
RESEARCH ARTICLE

Short period PM2.5 prediction based on

multivariate linear regression model

Rui Zhao1, Xinxin Gu1, Bing Xue2*, Jianqiang Zhang1, Wanxia Ren3

1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China,

2 Institute for Advanced Sustainability Studies e. V., Potsdam, Germany, 3 Key Lab of Pollution Ecology and

Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China

* bing.xue@iass-potsdam.de

Abstract

A multivariate linear regression model was proposed to achieve short period prediction of

PM2.5 (fine particles with an aerodynamic diameter of 2.5 μm or less). The main parameters

for the proposed model included data on aerosol optical depth (AOD) obtained through

remote sensing, meteorological factors from ground monitoring (wind velocity, temperature,

and relative humidity), and other gaseous pollutants (SO2, NO2, CO, and O3). Beijing City

was selected as a typical region for the case study. Data on the aforementioned variables

for the city throughout 2015 were used to construct two regression models, which were dis-

criminated by annual and seasonal data, respectively. The results indicated that the regres-

sion model based on annual data had (R2 = 0.766) goodness-of-fit and (R2 = 0.875) cross-

validity. However, the regression models based on seasonal data for spring and winter were

more effective, achieving 0.852 and 0.874 goodness-of-fit, respectively. Model uncertainties

were also given, with the view of laying the foundation for further study.

Introduction

With the rapid economic development of China, air pollutants are also growing rapidly in

recent decades, which became one of the country’s most serious environmental issues, and

attracted increasing public attention [1–3]. PM2.5 refers to fine particulate matter with aerody-

namic diameters equal to or smaller than 2.5 microns [4], which is recognized as a major com-

ponent for air pollution, which has been shown to lead to multiple adverse health outcomes

[5]. A number of epidemiological studies have indicated that long-term exposure to air con-

taining high PM2.5 concentrations may increase incidences of respiratory and cardiovascular

diseases, and even result in death [6–8].

Generally, PM2.5 is monitored by ground stations, and the coverage is extended from indi-

vidual points to broader planes via spatial interpolation methods such as nearest-neighbour

[9] and kriging [10]. However, the monitoring results may contain uncertainties due to the

limited number and uneven distribution of ground monitoring stations and sampling points

for spatial interpolation [11]. To compensate for this information gap, satellite remote sensing

is gradually being applied to the monitoring of air quality [12]. The aim is to establish a quanti-

tative relationship between Aerosol Optical Depth (AOD) obtained by satellite observations
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and PM2.5 concentrations [13]. This facilitates real-time and continuous monitoring of air

quality for specific regions [14].

AOD is a multiphase system formed by gases, liquid, and solid particles suspended in the

atmosphere, at a scale ranging from 10−3 to 102 microns [15]. AOD reflects the amount of

transmittance through a unit section of an atmospheric column [13]. PM2.5 is a major compo-

nent of aerosol, and is suspended in the air under a dispersed phase [16]. Studies have shown a

linear correlation between PM2.5 and AOD [17,18].

In earlier studies, this relationship was generally established via a simplistic linear regres-

sion model between PM2.5 and AOD, with the understanding that PM2.5–AOD is stable within

a certain spatiotemporal range, given as follows [19–24]:

PM2:5 ¼ aþ b� AOD ð1Þ

where PM2.5 refers to its concentration near the ground (μg/m3), which can be measured by

using the taper element oscillating microbalance (TEOM); AOD is the aerosol optical thick-

ness (dimensionless); and α and β represent the intercept and slope, respectively.

The proposal by van Donkelaar et al. (2010) [17] used the ratio between PM2.5 and AOD

for PM2.5 prediction. This method contained uncertainties because of insufficient PM2.5 data

from ground monitoring [10]. After studying the relationship between aerosol and air quality

in Beijing from 2005 to 2014, Chen et al. [25] found that there was no significant nor consis-

tent correlation between the two, with disparities being especially large for winters and sum-

mers. This indirectly showed that improvements are needed for models that use AOD as the

main variable for the prediction of PM2.5 concentrations.

Based on this premise, a number of studies have delineated the PM2.5–AOD relationship

through the introduction of concomitant variables in the form of meteorological parameters,

such as boundary layer height, temperature, relative humidity, and wind velocity, since the

matting property of particles can drastically affect the degree of vertical mixing and increase

the moisture absorption of aerosol [18, 26–28]. After modification of Eq (1), a generic model

was given as follows [28]:

PM2:5 ¼ ðaþ ε1Þ þ ðb1 þ ε2Þ � AOD þ ðb2 þ ε3Þ � TEMPþ ðb3 þ ε4Þ � RHþ ðb4 þ ε5Þ

� SPD ð2Þ

where TEMP is temperature (˚C); RH is relative humidity (%); SPD is wind velocity (m/s); α
and β are fixed coefficients; and ε is a random error.

