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Enhanced inter-regional coupling of neural
responses and repetition suppression provide
separate contributions to long-term behavioral
priming
Stephen J. Gotts 1✉, Shawn C. Milleville1 & Alex Martin 1

Stimulus identification commonly improves with repetition over long delays (“repetition

priming”), whereas neural activity commonly decreases (“repetition suppression”). Multiple

models have been proposed to explain this brain-behavior relationship, predicting alterations

in functional and/or effective connectivity (Synchrony and Predictive Coding models), in the

latency of neural responses (Facilitation model), and in the relative similarity of neural

representations (Sharpening model). Here, we test these predictions with fMRI during overt

and covert naming of repeated and novel objects. While we find partial support for predic-

tions of the Facilitation and Sharpening models in the left fusiform gyrus and left frontal

cortex, the data were most consistent with the Synchrony model, with increased coupling

between right temporoparietal and anterior cingulate cortex for repeated objects that cor-

related with priming magnitude across participants. Increased coupling and repetition sup-

pression varied independently, each explaining unique variance in priming and requiring

modifications of all current models.
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Repeated exposure to objects during the performance of a
task leads to improved identification speed and accuracy, a
phenomenon referred to as “repetition priming”1,2. Repe-

tition priming is stimulus-specific, occurs in a wide range of tasks,
and is extremely long-lasting, surviving delays of months and
even years3–5. The relative sparing of repetition priming in
patients with damage to medial temporal lobe structures, such as
those with amnesia, also highlights the likely neocortical basis of
this form of learning6. Indeed, neocortical brain regions com-
monly exhibit a companion phenomenon to repetition priming
referred to as “repetition suppression”, in which neural activity in
task-engaged brain regions decreases with repetition7–10. Like
repetition priming, repetition suppression is stimulus-specific,
builds up across repetitions, occurs in a wide range of tasks, and
can be long-lasting11,12. The joint occurrence of repetition
priming and repetition suppression across a wide range of
experimental contexts with different sensory and motor mod-
alities has led to the notion that these phenomena reflect incre-
mental neocortical learning mechanisms, serving to form and
shape long-term perceptual, conceptual, and motor knowledge
representations throughout the brain13–15.

Multiple theoretical models have been proposed to account for
the simultaneous observation of both neural repetition suppres-
sion and behavioral priming (reviewed in16; see Fig. 1). The
Synchrony model16–18 holds that as neural activity decreases, cells
become more synchronized in their firing, leading to a larger
impact on downstream targets and earlier, more reliable propa-
gation of individual spikes, supporting earlier motor responses.

The Predictive Coding model, as formulated by Friston and
colleagues8,19,20, views the cortex as a form of hierarchical gen-
erative Bayesian statistical model in which perceptual inference
occurs as an interaction between bottom-up sensory input
(“evidence”) and top-down expectations (“prediction”). Top-
down predictions improve with repetition, reducing prediction
error by inhibiting or suppressing bottom-up sensory evidence,
thereby producing repetition suppression8,21. Simultaneously, this
can speed up evoked neural responses via an increase in synaptic
gain due to enhanced encoding precision and confidence, pro-
ducing behavioral priming. A related model, the Facilitation
model8,22,23, simply posits that evoked neural responses are
resolved more quickly in time with repetition with earlier ter-
mination of activity, reflected as repetition suppression when
measured with techniques such as BOLD fMRI. Finally, the
Sharpening model7,10 holds that while neural activity is decreas-
ing overall with repetition, the task-engaged cells are becoming
more selectively tuned, with the largest decreases occurring in
cells that are poorly responsive and/or weakly tuned to the
repeated stimuli. In contrast, cells that are the most responsive
and selective to the repeated stimuli maintain their firing rates.
When combined, bottom-up support would be removed for
alternative or competing representations in downstream brain
regions, allowing more rapid propagation of stimulus-selective
activity throughout task-engaged neural pathways, as well as
faster and more accurate behavioral responses.

While these models are not necessarily mutually exclusive, each
makes unique predictions that can be tested. The Synchrony,
Predictive Coding, and Sharpening models differ from one
another with regard to their predictions about the effect of
repetition on connectivity between brain regions. For example,
the Synchrony model predicts increased positive inter-regional
coupling with repetition. The Predictive Coding model, in con-
trast, would seem to predict that top-down connections should
have stronger negative coupling with repetition and that this
coupling should correlate with the magnitude of repetition sup-
pression in the regions receiving this input (though see24). The
Sharpening model, like the Synchrony model, predicts an increase
in positive coupling, but it further requires the sending region to
exhibit repetition suppression, accompanied by a reduction in the
similarity of neural responses in the sending region due to
reduced overlap among neural representations. The Facilitation
model is less clear regarding predictions about connectivity but
predicts that neural responses in regions exhibiting repetition
suppression should peak and terminate earlier for repeated
objects, with a similar prediction made by the Predictive Coding
model under conditions of high model precision21. Finally, each
model predicts that behavioral priming magnitude should be
related to its core changes, with repetition suppression serving as
an indirect marker of the operation of its critical underlying
mechanisms. A strength of BOLD fMRI is its potential for
examining changes in connectivity at the scale of the whole brain,
as well as its ability to evaluate local changes in representational
similarity, germane to predictions of the Synchrony, Predictive
Coding, and Sharpening models. The ability of BOLD fMRI to
adjudicate subtle changes in the timing of neural activity is less
clear, but we nevertheless examine the predicted timing changes
of the Facilitation and Predictive Coding models in the event
that relevant timing information is detectable. What this means is
that it will not be possible to test all four models on equal terms,
but the results will have the potential to favor certain models
over others, as well as to clarify the relationships between
changes in connectivity, repetition suppression, and representa-
tional similarity.

We test each of these predictions in the context of an object
identification task in fMRI. Participants were required to name

Fig. 1 Neural models of repetition priming. Four prominent models of
repetition priming and repetition suppression are considered. The
Synchrony model (upper left) holds that neural activity becomes more
synchronized with repetition, permitting more coordinated propagation of
activity at lower overall activity levels. The Predictive Coding model (upper
right) holds that top-down causal influences are more strongly negative,
leading to repetition suppression in the receiving region, along with a gain
enhancement that leads to more rapid onset and offset of responses. The
Facilitation model (lower left) claims that neural activity onset and offset
are advanced in time, with earlier peak responses and a reduction in overall
activity. The Sharpening model (lower right) holds that weakly tuned,
poorly responsive cells are the ones driving repetition suppression,
reducing downstream support for competing stimulus identities and
speeding downstream stimulus-selective responses. Figure reproduced
with permission from Gotts et al.16.
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pictured common objects (Fig. 2). Overt picture naming has
frequently been used in the repetition priming literature1,5,25,
with the advantages that the priming effects are large and correct
responses are unlikely to be due to guessing (in contrast to
alternative-forced-choice tasks). However, given the risks of
motion-related artifacts when employing overt verbal responding,
Covert Naming18,26, in which participants named objects silently
while pressing a response button to mark the naming onset, was
also included as a form of artifact control. Features of neural
activity that do not differ across Overt and Covert Naming
cannot be due to overt speech artifacts. Given the importance of
between-region connectivity to the predictions being tested, a
novel form of fMRI task-based connectivity was designed to
minimize contamination by the temporal contour of the task-
evoked response to functional and effective connectivity mea-
sures. A slow event-related design was used, permitting relatively
clean isolation of the peak response to each individual trial
compared to rapid event-related designs. The response peak was
then notched out of the time series, with connectivity calculated
as the co-fluctuation (correlation) of peak responses across trials
between pairs of regions/voxels.

Results
Regions engaged in object naming and showing repetition
effects. Task analyses first identified brain regions commonly
engaged in Overt and Covert Naming (32 and 28 participants,
respectively; see “Methods”). Voxels with above-baseline
responses in both tasks are shown in Fig. 3a at two levels of
significance, one with a minimum level of significance (P < 0.05,
false discovery rate (FDR)-corrected to q < 0.05; shown in orange)
and one with a more stringent level of significance in both tasks
individually, for which responses can be said to replicate
across tasks (P < 0.0001, q < 0.00016 in each task; shown in red).
As in previous studies of picture naming responses12,26–28,
these regions included left and right lateral prefrontal cortex,
bilateral occipitotemporal and ventral temporal cortex, bilateral

intraparietal cortex, anterior cingulate cortex (ACC), thalamus,
striatum, and cerebellum.

Repetition effects were then calculated in all voxels showing
above-baseline task responses, as all models being tested posit
that the relevant changes occur among cell populations engaged
by the task. Regions exhibiting repetition effects, either repetition
enhancement or repetition suppression, are shown in Fig. 3b at
two levels of significance. At a minimum level of significance
(P < 0.05, q < 0.05), most of the voxels responding above
baseline exhibited repetition suppression (light blue), with more
restricted locations showing repetition enhancement, including
cingulate cortex just dorsal to the posterior portion of the corpus
callosum, bilateral cuneus, right posterior superior temporal gyrus
(STG), and bilateral putamen. At a more stringent level of
significance (P < 0.00001, q < 0.00006, in each task individually),
only repetition suppression was observed across both tasks in four
large regions (dark blue): left frontal, bilateral fusiform, and ACC,
consistent with previous studies of repetition suppression in
object naming12,26,27. Given the concordance of responses in
these regions in both Overt and Covert Naming, these findings
cannot be easily attributed to overt speech artifacts that would
only be present in Overt Naming.

