 Serum chloride, mmol/L 106 (101–109) 103 (97–108) < 0.001

 Serum creatinine, mg/dL 1.0 (0.7–1.7) 1.5 (1–2.5) < 0.001

 Serum sodium, mmol/L 139 (136–142) 138 (133–141) < 0.001

 Total bilirubin, mg/dL 0.9 (0.5–2.1) 1.8 (0.7–17.6) < 0.001

 White blood cell, × 103/µL 10 (6.9–14.3) 12.3 (8.3–18.1) < 0.001

Severity of illness scores

 GCS 15 (13–15) 12 (6–15) < 0.001

 AIMS65 2 (2–3) 3 (2–3) < 0.001

 GBS 11 (8–12) 11 (8–13) 0.010

Data are reported as no. (%) or median (IQR), Glasgow Coma Scale (GCS), Glasgow Blatchford Score (GBS), AIMS65 (albumin level < 30 g/L (A), international normalized 
ratio > 1.5 (I), altered mental status (M), systolic blood pressure ≤ 90 mm Hg (S), and age > 65 years (65))
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k-Nearest Neighbors (KNN), eXtreme Gradient Boost-
ing (XGBoost), Decision Tree (DT), Naive Bayes (NB), 
Random Forest (RF), Adaptive Boosting (AdaBoost), 
Gradient Boosting Decision Tree (GBDT), Multilayer 
Perceptron (MLP), Light Gradient Boosting Machine 
(LGBM), Catboost, and logistic regression (LR), models 
were developed in the training cohort. The hyperparam-
eters of each model were tuned using the GridSearchCV, 
which employs grid search and cross-validation tech-
niques. The tuned hyperparameters for each model are 
specified in Table S3.

Performance evaluation of the models in predicting 
mortality was conducted using the area under the curve 
(AUC) and accuracy metrics in the validation cohort. The 
model exhibiting the best performance in the validation 
cohort was designated as the final model. Additionally, 
we assessed the predictive capabilities of illness severity 
scoring systems, including the Glasgow Blatchford Score 
(GBS) and AIMS65 score, to predict the risk of death and 
compared their performance with our final model in the 
validation cohort.

Furthermore, we employed the SHAP method to aug-
ment the interpretability of the ultimate model. Initially, 
the SHAP summary plot was utilized to depict the effects 
of features ascribed to the model. Subsequently, the 
SHAP dependence plot was employed to scrutinize the 
individual influence of features on the model’s output. 
Finally, the SHAP force plot was applied to visually repre-
sent the impact of pivotal features on the ultimate model 
for individual patients.

Based on the results provided by SHAP, we further 
explored the interaction between the first six variables 
using Spearman correlation. Subsequently, we conducted 
interaction analysis for variables exhibiting significant 
correlations.

Simultaneously, to comprehensively understand patient 
prognosis, we extracted the length of hospital stay, 
90-day mortality, and 1-year mortality as secondary out-
come indicators. For 90-day mortality and 1-year mortal-
ity, we applied the same methods used previously to fit 
machine learning models, followed by SHAP analysis to 
explain the best-performing model. For length of stay, we 
utilized Cox proportional hazards model (COX) regres-
sion to assess the impact of each factor on the length of 
stay and outcomes.

All analyses were conducted using Python (v.3.6.6) and 
R (v. 3.6.1, R Foundation for Statistical Computing). Sig-
nificance was determined by two-tailed P values < 0.05.

Sensitivity analysis
We conducted a sensitivity analysis by employing vari-
ous methods for screening variables. Specifically, we uti-
lized the Recursive Feature Elimination (RFE) method 

to extract features. This method begins with a complete 
feature set based on specific criteria for feature ordering, 
then iteratively removes the least relevant features until 
the most important ones are identified. Subsequently, we 
selected the top 30 most important features and trained 
the GBDT model, which was further elucidated using 
SHAP.