Related research has shown that organic carbides, ammonium nitrates, and sulphates are

major components of PM2.5 [29, 30]. In addition, under certain environmental conditions, the

Air Quality Index (AQI) monitoring indicators such as SO2, NO2, and CO may convert into

important precursors that form PM2.5 [31]. Based on the data from monitoring stations in 31

Chinese cities between 2013 and 2014, Xie et al. [32] found a moderate correlation between

PM2.5 and the heights at which SO2, NO2, and CO were present, but the correlation with the

presence of O3 was weak.

Our literature review revealed that when modelling the relationship between these factors

and the changes in PM2.5 mass concentrations, quite a few studies comprehensively considered

the synergistic effects of AOD, meteorological parameters, and gaseous pollutants. In that con-

text, this study aims to establish a quantitative model that would allow continuous monitoring

of PM2.5 to be conducted more effectively, and that would provide insight into the spatio-tem-

poral distribution of PM2.5. Herein, the multivariate linear regression method is applied, with

PM2.5 concentration as the dependent variable, and the following as variables: AOD data,
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meteorological parameters (wind velocity, temperature, and relative humidity), and physical

and chemical factors (SO2, NO2, CO, and O3).

In addition, to improve the R2, by means of advanced statistical models such as generalized

additive regression, geographically weighted regression, and land use regression [33–35].

These studies aimed to improve model accuracy or land use information (such as altitude,

population, and vegetation coverage). However, these methods could not reflect the constitu-

ent components of PM2.5 [36].

This paper will elaborate on the construction of the proposed model. First of all, Beijing, the

capital city of China, was used as a typical case study, and all related data needed by the model

for the year 2015 were collected. And then, fitting and cross-validation results of the model

were obtained for the entire year and the respective seasons, before model uncertainties were

discussed. The conclusion was that the constructed model could be an effective means to sup-

plement ground monitoring for PM2.5 prediction. Nevertheless, there were inadequacies in the

study that required further improvement.

Methods and data source

In addition to meteorological factors, there may be different degrees of correlation between

the PM2.5 and SO2, NO2, CO, and O3 [32, 37–41]. In order to verify the rationality of this con-

clusion, this study attempted to modify Eq (2) and construct a multivariate linear regression

model. The concomitant variables of the model are the meteorological parameters and four

types of pollutant indices (SO2, NO2, CO, and O3):

PM2:5 ¼ ðaþ ε1Þ þ ðb1 þ ε2Þ � AOD þ ðb2 þ ε3Þ � TEMPþ ðb3 þ ε4Þ � RHþ ðb4 þ ε5Þ

� SPDþ ðb5 þ ε6Þ � COþ ðb6 þ ε7Þ �NO2 þ ðb7 þ ε8Þ � SO2 þ ðb8 þ ε9Þ

�O3 ð3Þ

where PM2.5 is its mass concentration at ground level (μg/m3), AOD is derived from MODIS

(dimensionless), TEMP is temperature (˚C); RH is relative humidity (%), SPD is wind velocity

(m/s); and SO2, NO2, CO, and O3 are the mass concentrations of the four pollutants at ground

level, β1, β2, . . . β8 are the slopes corresponding to the respective variables; and (α + ε1) is the

intercept.

Beijing City, which was taken as a typical case study for analysis, has seven national

ground monitoring stations, including West Wanshou Nishinomiya, Temple of Heaven,

Dongsi Subdistrict, Xicheng District, Agricultural Exhibition Center, The Institute of Atmo-

spheric Physics, Olympic Centre. The data from these stations throughout the year 2015, spe-

cifically during the time period that satellite transits (i.e., AM 9:00, 10:00, 11:00, and 12:00)

were obtained from the China National Environmental Monitoring Centre (http://www.

cnemc.cn/), containing hourly mass concentrations of PM2.5 and the four major air pollutants

NO2, CO, SO2, and O3, as well as meteorological data (including temperature, wind velocity,

and relative humidity). The above data were averaged in each time node of the 4 hours respec-

tively, to be set as the representative values for the model construction and validation. Their

means, standard deviations (SD), and minimum and maximum values are shown in Table A

in S1 Appendix.

In addition to ground data, this study also acquired AOD product data from the Aqua-

MODIS 550 nm Collection 6. MODIS is a medium-resolution imaging spectrometer carried

on the Terra and Aqua satellites of the United States’ Earth Observing System, and provides

daily aerosol data worldwide [42]. The standard MODIS Level-2 (L2) product provides AOD

data at 10 km spatial resolution, while the resolution of the newly-released MODIS Collection

6 (C6) product (MYD04_3K) is 3 km. In addition, the MODIS C6 product has been improved

Short period PM2.5 prediction
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in various ways, including instrument calibration, cloud detection, the structure of the lookup

table, calculation of radiation transmission, and corrections to gas absorption [43].