Correlations between repetition suppression and priming were
conducted across all participants (Overt and Covert Naming
participants combined; button-press response times used for
Covert Naming) in the four large Repetition Suppression (RS)
regions (dark blue in Fig. 3b). A significant correlation was
observed in the left frontal region, with larger RS associated with
larger priming in terms of effect size (Cohen’s d) [Pearson’s r
(58)= 0.3674, P < 0.004, corrected; Fig. 3c]. Non-significant
trends were also observed for the left fusiform and ACC regions
(P < 0.065 and P < 0.095, respectively). This result replicates
previous studies showing robust correlations between RS and
priming in left frontal cortex29–31.

Repetition priming and Primeability in object naming. Most
previous studies of correlations between neural activity and
repetition priming have examined correlations across participants
(as in Fig. 3c), rather than making use of single-trial responses to
examine correlations within-participant. This is usually necessary
in fMRI because single-trial neural responses are largely over-
lapping in rapid event-related experiments. The slow event-
related design used in the current experiment allowed us to isolate
single-trial neural responses, permitting examination of both
across-participant and within-participant priming relationships
(see32 for related discussion).

Each object was named three times approximately 30 min prior
to scanning (see “Methods”). In order to design an appropriate
within-participant measure of priming magnitude, we first
examined the reliability of these pre-fMRI naming response
times. The single-participant response times to each object across
these pre-fMRI presentations were highly variable, only becoming
more reliable when either averaging across participants (Fig. 4a, b
and Supplementary Fig. 1) or when pooling objects within-
participant into larger groupings (Fig. 4c). This fact, combined
with the need to pool trials into larger groups anyway in order to
calculate connectivity estimates across trials (with only a single
datapoint contributed by each trial), led us to adopt a median
split of trials into strongly and weakly primed objects (see
“Methods” for details). The selection of objects into strongly and
weakly primed groupings was actually based on the group-
average naming time to an object when NEW, as this variable was
strongly and directly related to eventual priming magnitude
(Fig. 4b). Since this distinction is defined on normative group
measurements rather than on an individual participant’s

Fig. 2 Overt and covert picture naming tasks. Participants were instructed
to name pictures out loud (Overt Naming) or silently to themselves,
pressing a button to mark the naming time (Covert Naming). Trials were
structured in a slow event-related design in order to separate the peak
responses of individual trials, and jitter of 8–14 s occurred from trial onset
to trial onset. Name responses were marked for correctness and the onset
time of the voice/button response was recorded for each trial. For analyses
of local activity, an empirical hemodynamic response function was
estimated across trials with a separate regressor at each timepoint
following stimulus onset. For connectivity analyses, the peak BOLD
response was calculated for each trial and in each fMRI voxel by averaging
the 2 timepoints (4–6 and 6–8 s) adjacent to the expected peak of the
hemodynamic response function, with a single peak value saved for each
trial in order to minimize the contribution of the temporal contour of the
evoked responses from functional and effective connectivity estimates.
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measured priming, we refer to it as “Primeability” rather than
priming, in analogy to recent studies of “memorability” as an item
property for explicit recollection33. Observed priming magnitude
for each participant on strongly primeable and weakly primeable
objects was then quantified by effect size (Cohen’s d) in order to
adjust for differences in raw response time per participant and per
condition. As expected, based on the object grouping scheme,
strongly primeable objects exhibited larger priming effect sizes
than weakly primeable objects, both for Overt Naming times
during fMRI and button-press response times for Covert Naming
during fMRI (Fig. 4c). When repetition suppression is recalcu-
lated separately for Strong and Weak Primeable objects in the
four large RS regions, significant effects of Primeability are
observed in left frontal, left fusiform, and ACC regions, with
larger RS observed for strongly primeable objects (Fig. 5). These
results provide evidence that RS and priming magnitude are
related in regions outside of left frontal cortex, including the left
fusiform gyrus and the ACC (Fig. 5a, b).

Functional connectivity changes related to Primeability. Rather
than restricting the evaluation of functional connectivity changes
to those regions exhibiting repetition suppression or enhance-
ment, we instead performed a data-driven, whole-brain search at
the voxel level using “connectedness”34. This approach simplifies
the bivariate map of correlations among all possible pairs of
voxels into a univariate map of average correlations, with each

voxel’s value representing the average functional connectivity
level with a desired cohort of voxels, in this case the set of all task-
responsive voxels (see “Methods”). Effects in whole-brain con-
nectedness can then identify effective seeds for more traditional
seed-based analyses, thereby detecting a more complete set of
regions exhibiting effects in functional connectivity.

Voxelwise connectedness estimates were calculated for each
participant in four conditions: Strong Primeable OLD, Strong
Primeable NEW, Weak Primeable OLD, and Weak Primeable
NEW (e.g., a Strong Primeable OLD object corresponded to an
object named pre-fMRI and that was strongly primeable, i.e., had
a slower than median response time in the normative picture
naming data; a Strong Primeable NEW object corresponded to an
object that was strongly primeable based on the normative data,
but had not been previously seen). These voxelwise estimates
were then entered into a linear mixed effects (LME) model with
factors of Task (Overt, Covert), Primeability (Strong, Weak), and
Repetition (OLD, NEW), covarying the global correlation level,
GCOR35, per condition and participant as a measure of residual
whole-brain artifacts. There was no overall main effect of
Repetition that survived whole-brain correction, but there was a
significant interaction between Repetition and Primeability in the
right temporoparietal (R TP) cortex (P < 0.001, corrected to P <
0.025; Fig. 6a). The 3-way interaction with Task failed to reach
significance in this or any other location, which is to say that the
interaction between Repetition and Primeability was not found to
differ significantly in Overt versus Covert Naming (see also

Fig. 3 Regions engaged in object naming and showing repetition effects. a Above-baseline responses to Overt and Covert Naming tasks are shown at
two levels of significance, one at a minimum level of significance (pooling the tasks, P < 0.05, FDR q < 0.05; shown in orange) and another at a more
restrictive level of significance (P < 0.0001, FDR q < 0.00016 in each task individually) for which responses can be said to replicate across tasks (shown in
red). b Repetition effects, either repetition suppression (blue colors) or repetition enhancement (orange), are shown at two levels of significance, one at a
minimum level of significance (pooling the tasks, P < 0.05, FDR q < 0.05; suppression shown in light blue, enhancement shown in orange) and another at a
more restrictive level of significance (P < 0.00001, FDR q < 0.00006 in each task individually). Repetition effects were masked by the less restrictive
threshold in (a), as all theories being evaluated make claims about regions engaged at above-baseline levels during the tasks. Statistics in (a) and (b) are
based on N= 32 independent participant datasets for Overt Naming and N= 28 independent datasets for Covert Naming. c Repetition suppression was
highly correlated (Pearson) with priming magnitude in left frontal cortex in terms of effect size (Cohen’s d) across N= 60 independent participants,
combining both Overt and Covert Naming (corrected for multiple comparisons by both Bonferroni and FDR). The left frontal region is the same as the dark
blue region showing Repetition Suppression (RS) at the more stringent threshold in (b).
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Supplementary Fig. 2). Using this temporoparietal region as a
seed and testing a corresponding seed-based LME model,
significant Repetition × Primeability interactions (P < 0.001, cor-
rected to P < 0.025) were observed with the right fusiform gyrus,
the anterior cingulate, right STG, and right putamen. To these
regions, we added all regions exhibiting significant repetition
suppression that replicated across tasks, given their importance to
all theories being tested (Fig. 6b). This led to a total of 7 regions of
interest (ROIs), sampled as spheres centered on the peak statistic
from each region: 3 ROIs identified as showing effects in
functional connectivity (right temporoparietal, right STG, and
right putamen), 2 ROIs showing repetition suppression effects
(left frontal cortex and left fusiform gyrus), and 2 ROIs showing
both functional connectivity and repetition suppression effects
(ACC and right fusiform gyrus).

The ROI-level data were submitted to an additional LME
analysis, affording the assessment of all region-by-region effects
of repetition on functional connectivity, as well as interactions
between Task, Primeability, and Repetition. As with the voxelwise
data, there was no overall effect of Repetition among the ROIs.
There was a significant interaction of Repetition and Primeability
involving the same regions as detected in the whole-brain analysis
(as expected), but there was also an additional interaction
detected between the ACC and right fusiform gyrus (all P <
0.0099, q < 0.05; Fig. 6c). When evaluating the qualitative nature

of these interactions by separately assessing Repetition in the
Strong and Weak Primeable conditions, greater functional
connectivity was observed for OLD compared to NEW objects
in the Strong Primeable condition (R TP ROI with ACC, right
putamen, and right STG ROIs), whereas weaker functional
connectivity was observed for OLD compared to NEW objects in
the Weak Primeable condition (also R TP ROIs with ACC, right
putamen, and right STG ROIs) (all P < 0.0287, q < 0.05). As with
the whole-brain data, none of these effects exhibited a further
interaction with Task (Overt versus Covert Naming).