Results
Participants
Among the 76,540 critically ill patients evaluated from 
the MIMIC-IV database, a screening process identified 
9191 individuals with NVUGIB. Following the exclusion 
of 5741 patients with multiple ICU admissions (consid-
ering only the first ICU admission for analysis) and 734 
patients with an ICU stay of less than 24 h, a cohort of 
2716 patients met the eligibility criteria for participation 
(refer to Supplementary Figure S1).

Baseline characteristics of the eligible participants are 
summarized in Table  1. The median age was 66.0  years 
(IQR, 54–77.75 years), with 1046 out of 2716 participants 
(38.5%) being women. Renal disease was the most com-
mon comorbidity (1598 out of 2716, 58.84%), followed by 
liver disease (1111 out of 2716, 40.91%), and hyperten-
sion (983 out of 2716, 36.19%).

Model development and validation
We collected a total of 64 clinical variables during the 
first 24  h after ICU admission. Among them, 10 vari-
ables with over 30% missing data were excluded (Sup-
plementary Figure S2). Missing data in the remaining 
feature space were imputed using MICE. LASSO 
regression was used to identify signature variables for 
hospital mortality in patients with NVUGIB, resulting 
in 30 significant clinical parameters (Supplementary 
Figure S3 and Table  S2). We constructed 11 machine 
learning binary classifiers to predict the risk of death 
in NVUGIB patients: Support Vector Machine (SVM), 
k-Nearest Neighbors (KNN), eXtreme Gradient Boost-
ing (XGB), Decision Tree (DT), Random Forest (RF), 
Adaptive Boosting (AdaBoost), Gradient Boosting 
Decision Tree (GBDT), Multilayer Perceptron (MLP), 
Light Gradient Boosting Machine (LGBM), Catboost, 
and logistic regression (LR) (Fig.  1). The performance 
of these predictive models is described in Fig. 2A, with 
GBDT showing the best model fit performance, achiev-
ing an AUC of 0.853 and an accuracy of 0.839 in the 
validation cohort compared to the other ML models 
(AUC: KNN, 0.818; DT, 0.760; RF, 0.849; SVM, 0.831; 
XGB, 0.850; AdaBoost, 0.834; MLP, 0.820; LGBM, 
0.849; Cat, 0.834; Logistic, 0.837. Accuracy: KNN, 
0.827; DT, 0.809; RF, 0.836; SVM, 0.827; XGB, 0.830; 
AdaBoost, 0.843; MLP, 0.836; LGBM, 0.838; Cat, 0.836; 
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Logistic, 0.835) (Table 2). Figure 2B displays the AUCs 
of the analyzed scores and compares them to each 
other. The GBDT model outperformed other severity 
of illness scores (AUC: GBDT, 0.853; AIMS65, 0.644; 
GBS, 0.551). The calibration curve for the GBDT model 
indicates good agreement between predicted and actual 
risk (Supplementary Figure S4). Consequently, GBDT 
was chosen for further prediction in this study.

Model explanation
We computed feature importance using SHAP values 
for the GBDT model, which exhibited the highest dis-
criminatory ability in the validation cohort. Figure  3A 
illustrates the top 20 clinical features based on the aver-
age absolute SHAP values. Figure  3B offers an over-
view of the positive or negative impact of factors on the 
GBDT model. Features specific to death included a lower 

Fig. 1  Flowchart of this study

Fig. 2  Receiver operator characteristic (ROC) curves for the ML models and the traditional severity of illness scores to predict in-hospital mortality 
(validation cohort). A ROC curves for the seven ML models to predict in-hospital mortality; B ROC curves for the traditional severity of illness scores 
to predict in-hospital mortality. Support Vector Machine (SVM), k-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Decision Tree 
(DT), Naive Bayes (NB), Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient Boosting Decision Tree (GBDT), Multilayer Perceptron (MLP), 
Light Gradient Boosting Machine (LGBM), Catboost (Cat), and logistic regression (LR), Glasgow Blatchford Score (GBS) and AIMS65 score (AIM)
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Glasgow Coma Scale (GCS) score, albumin, serum chlo-
ride, SPO2, and weight, each with a negative SHAP value, 
driving predictions toward mortality. Elevated age, ALP, 
respiratory rate, lactate, PT, and total bilirubin also sup-
ported a prediction of mortality. The impact of the top 

six factors on the GBDT model’s mortality risk prediction 
was further explored using SHAP dependency plots. Fig-
ure 4 illustrates that higher levels of ALP, respiratory rate, 
older age, lower GCS, lower albumin, and lower serum 
chloride were associated with a significant increase in 
mortality risk.