First, MYD04_3K data from the Aqua-MODIS 550 nm L2 Aerosol Products for the period

1 January to 31 December 2015 were downloaded through the MODIS L1 Level 1 and Atmo-

sphere Archive and Distribution System (LAADS) (http://ladsweb.nascom.nasa.gov/). These

data were verified by using the Beijing observation station’s AOD data obtained from the

Aerosol Robotic Network (AERONET) (http://aeronet.gsfc.nasa.gov/). To ensure comparabil-

ity between the MODIS 550 nm data and the corresponding AOD data, AERONET’s AOD

data corresponding to the wavelengths 440 nm and 675 nm were interpolated to obtain the

AOD value corresponding to 550 nm. The results showed a strong correlation between Aqua-

MODIS 3 km AOD and AERONET AOD, with the Pearson correlation coefficient r between

the two AODs being 0.92 (Fig A in S1 Appendix). The slope between the two was 1.23. This

indicated that, overall, the values of MODIS AOD were higher than those of AERONET AOD.

However, the deviations between the two could be considered as systematic because these

were holistic and continuous throughout the entire data range [24]. As such, there would not

be any impact on the prediction of PM2.5 concentrations.

Due to extreme weather, e.g., impact from thick clouds, strong snowfall etc. on the regional

atmospheric environment, data may have deficiencies in any of the variables related to the pro-

posed linear regression model. For example, data missing may happen to PM2.5, AOD, or the

gaseous pollutants. By the reason that satellite transits within a specific time period, i.e., AM

9:00, 10:00, 11:00, and 12:00 every day in the morning, it is impossible to obtain the AOD data

during the whole day. To ensure the data availability and consistency for model construction

and validation, the first step is to screen out the complete dataset without deficiency for all the

variables, compliance with the data capacity of AOD. As each variable has different unit, the

second step is data normalization by using SPSS software to ensure them dimensionless. After

data compilation and screening, 954 sets applicable to all variables were retained. To use the

available data as much as possible, their ratios for the four seasons were set as the basis for

stratified sampling. Two-thirds of the data were used for regression analysis at the seasonal

level, while the remaining third were used for cross-validation of the model, giving 636 and

318 sets of data for annual regression analysis and model checking, respectively. Taking into

account the seasonal factor, random selections were made from the 217, 239, 228, and 270 sets

of data for spring, summer, autumn, and winter, respectively.

Results and discussion

The study first gives the regression result by using the annual data of Beijing City. As the avail-

able data related to PM2.5 have expressed seasonal differences, they have been fitted for each

season to examine their respective regression performances. The coefficients corresponding to

the different regression models are shown in Table 1.

Table 1. The coefficients estimated in the regression models.

Constant AOD Temp RH SPD CO NO2 SO2 O3

Annual -104.046 12.21 -0.364 0.507 4.086 20.665 1.818 -0.173 0.611

Spring -141.253 9.994 0.264 0.792 2.042 49.554 1.329 -0.379 1.485

Summer -15.458 10.930 -0.900 -0.127 2.171 2.98 1.045 3.189 0.147

Autumn -27.879 7.487 -1.258 -0.102 3.043 96.221 0.777 -3.544 0.265

Winter -137.028 21.349 0.723 0.522 4.726 42.947 1.486 -1.998 0.994

https://doi.org/10.1371/journal.pone.0201011.t001

Short period PM2.5 prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0201011 July 26, 2018 4 / 15

http://ladsweb.nascom.nasa.gov/
http://aeronet.gsfc.nasa.gov/
https://doi.org/10.1371/journal.pone.0201011.t001
https://doi.org/10.1371/journal.pone.0201011


Regression results

The scatter distributions for the fitting and cross-validation of Beijing City PM2.5 data for 2015

are shown in Figs 1 and 2. The fitted line is generated by Excel software packaging, which is

based upon the least squares method to find out the linear trend with the best fitness among

the scattered points. The R2 and root mean square error (RMSE) for the regression model of

annual data (Fig 1) were 0.766 and 30.271 μg/m3, respectively, and for cross-validation (Fig 2),

the R2 and RMSE were 0.875 and 23.423 μg/m3, respectively, representing an increase of 14.2%

and a decrease of 22.6%, respectively, compared to the regression model of annual data.