Effective connectivity changes related to Primeability and
Repetition suppression. The functional connectivity effects were
then further probed with estimates of effective connectivity
among the 7 ROIs. This is important because functional con-
nectivity measures are ambiguous with respect to claims about
underlying coupling between regions, as localized real changes in
coupling can manifest indirectly at other locations through
polysynaptic interactions (see36 for discussion). We therefore
applied structural equation modeling (SEM), a form of effective
connectivity estimation that utilizes the pattern of correlation
among ROIs in order to evaluate directional changes in under-
lying inter-regional coupling37. We first performed a data-driven
search for the optimal SEM model while pooling all data condi-
tions (Task, Primeability, Repetition) (see “Methods”). The

Fig. 4 Repetition priming and Primeability. a When averaged across participants within each task, priming magnitudes specific to each of the 200 stimuli
are highly reliable across task. For the Covert Naming task, these priming magnitudes were assessed in a post-fMRI session during which participants
overtly named all stimuli (either pre-exposed as OLD or novel to the fMRI session as NEW). b When responses are averaged across both participants and
tasks, a strong relationship was observed between average response time (RT) to an object when NEW and the subsequent priming magnitude observed.
Items were subjected to a median split based on the RT when NEW (using the group-average normative data) to classify objects as either Strong Primeable
(slow RT) or Weak Primeable (fast RT), permitting a within-participant measure of “Primeability”. Statistics in (a) and (b) are based on N= 200
independent stimuli. c When grouping objects by Primeability (either Strong or Weak), priming effect sizes for each participant were indeed greater for
Strong compared to Weak Primeable objects in the Overt Naming task (left panel); this is expected since these responses contributed to the original
calculation of Primeability. However, this same relationship was also found for the Covert Naming button-press response times during fMRI, which were
not used in calculating Primeability (right panel). The middle horizontal line in each box plot represents the median (50th%ile), the horizontal lines just
above and below the median represent the 25th and 75th%iles, the top and bottom horizontal lines represent the minimum and maximum values, and the
boundaries of the horizontal notches inside the 25th and 75th%iles depict the 95% confidence limits of the median. Individual datapoints are plotted as
open circles. Statistics in (c) are based on N= 32 independent participant datasets for Overt Naming and N= 28 independent datasets for Covert Naming.
For related content in SI, see Supplementary Fig. 1.
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optimal model was then parameterized for each participant’s data
per condition, with model parameters tested using the same LME
modeling approach as for tests of functional connectivity. The
optimal model is shown in Fig. 7a, with arrows indicating non-
zero parameters and the direction of the causal interactions
among the ROIs. In all, 10 parameters were found to differ sig-
nificantly from zero, with all connections being positive (above
zero) and with no connections showing negative parameters that
would be consistent with inhibition or some form of suppression
in any of the conditions. Connections exhibiting a significant
Repetition × Primeability interaction are shown as thick red
arrows (P < 0.0063, q < 0.05 for all), with non-significant inter-
actions shown in black. Figure 7b clarifies the nature of these
interactions. The connection from the R TP ROI to the ACC ROI
exhibited a significantly larger parameter for OLD than NEW
objects for the Strong Primeable condition (P < 0.0035, q < 0.05),
with no significant difference observed for the Weak Primeable
condition. In contrast, the connections from the ACC to the right
fusiform ROI and the right STG to the R TP ROI exhibited no
significant OLD/NEW effect for the Strong Primeable condition
and significantly smaller parameter values for OLD compared to
NEW objects in the Weak Primeable condition (P < 0.0091, q <
0.05 for both). Of these connections, the one from the R TP to the

ACC ROI appeared to provide the best candidate for a correlate
of priming magnitude, with the strongest effects observed in the
Strong Primeable condition (compare parameter values in Fig. 7c
to priming measures in Fig. 4c). We therefore examined the a-
cross-participant correlation between priming effect sizes and the
R TP to ACC ROI parameter values. There was a significant
correlation between the contrast in Strong versus Weak Prime-
able effect sizes in priming (behavioral data) and the SEM
parameter values (fMRI data) across participants [Pearson’s
r (56)= 0.3303, P < 0.0114]. This correlation appeared to be
driven by the data in the Strong Primeable condition
[Pearson’s r (56)= 0.3002, P < 0.0222; for Weak Primeable con-
dition: r (56)= 0.0700, P > 0.6].

These data are most compatible with the Synchrony model, for
which coupling is predicted to be greater (and positive) for the
OLD compared to the NEW condition, particularly for Strongly
Primeable objects. The increased coupling for the OLD condition
also occurred despite no change in activity levels in the R TP ROI
and significantly reduced activity in the ACC ROI (see SI,
Supplementary Fig. 3). While the Sharpening model similarly
predicts greater positive coupling for OLD items, the lack of any
discernible repetition suppression in the putative sending region
(R TP) fails to provide support for this model. The data are also

Fig. 5 Across- and within-participant relationships between repetition suppression and priming. a Correlations (Pearson) across participants between
Repetition Supression (RS) magnitude (NEW–OLD) and priming effect size (Cohen’s d) reveal a significant relationship in left frontal cortex and non-
significant trends in left and right fusiform regions (left-most plot same as Fig. 3c). b Separating trials into Strong and Weak Primeable conditions show that
significant within-participant relationships between RS and priming are found in left frontal, left fusiform, and ACC regions (greater RS in the Strong
Primeable condition by paired t-tests). The middle horizontal line in each box plot represents the median (50th%ile), the horizontal lines just below and
above the median represent the 25th and 75th%iles, the bottom and top horizontal lines represent the minimum and maximum values, and the boundaries
of the horizontal notches inside the 25th and 75th%iles depict the 95% confidence limits of the median. Individual datapoints are plotted as open circles.
Statistics (paired t-tests) are based on N= 60 independent participants (combining Overt and Covert Naming), and multiple comparisons were corrected
by FDR (q < 0.05).
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less compatible with the predictions of the Predictive Coding
model, in which top-down connections are claimed to be more
strongly negative following repetition, leading to repetition
suppression in the receiving area16,19,21. As noted, none of the
model connections in any of the conditions were found to be
negative. Nevertheless, two of the ROIs exhibiting significant
repetition suppression (ACC and right fusiform gyrus) were
found to have incoming SEM connections modulated by stimulus
repetition (from R TP and ACC ROIs, respectively). We therefore
examined the relationship between SEM parameter values at these
connections and the magnitude of repetition suppression
observed in the receiving ROIs. A contrast of repetition
suppression in Strong minus Weak Primeable conditions failed
to correlate with the corresponding contrast of the SEM
parameters (OLD–NEW parameter values in the Strong Prime-
able condition minus the same difference in the Weak Primeable
condition), either for the connection from R TP to ACC [r (56)=
0.0897, P > 0.5] or for the connection from ACC to the right
fusiform gyrus [r (56)=−0.0429, P > 0.74]. These results, taken
together with the lack of modulation by stimulus repetition of
connections into other ROIs exhibiting repetition suppression
(e.g., left frontal and left fusiform ROIs), suggest that changes in
coupling due to repetition are largely independent of local
repetition suppression magnitudes. In order to establish this
relationship more clearly for the one connection correlated with
behavioral priming magnitude, R TP to ACC, we used partial
correlation to remove the magnitude of repetition suppression
exhibited in the ACC from the correlation between priming effect

size and SEM parameter contrasts in the Strong versus Weak
Primeable conditions. This partial correlation remained at
approximately the same level as without the partialling [partial
r (55)= 0.334, P < 0.0112]. We further asked whether the
connection from R TP to ACC remained correlated with priming
after partialling overall RS observed in the left frontal ROI, which
was previously shown to correlate with priming (Figs. 3c and 5a).
The partial correlation again remained virtually unchanged
[partial r (55)= 0.329, P < 0.0125]. Taken together, these
results establish that changes in coupling between R TP and
ACC are correlated with priming magnitude in a manner largely
independent of the magnitude of repetition suppression, with
each accounting for unique portions of the priming variance.

Testing predictions regarding changes in representational
similarity. In the previous analyses, we found that functional and
effective connectivity effects due to repetition were consistent
with predictions of the Synchrony model and failed to provide
support for the Predictive Coding model. One aspect of these
results also failed to support the Sharpening model, namely that
regions showing repetition suppression (L Frontal, L Fusiform, R
Fusiform, and ACC ROIs) failed to exhibit increased feedforward
coupling during the processing of OLD relative to NEW objects.

The Sharpening model further predicts that the spatial
similarity of neural responses should decrease with repetition as
activity to OLD stimuli becomes “sharper” and overlaps less
across objects. We evaluated this prediction using multi-voxel

Fig. 6 Functional connectivity shows interaction between Primeability and Repetition. a A right temporoparietal (R TP) region exhibited an interaction in
whole-brain connectedness between Repetition and Primeability, similar to that seen in the behavioral priming results (P < 0.001, corrected to P < 0.025).
When used as a seed, R TP jointly exhibited this interaction with the anterior cingulate (ACC), right putamen, right STG, and the right fusiform gyrus.
b Regions showing a Repetition × Primeability interaction were combined with regions showing repetition suppression in both Overt and Covert Naming
Tasks. c Region-by-region functional connectivity interactions of Repetition × Primeability are shown for all 7 regions (left panel). FDR-corrected effects are
indicated by black boxes (P < 0.01, q < 0.05). Region-by-region comparisons of OLD versus NEW functional connectivity are shown for Strong and Weak
Primeable conditions separately in the right panels. Warm colors (red) indicate OLD > NEW and cool colors (blue) indicate NEW>OLD. FDR-corrected
effects (P < 0.0286, q < 0.05) were calculated among all region-by-region combinations showing a significant Repetition × Primeability interaction,
indicated by black squares. Statistics are based on N= 60 independent participants, organized into a factorial design with Task (Overt, Covert Naming) as
a between-participant variable. For related content in SI, see Supplementary Fig. 2 and Supplementary Table 1.
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pattern analysis38 (MVPA) applied to the 4 repetition suppres-
sion ROIs. The pattern of peak BOLD responses across voxels in
an ROI to each trial was correlated (Pearson) with all correct
trials of the same type (e.g., Strong Primeable OLD trials) (see
“Methods”). As shown in Fig. 8a, the inter-item correlation level
was indeed lower for OLD compared to NEW trials (Z > 4.352, P
< 1.4 × 10−5 for all 4 ROIs) with a significantly larger decrease for
Strong compared to Weak Primeable conditions in the Left
Frontal [Repetition × Primeability F(1,174)= 23.259, P < 3.1 × 10
−6, FDR q < 0.05] and ACC ROIs [Repetition × Primeability F
(1,174)= 5.530, P < 0.0199, FDR q < 0.05]. However, on further
examination, these effects appeared to be related to average beta-
weight levels and estimates of the signal-to-noise ratio (SNR) of
the peak responses (see SI, Supplementary Fig. 4). When
covarying these quantities, only the Repetition × Primeability
interaction in the Left Frontal ROI remained significant [F(1,172)
= 16.906, P < 6.1 × 10−5, FDR q < 0.05], driven by an OLD/
NEW difference in the Strong Primeable condition [Z= 3.607,