Model application
To further investigate the contribution of features to an 
individual patient and their clinical application for the 
GBDT model, we randomly selected one patient from the 
validation cohort. Figure  5 offers a visual interpretation 
of the GBDT model. The model predicted a 51% prob-
ability of death for this patient (Fig.  5A). The top three 
contributors to this prediction were identified as ALP 
with a value of 941, GCS score of 10, and the absence of a 
shock diagnosis. Figure 5B illustrates the specific impact 
of these factors on the prediction.

Sensitivity analysis
We utilized the RFE method to re-screen 30 characteris-
tic variables. Among these, 17 variables were identified in 
the LASSO regression screening, while 13 were not. The 
specific variables are detailed in Table S4. The ROC curve 
subsequent to fitting the GBDT model twice is illustrated 
in Figure S5. Following SHAP analysis, the importance 
ranking of each variable in the model is presented in 

Table 2  Performances of the 11 machine learning models for 
predicting in-hospital mortality

Support Vector Machine (SVM), k-Nearest Neighbors (KNN), eXtreme Gradient 
Boosting (XGB), Decision Tree (DT), Random Forest (RF), Adaptive Boosting 
(AdaBoost), Gradient Boosting Decision Tree (GBDT), Multilayer Perceptron 
(MLP), Light Gradient Boosting Machine (LGBM), Catboost, and logistic 
regression (LR). P-values were derived using a t-test based on the results of 
fivefold cross-validation, with logistic regression serving as the reference

Accuracy Precision F1 score AUC​ P-value

KNN 0.827 0.802 0.791 0.818 0.007

DT 0.809 0.654 0.723 0.760 0.004

RF 0.836 0.815 0.808 0.849 0.329

SVM 0.827 0.801 0.795 0.831 0.395

XGB 0.830 0.823 0.815 0.850 0.138

AdaBoost 0.843 0.826 0.820 0.834 0.472

GBDT 0.839 0.820 0.818 0.853 0.647

MLP 0.836 0.815 0.808 0.820 0.149

LGBM 0.838 0.819 0.810 0.849 0.311

Cat 0.836 0.815 0.807 0.834 0.283

Logistic 0.835 0.819 0.820 0.837 Reference

Fig. 3  SHAP summary plot for the top 20 clinical features contributing to the GBDT model. A SHAP feature importance measured as the mean 
absolute Shapley values. This matrix plot depicts the importance of each covariate in the development of the final predictive model. B The 
attributes of the features in the model. The position on the y-axis is determined by the feature and on the x-axis by the Shapley value. The color 
represents the value of the feature from low to high
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Figure S5. Despite large changes in the included variables, 
SHAP analysis revealed that the first six variables, which 
had the most impact on the model, remained unchanged.

Interaction analysis
Based on the GBDT fitting model and sensitivity analy-
sis results, we selected the first six variables that had the 
greatest impact on the model in the two experiments. We 
then applied Spearman correlation analysis to these vari-
ables, and the results are presented in Figure S6A. Sub-
sequently, we conducted interaction analysis on variables 
exhibiting significant correlations, and the results are 
shown in Figure S6B-L.

Secondary outcome assessment
The model fitting results, with 90-day survival rate and 
1-year survival rate as outcomes, are depicted in Figure 
S7. The findings reveal that when using 90-day mortality 
as the outcome indicator, the random forest fitting model 
exhibited the highest AUC of 0.789, with shock, age, ALP, 
GCS and albumin identified as the five factors exerting 
the greatest impact on the model. Conversely, for 1-year 
mortality as the outcome, the random forest model dem-
onstrated optimal fitting (AUC = 0.773), highlighting age, 
ALP, shock, kidney disease and GCS as the most influ-
ential factors. The results of multivariate Cox regression 

analysis on length of stay are summarized in Table  S5, 
and the Cox regression curve is depicted in Figure S8.