P < 3.2 × 10−4 vs Weak: Z=−0.649, P > 0.5] (Fig. 8b). However,
even this last effect remains in doubt, given the strong
dependence on beta-weight levels and SNR for this ROI [β: F
(1,172)= 16.117, P < 8.9 × 10−5; SNR: F(1,172)= 19.234, P <
2.1 × 10−5]. In other words, the unadjusted MVPA results are
consistent with the predictions of the Sharpening model, but the
results may simply reflect the average amplitude of the BOLD
response rather than the pattern of responses across voxels,
per se, with response levels nearer to zero being more
contaminated with noise (see also39–41 for discussion). Consistent
with this interpretation, there was no correlation between MVPA
measures and behavioral priming magnitudes across participants
in the Left Frontal and Right Fusiform ROIs either prior to or
after adjustment (| r | < 0.1, P > 0.56 for all).

Testing predictions regarding changes in timing of activity.
The Facilitation model predicts that the timing of neural activity,
particularly the timing of the peak response22,23, should track

Fig. 7 Effective connectivity increases between R TP cortex and ACC correlate with priming magnitude. a Structural equation modeling (SEM) was used
to estimate effective connectivity among the 7 regions. The optimal 10-parameter SEM model is shown, with arrows indicating causal directionality and
connections exhibiting a significant Repetition × Primeability interaction (P < 0.0063, q < 0.05) shown with thick red arrows (non-significant interactions
shown with black arrows). b Region-by-region comparisons of SEM parameters for OLD versus NEW objects are shown separately for the Strong and
Weak Primeable conditions. For directionality, sending ROIs are listed along the x-axes and receiving ROIs are listed along the y-axes. FDR-corrected OLD/
NEW comparisons (P < 0.0091, q < 0.05) were assessed among connections exhibiting a Repetition × Primeability interaction, indicated with black squares.
c The connection from the R TP ROI to ACC ROI shows a Repetition × Primeability interaction that is consistent with the Synchrony model (with increased
coupling for OLD objects in the Strong Primeable condition). The middle horizontal line in each box plot represents the median (50th%ile), the horizontal
lines just below and above the median represent the 25th and 75th%iles, the bottom and top horizontal lines represent the minimum and maximum
values, and the boundaries of the horizontal notches inside the 25th and 75th%iles depict the 95% confidence limits of the median. Individual datapoints
are plotted as open circles. d The R TP to ACC connection further exhibited a correlation across participants with observed priming magnitude, assessed by
effect size (Cohen’s d). This correlation appeared to be driven by the Strong Primeable condition (rightmost panel), with priming effect size in the Strong
Primeable condition correlated with the difference between OLD and NEW SEM parameters in the Strong Primeable condition. Statistics are based on N=
60 independent participants, organized into a factorial design with Task (Overt, Covert Naming) as a between-participant variable (Primeability and
Repetition are both within-participant variables). For related content in SI, see Supplementary Fig. 3.
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repetition suppression and behavioral priming magnitudes.
Similarly, under conditions of high model precision and
enhanced processing gain, the Predictive Coding model explains
priming through a speeding up of neural activity, with this
speeding possibly generating an additional component of repe-
tition suppression21. As discussed above, fMRI is not the optimal
technique to evaluate this prediction, but we nevertheless exam-
ined changes in the timing of the BOLD response in the event
that such changes were detectable. To evaluate this, we extracted
the beta coefficients for each participant at each timepoint fol-
lowing stimulus onset in each of the ROIs exhibiting repetition
suppression. A continuous response function was fit to these
datapoints in each of the four conditions (OLD, NEW× Strong,
Weak Primeable), affording separate estimates of the timing and
amplitude of the peak BOLD response (see “Methods”). Figure 9
shows the estimated hemodynamic response functions for each of
the 4 repetition suppression ROIs, along with estimates of the
timing of the peak responses (shown as vertical dotted lines).
There was no significant Repetition × Primeability interaction in
the timing of the peak responses in any of the 4 ROIs (P > 0.27 for
all), but there was a significant main effect of Repetition on the
timing of the peak in the Left Fusiform ROI [mean (SE) OLD

tpeak= 4.382 (0.0967) s; NEW tpeak= 5.004 (0.091) s; F(1,174)=
9.233, P < 0.0028, FDR q < 0.05] and an uncorrected effect of
Repetition in the Left Frontal ROI [OLD tpeak= 4.647 (0.168) s;
NEW tpeak= 4.979 (0.1257) s; F(1,174)= 4.849, P < 0.03, FDR q
> 0.05]. The earlier peak timing of OLD relative to NEW trials in
the Left Fusiform ROI (with a similar uncorrected effect in the
Left Frontal ROI) is consistent with predictions of the Facilitation
and Predictive Coding models. However, there was no interaction
with Primeability, failing to provide a correlation with priming
magnitude.

Discussion
In the current study, we have tested predictions from four pro-
minent models of repetition suppression and priming (Syn-
chrony, Predictive Coding, Sharpening, and Facilitation)
regarding changes in connectivity, representational similarity,
timing of the BOLD response, and the relationship of these
quantities to repetition suppression and priming magnitude. We
performed data-driven, whole-brain analyses of changes in
functional and effective connectivity related to a within-
participant measure of priming magnitude we refer to as

Fig. 8 MVPA tests of the Sharpening model. a Spatial correlations of peak responses on each individual trial were calculated across all trials per condition
type using the full extent of the four Repetition Suppression (RS) clusters (see Supplementary Table 1), retaining the median inter-item correlation per
participant. A significant Repetition × Primeability interaction was observed for the Left Frontal and ACC ROIs (corrected by FDR, q < 0.05). The middle
horizontal line in each box plot represents the median (50th%ile), the horizontal lines just below and above the median represent the 25th and 75th%iles,
the bottom and top horizontal lines represent the minimum and maximum values, and the boundaries of the horizontal notches inside the 25th and 75th%
iles depict the 95% confidence limits of the median. Individual datapoints are plotted as open circles. b Strong covariation of the spatial correlations with
average beta coefficients and estimated signal-to-noise ratio eliminated most of the differences between conditions after adjustment for these variables,
leaving only a significant Repetition × Primeability interaction in the Left Frontal ROI. Bar plots are used along with standard error of the mean (SE)
estimates, since these adjusted means and model-residual error are not defined on the individual participants and only on the full LME model. Statistics are
based on N= 60 independent participants, organized into a factorial design with Task (Overt, Covert Naming) as a between-participant variable
(Primeability and Repetition are within-participant variables). For related content in SI, see Supplementary Fig. 4.
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“Primeability”, as these changes were central to three of the four
models. We then tested predictions about the decreased similarity
of neural responses derived from the Sharpening model, as well as
the timing of neural responses derived from the Facilitation and
Predictive Coding models. Changes in functional and effective
connectivity were most consistent with predictions of the Syn-
chrony model, with increased coupling from R TP cortex to the
ACC for OLD relative to NEW objects, particularly for the Strong
Primeable condition. This occurred despite no change in the
activity levels in R TP cortex and decreased activity for OLD
objects in the ACC, demonstrating increased impact of activity of
one region on the other that is consistent with enhanced syn-
chronization of activity. Furthermore, these changes were corre-
lated with across-participant variability in behavioral priming.
Top-down negative coupling that increased with repetition, a
prediction of the Predictive Coding model16,19,21, was not
observed among any regions, with only positive coupling
observed. Finally, changes in coupling were found to be largely
independent of repetition suppression magnitudes.

With respect to the Sharpening model, the spatial similarity of
neural responses assessed with MVPA interacted with Prime-
ability in a manner qualitatively similar to behavioral priming
effect sizes. However, these effects were strongly related to the

average response amplitude and estimates of the SNR in each
region, largely eliminating differences in similarity after adjust-
ment for these factors. With respect to predictions of the Facil-
itation and Predictive Coding models about timing, neural
responses were indeed found to peak at earlier times for OLD
compared to NEW objects in regions showing repetition sup-
pression, although these effects failed to track priming magnitude.
On this point, it is important to mention that none of the original
proponents of these models have made explicit claims about
differential timing for different types of items (e.g., greater change
in the peak timing for more strongly primed items that are
identified initially more slowly). Nevertheless, we believe that this
prediction should follow if these models are to serve as a unifying
explanation of repetition suppression and priming.