Discussion
Non-variceal upper gastrointestinal bleeding (NVU-
GIB) is a common condition in the ICU, yet there was 
no appropriate model available for predicting NVUGIB 
mortality in this setting. While AIMS65 and GBS per-
formed well in some studies, our research showed poor 
performance for these scores (AIMS65 AUC = 0.664, GBS 
AUC = 0.551). This indicates the need for separate pre-
diction models for ICU patients. We leveraged machine 
learning methods, employing 11 common ML techniques 
to develop a prediction model for NVUGIB in the ICU. 
The GBDT model achieved the highest AUC score. Fea-
ture importance analysis identified shock, GCS, renal 
disease, age, albumin, and ALP as the top six predictors 
of mortality. We explored how these features influenced 
the GBDT model, and provided an example demonstrat-
ing how the GBDT model predicts NVUGIB mortality 
using SHAP force analysis. Our study contributes a mor-
tality prediction model for NVUGIB patients in the ICU, 
enhancing our understanding of this condition.

We utilized SHAP to interpret the GBDT model and 
unveil its ’black box’. Developed by Lundberg and Lee, 
SHAP is a mathematical framework used in machine 

Fig. 4  SHAP dependency plot for the top 6 clinical features contributing to GBDT model. A GCS, B age, C albumin, D ALP, E respiratory rate, F serum 
chloride. SHAP values for specific features exceed zero, representing an increased risk of death
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learning for explaining the output of complex models. 
It is rooted in cooperative game theory and provides 
a way to fairly distribute contributions of individual 
features to the prediction made by a model [15]. It 
has seen extensive use in explaining ML models in the 
medical field [16]. Our SHAP analysis revealed that 
shock, GCS score, renal disease, age, albumin, and ALP 
were the six most influential factors in predicting mor-
tality in our study.

Shock emerges as the most critical factor in our model. 
Massive hemorrhage in NVUGIB patients can lead to 
shock, resulting in organ hypoperfusion and impaired 
organ function. But for NVUGIB patients, estimating the 
amount of bleeding can be challenging, and our study’s 
results reinforce that shock has the most significant 
impact on patient mortality. Therefore, early diagnosis 
and confirmation of shock are paramount. In the GBS 
and AIMS65 systems, systolic blood pressure was consid-
ered [17, 18]. Although we included systolic blood pres-
sure, diastolic blood pressure and mean arterial pressure 
in our model, LASSO regression excluded these factors. 
This suggests that shock can provide a more accurate 

prognosis evaluation than these blood pressure-related 
factors in this patient group.

Similar to the AIMS65, our model incorporated age. 
Multicenter studies have also indicated a higher risk of 
death in elderly patients [19, 20]. Our study reinforces the 
association between aging and elevated mortality. Given 
the multifactorial nature of poor prognosis in elderly 
patients with gastrointestinal bleeding, it underscores 
the necessity for more meticulous treatment plans for 
middle-aged and elderly patients who often face a worse 
prognosis.

GCS reflects patients’ neurological function and, to 
some extent, the rate and total amount of bleeding. 
Our findings highlight GCS as the second most critical 
prognostic factor after shock. Lower GCS scores were 
associated with higher mortality, possibly due to acute 
gastrointestinal bleeding causing hemodynamic instabil-
ity, leading to neurologic symptoms. A lower GCS score 
is indicative of less hemodynamic stability and increased 
blood loss [21]. GCS score can be utilized for the identi-
fication not only of high-risk cases, but also in discerning 
underlying neurological diseases. This underscores the 

Fig. 5  SHAP force plot for explaining of individual’s prediction results in the validation cohort. Screenshot of the death prediction in patients 
with NVUGIB. A, B Model predictions by randomly drawing a single sample from the validation cohort. Redder sample points indicate that the value 
of the feature is larger, and bluer sample points indicate that the value of the feature is smaller
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dual utility of the GCS score in not just assessing risk, but 
also aiding in the determination of the root cause [22].