All of the models—Synchrony included—failed to account for
the details of repetition suppression magnitude as it related to
priming. This failure stemmed from the assumption that a uni-
tary mechanism was responsible for both repetition suppression
and priming. While we found that priming and repetition sup-
pression were indeed correlated in left frontal cortex (within- and
between-participant) and the left fusiform gyrus and ACC
(within-participant), the portion of variance explained had little
overlap with that explained by changes in coupling. Little to no

Fig. 9 Assessing activity timing predictions of the Facilitation and Predictive Coding models. A hemodynamic response function model (gamma variate)
was fit to the beta coefficients at each timepoint (TR) for each participant and experimental condition, permitting estimates of the peak time (tpeak) (see
graphic at the bottom). Group-average response functions are shown with dashed lines for each condition, and group-average estimates of peak times are
shown with vertical dotted lines (mean data on the actual measured beta coefficients are shown with solid lines). Main effects of Repetition on peak time
were observed in the Left Fusiform and Left Frontal ROIs (OLD peaks earlier than NEW peaks), but there were no significant interactions between
Repetition and Primeability on peak time. Statistics are based on N= 60 independent participants, organized into a factorial design with Task (Overt,
Covert Naming) as a between-participant variable. A color key for the experimental conditions is shown at the bottom right (OLD, Strong Primeable= red;
OLD, Weak Primeable= orange; NEW, Strong Primeable= gray; NEW, Weak Primeable= black).
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changes in functional or effective connectivity were observed
among regions showing repetition suppression, despite quite large
repetition suppression effects that replicated across tasks
(approximately 40–50% decreases in left frontal and bilateral
fusiform regions). Instead, coupling changes were observed in a
partially overlapping, right-lateralized network of regions. Models
of priming will therefore all require some substantive revision,
and repetition suppression itself will require some rethinking. If
repetition suppression does not reflect changes in coupling
between regions, perhaps it reflects some form of local, regional
change in processing efficiency that benefits object identification?
In any case, a central finding of the current study is that repetition
suppression and coupling each account for unique portions of the
variance in priming and are expressed in only partially over-
lapping brain regions. This is reminiscent of recent findings from
another study, in which beta-weight correlations with face
recognition memory were found locally to traditional face-
processing regions, whereas connectivity-based correlations with
face memory lay mainly in relationships with regions outside of
the traditional face-processing network42.

Limitations of the current study. The failure to observe robust
support for the Predictive Coding, Facilitation, and Sharpening
models may be at least partially due to methodological factors. The
current study was conducted with fMRI, which afforded simul-
taneous testing of all four major theoretical models. However,
fMRI utilizes the BOLD signal rather than the underlying elec-
trophysiological signals, and BOLD fMRI may be blind to effects
that occur at the more rapid time scale of milliseconds to hun-
dreds of milliseconds. Ghuman et al.17 previously observed
increased phase locking (12–14 Hz, low beta band) between left
frontal and left fusiform cortex for repeated objects, consistent
with the Synchrony model, and this increased phase locking was
correlated with priming. However, such band-limited effects may
be washed out when effectively averaging across all frequency
bands, as one would expect when using a single, average signal (as
in fMRI). As a further example, in a recent study of short-term
priming in picture naming using electrocorticography (ECoG), we
found evidence of both earlier neural response onset consistent
with the Facilitation model, as well as increased top-down effective
connectivity from left frontal cortex to left ventral temporal cortex
with repetition within the first 200 milliseconds of processing43,
potentially consistent with the Predictive Coding model. While
this study examined only short-term effects (<20 s separating
repetitions) and did not have the statistical power to evaluate the
relationship between changes in coupling, repetition suppression
magnitude, and behavioral priming magnitude across participants,
the observation of effects over a much more rapid physiological
time scale suggests the need for further studies with higher tem-
poral resolution (such as ECoG, MEG, and joint fMRI/EEG stu-
dies). It is similarly unclear whether spatial correlations in fMRI
are a sufficient test of the Sharpening model39,40,44. However,
multiple other studies have tested the Sharpening model using a
range of methods in both monkeys and humans, with little sup-
portive evidence to date at the most common time scales used in
priming studies (i.e., within a daily session11,25,44–47; cf.48; see13

for discussion). In our view, it will take multiple studies across a
range of methodologies to fully rule out any of these models, and
the primary contribution of the current study is its whole-brain
assessment of changes in connectivity and their relationship to
repetition suppression and priming magnitude, with more mod-
erate progress on model evaluation.

The current study utilized multiple data-driven, whole-brain
analyses, with voxel-wise assessment of repetition suppression/
enhancement and functional connectivity. While every effort was

made to appropriately correct for multiple comparisons in these
analyses, they are inherently exploratory. Future studies should
complement this approach with explicit hypothesis testing. As a
central example, the detection of increased functional coupling
between R TP cortex and the anterior cingulate with repetition is
novel to the current study. Rather than viewing this connection in
isolation, it is useful to examine its context within the effective
connectivity model that included interactions with portions of the
striatum (right putamen), STG and the right fusiform gyrus
(Fig. 7a). It is possible that this entire circuit functions to retrieve
prior stimulus–response associations encoded through cortico-
striatal loops49,50 (see also51). Some evidence consistent with the
Synchrony model that we previously observed in MEG in covert
picture naming was also right-lateralized, with enhanced evoked
power in the theta/alpha frequency ranges involving the right
fusiform gyrus and right lateral prefrontal cortex18. Other studies
have highlighted a role for the R TP cortex in both attention- and
memory-related contexts as a portion of the ventral attention
network52,53. Nevertheless, it will be important for future studies,
both physiological and neuropsychological, to engage in more
explicit hypothesis testing about the role of R TP cortex and the
ventral attention network in repetition priming and object
processing.

As an additional example, the effective connectivity analyses in
the current study utilized exploratory SEM, in which a search was
conducted for the optimal model that explained the data while
minimizing out-of-sample error. We made efforts to include the
most relevant brain regions in the current task, pooling both
regions exhibiting repetition suppression and those identified as
exhibiting any priming-related connectivity changes. However,
there is a risk that effective connectivity relationships can be
model- and method-dependent54, and it is inherently challenging
for a statistical model to induce the correct underlying
feedforward and feedback influences among highly intercon-
nected cortical regions. Future work should examine alternatives
that employ different underlying statistical approaches using the
full fMRI time series (e.g., dynamic causal modeling55), as well as
different measurement strategies that can potentially isolate
feedforward/feedback cortical signals, such as layer-specific fMRI
(see56 for one recent example).

In the current study, repetition of stimuli was implicit to the
task being performed. However, participants were likely aware
that repeated stimuli had been presented previously, and markers
of explicit recollection could be present, particularly in the neural
repetition effects. Future studies should extend the current work
by measuring both priming and measures of explicit memory
(e.g., recognition memory) simultaneously in the same partici-
pants, which may permit the partialing and/or isolation of the
contributions of explicit recollection. In one recent study27, we
directly compared neural repetition effects in priming during
object naming and during recognition memory, performed in
alternating runs and on different subsets of stimuli but for the
same participants. Repetition suppression was largely restricted to
the priming condition in frontal and ventral temporal cortex,
whereas repetition enhancement was observed across both task
contexts in parietal regions that initially responded near or below
baseline, with overall elevated responses during recognition
memory. At an item level, behavioral measures of recognition
memory performance in this previous study are largely unrelated
to priming magnitudes measured in the current study (Supple-
mentary Table 2), suggesting that the current brain–behavior
correlations with priming are not strongly related to explicit
recollection. Nevertheless, it will be important to examine this
relationship further, and the lack of an explicit recollection
condition in the current study limits our conclusions in this
regard.
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Finally, the four theoretical models themselves are specified in
somewhat general terms that make joint, head-to-head testing
difficult. For example, they do not make direct claims about the
involvement and role of particular brain regions in priming, but
rather apply generally to task-engaged regions and particularly
those that exhibit repetition suppression. They also do not
necessarily have equivalent levels of complexity or address the
same exact family of possible experimental observations. As
previous proponents of the Synchrony model16, we feel that it is
important to disclose that while the connectivity pattern observed
between the R TP and ACC regions fits with the general
expectation of this model, the separation of repetition suppres-
sion from connectivity in the current experiment is also
problematic. The Synchrony model (along with the Predictive
Coding and Sharpening models) has no clear way to explain the
correlation between repetition suppression and priming that is
not mediated by connectivity changes. Furthermore, we cannot
measure spiking activity directly with fMRI, so even the aspects of
the current results that provide supporting evidence are
necessarily indirect. The Synchrony model, at least as previously
articulated16, is no less guilty of assuming that connectivity
changes would be observed among regions showing repetition
suppression, although it left open the possibility that regions not
showing repetition suppression could also contribute. These
failures will require further examination of the underlying
mechanistic bases of repetition suppression using methods with
higher temporal resolution (e.g., ECoG, simultaneous fMRI/
EEG), and they will require rethinking of all of the models, the
Synchrony model included.

Conclusions
We have examined the relationships among behavioral repetition
priming, neural repetition suppression, and brain connectivity in
relation to the Synchrony, Predictive Coding, Sharpening, and
Facilitation models. Repetition suppression and connectivity were
found to be largely independent of one another in their con-
tributions to repetition priming. While the connectivity changes
are most compatible with the Synchrony model, all current
models fail to explain the correlations between priming and
repetition suppression that are not mediated by connectivity.

Methods
Ethics statement. Ethics approval for this study was granted by the NIH Insti-
tutional Review Board (protocol 93-M-0170, clinical trials number NCT00001360).