Our experiment revealed a significant association 
between albumin levels and mortality in patients with 
NVUGIB. Univariate analysis demonstrated that a 
decrease in albumin was correlated with an increase in 
mortality. The reduction in albumin levels may be attrib-
uted to substantial blood loss. Furthermore, low albumin 
levels may also be indicative of underlying conditions 
such as chronic liver disease, kidney disease, malnutri-
tion, and other contributing factors [23], all of which may 
be implicated in gastrointestinal bleeding. In conclusion, 
monitoring the albumin levels of patients upon admis-
sion is crucial. This practice aids in assessing the severity 
and determining the etiology of the disease.

Renal disease emerged as the third most significant 
feature in our model. Alongside anemia, coagulation 
disorders constitute major hematological abnormalities 
observed in renal pathology. The accumulation of uremic 
toxins in patients with end-stage renal disease promotes 
platelet abnormalities, thereby contributing to throm-
botic events. Numerous additional risk factors, including 
blood abnormalities, inflammation, comorbidities, and 
endothelial dysfunction, may further predispose individ-
uals to such events [24]. In our study, platelets, INR, PT, 
and PTT were utilized to construct the model. Notably, 
PT emerged as relatively important, ranking twelfth in 
significance. Despite the inclusion of coagulation meas-
ures, they exhibited a lesser impact on the model com-
pared to renal disease. This suggests that renal disease 
may contribute to impaired coagulation, while concur-
rently serving as a more effective predictor of patient 
mortality. Consequently, NVUGIB patients presenting 
to the ICU with renal disease warrant particular atten-
tion. Further prospective randomized controlled trials 
are imperative to delve into the intricate relationship 
between kidney disease, coagulation, and gastrointestinal 
bleeding.

In conclusion, our developed model for NVUGIB in the 
ICU reveals that NVUGIB patients with shock, renal dis-
ease, low GCS scores, low albumin levels, and advanced 
age have higher mortality rates. Physicians should prior-
itize the care of these patients and closely monitor their 
condition. Moreover, as depicted in Fig. 5, specific labo-
ratory findings or vital signs such as extreme ALP levels 
should also warrant attention. Additionally, according to 
Figure S6B, simultaneous occurrence of shock and renal 
disease in patients necessitates immediate interven-
tion. Hemorrhagic shock can decrease renal perfusion 
and lead to acute kidney injury (AKI), with renal disease 
potentially developing as a secondary consequence of 
shock and serving as an indicator of the severity of shock 
[25]. Meanwhile, renal disease can impair coagulation, 

acting as a primary predisposing condition in the patho-
genesis of NVUGIB [26]. When managing NVUGIB 
patients presenting with shock and renal disease, early 
and accurate identification of etiology and tailored, indi-
vidualized treatment strategies are crucial.

Several limitations should be considered in our study. 
Firstly, it was a single-center retrospective modeling 
study using the MIMIC-IV database, limiting our abil-
ity to establish causal relationships between features and 
outcomes. Prospective randomized clinical trials are 
needed for further validation. Secondly, unmeasured con-
founders, including racial and treatment differences, may 
impact the prognosis of NVUGIB patients. Therefore, 
some crucial features for the GBDT model might have 
been overlooked due to the limitations of the MIMIC-IV 
database. Thirdly, imputation and feature selection were 
executed prior to the division of the dataset into train-
ing and validation sets, introducing a potential impact 
on the ultimate models. Fourthly, our study is character-
ized by a deficiency in external validation, as it lacks an 
independent cohort from different regions or countries, 
underscoring the imperative for additional investigations 
to substantiate our findings. Lastly, it is noteworthy that 
our modeling study exclusively encompassed adults, leav-
ing the predictive efficacy of the GBDT model for pediat-
ric patients with NVUGIB uncertain. Therefore, prudent 
interpretation of our conclusions is advised, emphasizing 
the requisite for additional empirical support in subse-
quent research endeavors.
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