Participants. Thirty-two participants performed the Overt Naming Task (18
females) with a mean (SD) age of 24.03 (3.58) years (range: 19–38), and 28
additional participants performed the Covert Naming Task (19 females) with a
mean (SD) age of 23.43 (1.62) years (range: 21–28). Participants were right-handed,
neurologically healthy native English speakers with normal or corrected-to-normal
vision. All participants granted informed consent and were monetarily compen-
sated for their participation.

Experimental stimuli. Participants completed either overt or covert picture
naming, consisting of 200 colored photographic images of animals, plants, foods,
and everyday objects. Images were presented across two lists of 100 pictures each,
with the lists matched in conceptual category membership and in average lexical
properties of picture names (omnibus F statistics all <1), including lexical decision
times on the names (mean response time= 632.3 ms, SD= 71.9 ms) and log HAL
frequency determined by the English Lexicon Project database (mean= 8.57, SD=
1.54)57. Images were resized to 600 × 600 pixels and presented against a gray
background (RGB value: 75, 75, 75). Outside of the scanner, pictures presented on
a laptop subtended approximately the central 6° × 5° of visual angle (horizontal ×
vertical). Inside of the scanner, pictures subtended approximately the central 7.8° ×
6.2° of visual angle (horizontal × vertical).

Naming tasks. Participants in both Overt and Covert Naming conditions initially
named one set of 100 images aloud three times through in a pseudorandom order
outside the scanner (in a quiet testing room). In each naming trial, the trial started

with a central fixation cross for 500 ms, followed by the picture to be named for
200 ms. The picture offset was followed by a blank screen for 1300 ms, yielding a
total trial duration of 2000 ms. Participants were instructed to name each image
aloud as quickly and accurately as possible, with correct performance and error
responses notated by the experimenter, and response time marked according to
voice onset using a microphone on the display computer (Presentation software
package Version 11.3, www.neurobs.com).

After a delay of approximately 30 min, participants performed either Overt or
Covert Naming inside the MR scanner. In both tasks, a naming trial consisted of a
central black fixation cross presented for 1000 ms, followed by the picture to be
named for 300 ms, followed by a blank screen for a period ranging from 6700 to
12,700 ms at multiples of the TR (total trial lengths of 8000, 10,000, 12,000, and
14,000 ms) and sampled with a uniform distribution (Fig. 2; see58 for discussion of
optimal ISIs in slow event-related fMRI designs). For Overt Naming, participants
spoke into an MR-compatible microphone placed next to the head coil
approximately 3–5 cm from the participant’s mouth. For Covert Naming,
participants were instructed to name the pictures silently to themselves, pressing a
response button to mark the beginning of their naming response. In both tasks, the
100 pictures named pre-fMRI (OLD) were randomly intermixed with 100 pictures
that were novel for the fMRI session (NEW), with trials organized into 5 runs of
40 pictures each. For Covert Naming, participants completed an additional Overt
Naming session of all 200 pictures immediately after fMRI, in order to confirm that
their button-press response times during fMRI agreed with actual overt response
times (same timing and methods used as for the pre-fMRI session). Experimental
lists (OLD versus NEW) were counterbalanced across participants, and only
correct trials were included in priming estimates and task analyses.

Recording naming responses during MRI. Spoken responses were captured with
an Opto-Acoustics FOMRI-III NC MR-compatible microphone with built-in noise
cancellation and routed into an M-Audio FastTrack Ultra 8-R USB audio interface.
Responses were recorded with Adobe Audition. To calculate response times, the
stimulus presentation computer emitted a square wave pulse at the onset of each
trial and a custom Matlab program calculated the time difference between the
square pulse onset and voice response onset for each trial.

MRI methods. Images were acquired with a General Electric Signa HDxt 3.0T
scanner (GE Healthcare) using an 8-channel receive-only head coil. A high-
resolution T1-weighted anatomical image (MPRAGE, magnetization-prepared
rapid gradient-echo) was obtained for each participant (124 axial slices, 1.2 mm
slice thickness, field of view= 24 cm, 224 × 224 acquisition matrix). Functional
(T2*-weighted) images were acquired using a gradient-echo echo-planar imaging
(EPI) sequence [Array Spatial Sensitivity Encoding Technique, ASSET, acceleration
factor= 2, TR= 2000 ms, TE= 27 ms, flip angle= 60o, 40 sagittal slices (3.5 mm
slice thickness), field of view= 216 mm, 72 × 72 acquisition matrix, voxel resolu-
tion= 3.5 × 3.0 × 3.0 mm3]. Each experimental task run lasted 7 min 40 s for a total
of 230 consecutive whole-brain volumes, with each participant receiving a total of 5
runs. Foam earplugs were worn by participants to attenuate scanner noise and
participants’ head positions were stabilized using foam pillows. All EPI data were
evaluated for transient head motion artifacts, with included scans required to be
≤0.3 mm/TR using AFNI’s @1dDiffMag function (comparable to mean Framewise
Displacement59). Independent measures of cardiac and respiration cycles were
recorded during the task scans for later removal.

fMRI data preprocessing. Preprocessing utilized the AFNI software package60,
applying steps in the following order: (1) removal of the first 3 TRs to allow for T1
equilibration; (2) 3dDespike to bound outlying timepoints per voxel within
4 standard deviations of the time series mean; (3) 3dTshift to adjust for slice
acquisition time within each volume (to t= 0); (4) 3dvolreg to align each volume of
a run’s scan series to the first retained volume of the first run; (5) each scan was
then spatially blurred by a 6-mm Gaussian kernel (full-width at half-maximum)
and divided by the voxelwise time series mean to yield units of percentage signal
change. De-noising of each scan then utilized the ANATICOR nuisance regression
approach34,61. White matter and large ventricle masks were created from the
aligned MPRAGE scan using Freesurfer62, and a large draining vein mask was
created from a standard deviation map of the volume-registered EPI data (from
step 4 above). All masks were resampled to EPI resolution and eroded by 1 voxel to
prevent partial volume effects with gray matter voxels, and the related nuisance
time series were calculated on the volume-registered data just prior to spatial
blurring (after step 4 and prior to step 5 above). Nuisance regression for each voxel
was performed on the spatially blurred volume-registered data (after step 5 above),
and the regressors consisted of: 6 head-position parameter time series (3 transla-
tion, 3 rotation), 1 average eroded ventricle time series, 1 “localized” eroded white
matter time series (averaging the time series of all white matter voxels within a 20-
mm-radius sphere), 1 eroded draining vein time series, 8 Retroicor time series (4
cardiac, 4 respiration) calculated from the cardiac and respiratory measures taken
during the scan63, 5 respiration volume per time (RVT) time series to minimize
end-tidal CO2 effects following deep breaths64, and the first 3 principal component
time series calculated on a union mask of the nuisance tissues (white matter,
ventricles, draining veins) (aCompCor regressors65,66). Prior to regression, all
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nuisance time series were detrended by a 4th-order polynomial function to remove
slower scanner drift and drift in head position, with the de-noised residuals
detrended in the same manner during regression. After regression, de-noised
residual time series were transformed to standardized anatomical space (Talairach-
Tournoux) for task analyses at a resolution of 3 mm3 isotropic.

Statistics and reproducibility. Detailed information on statistical tests performed
are provided in the specific subsections below. Tests of behavioral measures
included paired t-tests for all within-participant measures and correlation tests
(Pearson’s r) for across-participant associations between brain and behavioral
measures (or solely between behavioral measures). Normality of data for these tests
was assessed using Lilliefors’ composite goodness-of-fit test (in Matlab). Test–retest
reliability of behavioral measures was assessed with Pearson’s r. Group-level tests of
fMRI beta parameters utilized one-sample t-tests (versus 0) for stimulus responses
and paired t-tests for repetition effects. Analyses of functional and effective con-
nectivity, representational similarity, and peak BOLD response timing utilized LME
models with covariates. Replications were assessed for stimulus and repetition
effects (betas) across Overt and Covert Naming experiments (N= 32 and N= 28,
respectively), as well as for Weak/Strong Primeability effects in behavior.

Normative analyses of naming response times and Primeability. A within-
participant estimation of “Primeability” (Strong versus Weak) in object naming
was determined from normative analyses of response times across all 60 partici-
pants. Response times on correct naming trials were averaged across participants
when encountered for the first time as NEW objects (i.e., the first presentation in
the pre-fMRI session or the first presentation during the fMRI session), as well as
for OLD objects (i.e., presentation during fMRI of objects seen during the pre-fMRI
session). Only response times in Overt Naming sessions were used for this purpose,
since button-press response times during Covert Naming were systematically faster
than for Overt Naming sessions by as much as 200–300 ms per participant. Each
item’s resulting average NEW response time included the correct naming responses
from approximately 40 participants. Test–retest reliability of mean NEW response
times per object was assessed across Overt and Covert Naming experiments using
Pearson correlation, as well as the test–retest reliability of priming magnitude per
object, estimated as the difference in response time when an object was OLD versus
NEW. Reliability of NEW responses and priming magnitudes across Overt and
Covert Naming experiments was high for both measures, but was highest for NEW
responses [r (198)= 0.704 vs r (198)= 0.436]. Given the high reliability of mean
NEW response times across experiments, as well as the strong relationship between
mean NEW responses and priming magnitude by item when combining experi-
ments (larger priming for slower NEW responses; Fig. 4b), “Primeability” was
calculated as a median split of mean NEW response times, with Strong Primeable
objects defined as the 100 objects with the slowest mean NEW response times
across participants and Weak Primeable objects defined as the 100 objects with the
fastest mean NEW response times across participants. We fully expect item Pri-
meability to be a complex function of a variety of factors including frequency of
exposure, the level of visual detail and color present in the picture, as well as its
“neighborhood” of visual and conceptual relationships with other objects67. The
use of response time to NEW pictures here is a practical convenience.

Although the contribution of any particular participant’s response times during
fMRI was expected to be minimal to the overall Strong/Weak Primeability norms,
we also conducted a set of follow-up analyses in which each participant’s
behavioral data was excluded from the calculation of the norms. This allowed
selection of Strong/Weak Primeability to be completely independent of the analyses
of the fMRI responses, with a unique selection of the Strong/Weak median split for
each participant. As expected, there was no marked change in the pattern of results
(see Supplementary Figs. 5–7).

Behavioral priming analyses. Response times to correct naming trials during
fMRI were tabulated for each participant, separately for each experimental con-
dition [Repetition (OLD, NEW) crossed with Primeability (Strong, Weak) for a
total of four conditions]. Trials with responses slower than 2000 ms were excluded
from analyses (modeled as incorrect trials), as these trials would likely contain
speech artifacts affecting multiple TRs. Repetition priming magnitudes per parti-
cipant were then calculated for Strong and Weak Primeable conditions using effect
size (Cohen’s d), the difference in means (NEW–OLD) divided by the pooled
standard deviation. For purposes of correlating priming magnitudes with measures
of neural activity derived from fMRI, effect sizes determined for Covert Naming
participants were averaged from the fMRI and post-fMRI sessions (during which
the same items were named overtly).

Choice of statistical thresholds for fMRI analyses. The overall analysis strategy
was first to identify brain regions exhibiting repetition suppression using typical
general linear model (GLM) contrasts of OLD versus NEW. The voxelwise alpha
levels on these contrasts were chosen such that FDR68 indicated that fewer than 1
voxel in each task (Overt Naming, Covert Naming) could be due to chance, with
the interpretation that surviving voxels replicate across tasks (in this case, a vox-
elwise threshold of P < 0.00001, with FDR correction to q < 0.00006). This high
thresholding also broke apart large clusters and afforded detection of isolated ROIs.

We also required that any such voxels exhibited above-baseline levels of activity at
a minimum level of significance (P < 0.05, q < 0.05). Whole-brain searches for
repetition-related changes in functional connectivity were conducted on the same
data sample used for the identification of repetition suppression ROIs. For whole-
brain searches of functional connectivity using cluster-size correction, we chose a
voxelwise alpha of P < 0.001, correcting for multiple comparisons to a familywise
Type-I error rate of P < 0.05, as this has been shown to control for false positive
rates at 5% or less when using an empirical autocorrelation function estimation for
cluster distribution69,70. All subsequent analyses utilized FDR to correct for mul-
tiple comparisons, with the FDR controlled at q < 0.05.

fMRI task analyses. Traditional task analyses were conducted at the voxel level
using a GLM, in which the data at each timepoint are treated as the sum of all
effects thought to be present at that timepoint, plus an error term. Responses
associated with each condition were modeled using TENT basis functions in AFNI,
with a separate regressor for each timepoint following the stimulus onset, per-
mitting empirical estimation of the hemodynamic response function (HRF) shape.
This approach assumes that all responses for a given condition share the same
response shape but makes no assumption as to what the shape of that response
might be. Responses for each participant were modeled over 8 timepoints from t=
0 s to t= 14 s in increments of the TR (2 s). One additional regressor of no-interest
was coded for error trials in naming (either omissions or commissions). For the
purposes of statistical testing, peak response magnitudes were estimated by aver-
aging the 3rd and 4th timepoints of the TENT function corresponding to the peak
of the typical BOLD response, reflecting activity 4–8 s post-stimulus onset; visual
examination of the beta coefficients confirmed that this period did indeed represent
the typical peak well (see Fig. 9). Single-participant contrasts for overall Stimulus
Response (pooling conditions) and effect of Repetition (either repetition sup-
pression or enhancement, pooling across Strong/Weak Primeability conditions)
were tested using linear tests within the GLM. Beta coefficients from the regression
for each participant were submitted to group-level analyses of the overall Stimulus
Response and effects of Repetition.

A group-level effect of Stimulus Response relative to baseline was evaluated in
each voxel separately for Overt and Covert Naming using a one-sample t-test
across participants of the related beta coefficients (β) versus 0 (averaging the 3rd
and 4th TR β’s at the peak response), with positive β’s indicating above-baseline
and negative β’s indicating below-baseline responses. Two statistical thresholds
were employed: (1) a minimum level of significance at P < 0.05 when pooling
participants across the two tasks, corrected for whole-brain comparisons using
FDR to q < 0.05, and (2) a stringent level of significance in each task individually (P
< 0.0001, q < 0.00016); given the number of voxels meeting the threshold in the
brain volume (6322 voxels at q= 0.00016 in Covert Naming, 9287 voxel at q=
0.00009 in Overt Naming), this level of FDR corresponds roughly to the
expectation of only 1 false positive voxel in each task. At the more stringent
threshold (with the extremely low FDR), responses can be said to replicate
across tasks.

A similar approach was taken in evaluating Repetition effects (OLD versus
NEW objects) at the group level, collapsing across Strong/Weak Primeability
conditions. Two statistical thresholds were employed using a paired t-test
(OLD–NEW) across participants: (1) a minimum level of significance (P < 0.05, q
< 0.05) when pooling participants across the two tasks, and (2) a stringent level of
significance in each task individually (P < 0.00001, q < 0.00006), with an
expectation of <1 false positive voxel in each task. This was combined with the
minimum level of significance (P < 0.05, q < 0.05) for the Stimulus Response when
identifying ROIs.

fMRI task-based functional connectivity analyses. In order to minimize con-
tamination of task-based functional connectivity estimates from the temporal
contour of the evoked responses of individual trials, only the average peak BOLD
response was retained from each individual trial (the raw average of the 3rd and
4th timepoints of the task residual time series following the onset of each stimulus).
For these analyses, data had undergone preprocessing with nuisance regression
(described above), as well as having removed the condition-level mean responses
during GLM regression analyses. This resulted in an “item series” of peak BOLD
responses from correct trials in each individual voxel, with a maximum length of
100 OLD and 100 NEW trials and each divided approximately in half for Strong
and Weak Primeability conditions (e.g., a maximum series of approximately 50
Strong Primeable, OLD trials). Functional connectivity analyses utilized a 2 × 2 × 2
mixed effects design with Task (Overt, Covert) as a between-participant variable,
Repetition (OLD, NEW) and Primeability (Strong, Weak) as within-participant
variables and participant as a random variable. Employing a more continuous
analysis of functional connectivity with priming strength was not possible within-
participant, as only a single timepoint (the peak) was retained for each item;
functional connectivity estimates therefore had to be calculated across items, with
priming strength incorporated within-participant as a median split of items
between Strong and Weak Primeability. For all analyses, two sets of tests were of
primary interest: (1) a main effect of Repetition (OLD versus NEW) collapsing
across Primeability, and (2) an interaction of Repetition × Primeability, given that
this is the pattern observed in behavioral priming with larger differences between
NEW and OLD response times for Strong Primeable compared to Weak Primeable

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02002-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:487 | https://doi.org/10.1038/s42003-021-02002-7 |www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


conditions (Fig. 4). Accordingly, the familywise alpha for multiple-comparisons
correction was set at P < 0.025 (0.05/2) in order to correct for two sets of voxelwise
(or ROI-level) tests, with the full FWE Type-I error rate controlled at P < 0.05. Our
functional connectivity analyses employed the 3 steps used previously by Gotts and
colleagues for whole-brain functional connectivity analyses: seed definition, target
ROI selection, and region-to-region correlation analysis34,71,72. We undertook all
3 steps for both the Repetition main effect and the Repetition × Primeability
interaction effect. The further interaction of these primary effects with Task was
also evaluated to examine the possibility that any results could simply be due to the
presence of speech artifacts (e.g., present in Overt but not Covert Naming).

Seeds were identified using whole-brain “connectedness“34,73,74. The average
Pearson correlation of each voxel’s “item series” (the array of peak BOLD responses
to individual trials of the same type) with the item series in all voxels responding
significantly above baseline in the task (identified for each individual participant,
with P < 0.0001 needed to control FDR to q < 0.05) was calculated to create a 3D
reduction of the 4D (3D+ Time) dataset for each condition. In other words, the
correlation of a particular voxel’s responses was calculated with those of all task-
responsive voxels, storing the average of those correlations back into the voxel.
Since connectedness in this case reflects the average level of correlation with task-
responsive voxels, it gives an indication of how intercorrelated a given voxel is with
those voxels most engaged by the task. This approach, akin to centrality in graph
theory, has been used previously in studies of both resting-state34,66,71,73–77 and
task-based functional connectivity72,78,79. LME models (using AFNI’s 3dLME80)
were constructed whose dependent variables were the voxel-wise connectedness
maps in each experimental condition. Task, Repetition, Primeability, and their
interactions were included as fixed effects. The global level of correlation among all
brain voxels, GCOR35,81, was included as a nuisance covariate in order to model
any residual motion and/or breathing artifacts present after the nuisance regression
(see82 for discussion). Participant was treated as a random intercept. Cluster-size
correction was used to control the Type I error rate. The average smoothness of the
de-noised functional time series was estimated with AFNI’s 3dFWHMx, using the
empirical, spatial autocorrelation function (June 2016). Then, 3dClustSim (June,
2016) was used to run a Monte Carlo simulation with 10,000 iterations in a whole-
brain mask in Talairach space within which the analyses were performed.
Importantly, the smoothness estimates and noise simulations did not assume
Gaussian distributions of activity, which has been shown to inflate the false positive
rate in studies using more traditional cluster-size correction69,70. Clusters were
selected at a cluster defining threshold of P < 0.001, familywise alpha of P < 0.025
(0.05/2, for two sets of tests), minimum cluster size k= 25 voxels.

The seed definition step was then followed with more typical seed-based
correlation analyses. The item series within each seed region was averaged across
voxels to form ROI-averaged item series, which were correlated with the item series
for every voxel in the brain, separately for each experimental condition. These
correlations were Fisher z-transformed and used as dependent variables in LME
models with the same fixed and random effects as for the seed detection step. We
tested for the main effect of Repetition and the Repetition × Primeability
interaction at a voxel threshold of P < 0.001, with correction by cluster size for
whole-brain comparisons as well as the number of seeds tested (i.e., FWE
correction to P < [0.025 / (number of seeds)]. Results were then further masked by
voxels exhibiting above-baseline responses in both tasks individually (P < 0.05, q <
0.05), leaving clusters of voxels that both showed changes in functional
connectivity with stimulus repetition and that were engaged in the task. Secondary
target regions were then combined together with seed regions, as well as any
regions exhibiting repetition suppression in both tasks, to arrive at a full set
of ROIs.

Regions were sampled as 6-mm-radius spheres centered on the peak statistic
used to identify each ROI (F-statistic from the LME on connectedness or seed-
based correlation tests for ROIs showing changes in functional connectivity; the t-
value of the OLD versus NEW comparison of beta coefficients for repetition
suppression regions). Region-by-region matrix analyses were then conducted using
the same LME approach applied to connectedness and the seed-based tests,
allowing the examination of all inter-regional relationships. Multiple comparisons
in the region-by-region analyses were controlled with FDR (q < 0.05).

fMRI task-based effective connectivity analyses. Single-trial responses (same
data as for functional connectivity analyses) from the 7 regions identified in the
whole-brain functional connectivity analyses (including repetition suppression
regions) were submitted to effective connectivity analyses54,83,84. Of the various
effective connectivity approaches (e.g., dynamic causal modeling - DCM, Granger
causality, multivariate autoregressive modeling, etc.), structural equation modeling,
or SEM37,85,86, provided the best match for the current data characteristics, since it
only requires covariance or correlation matrices as inputs. In particular, any
approaches requiring the use of time series (e.g., Granger-based methods) were not
appropriate, since the data consisted of a series of peak BOLD responses that had
been notched out of the original time series in an event-related design with
interleaved trial types. As with other exploratory effective connectivity approaches,
we first performed a search for the model that best accounted for the pattern of
covariance among the ROIs when pooling data across all conditions and partici-
pants (using AFNI’s 1dSEM37). A search was performed with both tree growth and
forest growth algorithms using the Akaike Information Criterion (AIC)87, a

measure of out-of-sample prediction error, to choose among different SEM models
and to guard against overfitting. The optimal model had 11 directional connections
among the ROIs.

Following the model search step, the optimal model was parameterized for each
participant’s condition-specific datasets individually (AFNI’s 1dSEMr37). The
parameterization failed to converge for two participants’ datasets (the NEW, Weak
Primeable condition for one participant, the OLD, Strong Primeable condition for
another; both Covert Naming participants), and these sets were excluded from
further analyses. The results of the successful parameterizations were then
submitted to an LME analysis that paralleled the one performed on the functional
connectivity data, with the SEM parameters as the dependent variable and Task,
Repetition, Primeability, and their interactions included as fixed effects. GCOR was
included as a nuisance covariate, and Participant was treated as a random intercept.
One out of the 11 SEM parameters (from the R TP to the Left Frontal ROIs) failed
to differ from zero across participants overall or in any individual condition and
was excluded from further analyses. The remaining 10 parameters were tested for
overall effects of Repetition and Repetition × Primeability interactions, as with the
functional connectivity analyses, with multiple comparisons corrected by FDR (q <
0.05). Further interactions with Task (Overt, Covert) were also evaluated. For
connections exhibiting a significant Repetition × Primeability interaction, follow-
up contrasts were conducted to clarify the nature of the interaction, comparing
parameters to OLD and NEW objects separately for Strong versus Weak Primeable
conditions, with multiple comparisons corrected by FDR (q < 0.05).

Evaluating predictions of the Sharpening model with MVPA. The Sharpening
model predicts that OLD objects should have spatial patterns across repetition
suppression ROIs that are less similar to one another than for NEW objects,
consistent with the loss of neural overlap among the neural representations. To
evaluate this, we applied MVPA38,88–90 to the single-trial BOLD responses in each
experimental condition (OLD, NEW × Strong, Weak Primeable). For these ana-
lyses, the data used were post-nuisance regression in preprocessing but prior to the
removal of condition means in GLM analyses. Each single-trial response was cal-
culated as the average of the 3rd and 4th TRs post-stimulus onset (the 4–6 s and
6–8 s TRs), i.e., the peak response, minus the average of the 1st TR in the trial (0–2
s) and the TR previous to it (−2 to 0 s), i.e., the baseline response. This resulted in a
voxelwise pattern of BOLD responses within an ROI. For a given participant and
ROI, the spatial correlation (Pearson) of all trials with all trials within the same
condition (e.g., NEW, Strong Primeable) was calculated across voxels, storing the
median correlation value to protect against skewing effects. The median correla-
tions then served as the dependent variable in an LME analysis, including Task,
Repetition, Primeability, and their interactions as fixed effects and Participant
treated as a random intercept. Multiple comparisons were corrected by FDR (q <
0.05). Further interactions with Task (Overt, Covert) were also evaluated. For ROIs
exhibiting a significant Repetition × Primeability interaction, follow-up contrasts
were conducted to clarify the nature of the interaction, comparing median corre-
lations to OLD and NEW objects separately for Strong versus Weak Primeable
conditions, with multiple comparisons corrected by FDR (q < 0.05).

The use of individual trial-level and voxel-level BOLD responses could
potentially suffer from poor SNRs when scanning at 3 Tesla, with “attenuation” of
spatial correlation values due to noise91–93. This could be particularly problematic
when the ROIs of interest have known differences in overall activity levels in
different conditions, in this case due to repetition suppression—which is how the
ROIs were defined. If OLD objects have BOLD responses that are closer to the
baseline level than NEW objects, the spatial correlation values could be closer to
0 simply due to lower beta coefficients across the ROIs and poorer SNRs. In order
to examine this issue, two nuisance covariates were included in a subsequent LME
analysis of each ROI: (1) the average beta coefficient across the ROI, and (2) the
estimated SNR of trials in each condition for each participant. The SNR, defined as
the variance of the signal divided by the variance of the noise, was estimated for a
given condition in the following manner: (1) for each trial, the difference between
the peak and baseline TRs represented the single-trial BOLD response; the variance
of this pattern across voxels served as the numerator in the SNR calculation, (2) a
noise estimate for each trial was calculated by randomly selecting two baseline
patterns from the same ROI and condition, subtracting one from the other, and
then calculating the variance of this pattern across voxels, (3) dividing the variance
in step 1 by the variance in step 2 yielded the SNR estimate for that trial, (4) the
median SNR value across trials in each condition served as the second nuisance
covariate in the new LME analysis. It is important to mention that the estimate of
the peak responses in each trial is not noiseless in this case, so this estimate of SNR
is expected to be an upper bound on the true SNR. A strong fit of the two nuisance
covariates to the ROI data, combined with a change in significance levels from the
LME analysis without the covariates, would indicate results consistent with
correlation attenuation. These relationships were further evaluated by examining
scatterplots of the nuisance variables on the x-axis and median spatial correlation
level on the y-axis, overlapping results across the different experimental conditions
(Supplementary Fig. 4).

Evaluating timing predictions of the Facilitation model. A central prediction of
the Facilitation model is that neural responses should be temporally advanced for
OLD compared to NEW objects in regions showing repetition suppression, with an
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earlier peak response22,23. In order to examine this prediction for the evoked
responses in fMRI, we fit a simple gamma variate function to the TR-specific beta
regression coefficients calculated during the GLM analyses in the 4 repetition
suppression ROIs, with a separate response function for each of the four experi-
mental conditions [Repetition (OLD, NEW) × Primeability (Strong, Weak)]:

h tð Þ ¼ h0 þ a � tb � e�t
c ð1Þ

h(t) represented the hemodynamic response as a function of time t, with 4 mod-
ifiable parameters: h0, representing a baseline value of h; a, a scaling parameter on
the height of the curve; b, an exponent on t determining the rise time of the curve;
and c, a time constant for the exponential decay of the curve. The time of the peak
response (tpeak) then corresponded to the value of t at which the derivative of h(t)
with respect to t equaled zero:

tpeak ¼ b � c ð2Þ
For each curve, the best-fitting parameter values for all 4 free parameters were

determined initially by a course grid search, followed by fine-tuning through a
gradient descent error minimization until stability had been reached (≤300
iterations). The estimates of tpeak were then submitted to LME analyses as the
dependent variables, including Task, Repetition, Primeability, and their
interactions as fixed effects and Participant treated as a random intercept. Multiple
comparisons were corrected by FDR (q < 0.05).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
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