A better R2 results for cross-validation compared to the regression model usually might be

due to the uneven distribution of sample data, which is inherent in the respective datasets for

the four seasons that were used for model construction. Furthermore, the overall PM2.5 fluctu-

ations between the seasons were large, such that the random selection of test data could not

fully guarantee that data distribution was proportional to the actual scenarios for the four

seasons.

Beijing is located in a mid-latitude region and has a temperate monsoon climate character-

ized by cold winters, hot summers, and distinct seasonal characteristics [44]. After the PM2.5

monitoring data were further grouped by the four seasons (Spring: January–March; Summer:

April–June; Autumn: July–September; and Winter: October–December), the seasonality of the

data was apparent. As can be seen in Table 2, the mean PM2.5 concentrations for spring and

winter far exceeded those of summer and autumn. This observation prompted data fitting for

each season, to examine the respective performance of regression. Table 3 shows that the

regression results for the PM2.5 data in the four seasons revealed high fitness for spring and

winter, both with R2 greater than 0.85; however, that for summer was low, with R2 of only

Fig 1. Fitting results of annual PM2.5 data for 2015.

https://doi.org/10.1371/journal.pone.0201011.g001
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0.761. Comparison indicated that, with the exception of the data for summer, the fitting results

and prediction validity for the other three seasons were all better than that of the annual data.

This confirmed that the main factor affecting prediction validity was seasonal variations.

For spring, the R2 for the PM2.5 data was 0.852 (Fig 3), representing an increase of 11.2%

compared to the annual data. For RMSE, there was a decrease of 1.5% instead. The R2 for

cross-validation was 0.822 (Fig 4), 3.5% lower than that for fitting of the spring data, indicating

slight overfitting. Nevertheless, the R2 was still better than that for the annual data. This indi-

rectly demonstrates that the regression model for the spring season data could accurately

reflect changes in PM2.5 over that time period.

For the summer PM2.5 data, R2 was 0.761and RMSE was 17.977 μg/m3 (Fig 5), being 2.4%

and 40.6% lower than the results for the annual data, respectively. In addition, the R2 for cross-

validation (Fig 6) of the summer data was 18.8% less than that for the overall data fitting, indi-

cating slight overfitting. From the Table 1, it is apparent that the associated coefficient of car-

bon monoxide (CO) in summer model was much smaller than in other models. This indicated

that CO had little influence on PM2.5 in summer, to result in an inferior performance on the

Fig 2. Cross-validation results of annual PM2.5 data for 2015.

https://doi.org/10.1371/journal.pone.0201011.g002

Table 2. Descriptive statistics and summary of regression results.

Seasonal PM2.5 N Mean SD Min Max

Annual 954 76.246 74.112 3 479

Spring 217 90.443 78.505 4 425

Summer 239 65.319 49.678 5 260

Autumn 228 49.639 38.364 4 199

Winter 270 100.688 102.127 3 479

https://doi.org/10.1371/journal.pone.0201011.t002
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summer prediction. The possible reason might be a rapid conversion of gaseous pollutants to

form nitrates and sulphates, due to high summer temperatures in Beijing and longer duration

of direct sunlight. Consequently, the correlation between the variable of gaseous pollutants

(CO, NO2, SO2, and O3) and PM2.5 was weakened [41].

During the autumn, the value of R2 regarding PM2.5 data is 0.788 (Fig 7), 2.9% higher than

that of annual value. In contrast, the RMSE was 18.721 μg/m3, being 38.2% lower than the

annual data and similar to the fitting performance for the summer. The obvious reduction in

RMSE might be because the mean and maximum PM2.5 concentrations for autumn were far

lower than those for both in spring and winter. The R2 for cross-validation was 0.803 (Fig 8),

which was slightly better than the regression result. This provides indirect evidence that the

autumn data could better predict PM2.5 concentrations during that period.

Regarding the winter season, the R2 of the winter PM2.5 data was 0.874 (Fig 9), 14.1% higher

than for the annual data. Furthermore, the RMSE was 25.692 μg/m3, with a decrease of 15.1%.

The R2 for cross-validation of the winter PM2.5 data reached 0.940 (Fig 10), indicating that

Table 3. Summary of R2 and error measure for fitting and cross-validation result.

Seasonal Regression Fitting results Cross-validation results

R2 RMSE R2 RMSE

Annual 0.766 30.271 0.875 23.423

Spring 0.852 29.802 0.822 21.718

Summer 0.761 17.977 0.618 21.082

Autumn 0.788 18.721 0.803 16.190

Winter 0.874 25.692 0.940 30.449

https://doi.org/10.1371/journal.pone.0201011.t003

Fig 3. Fitting results of PM2.5 data for spring 2015.

https://doi.org/10.1371/journal.pone.0201011.g003
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Fig 4. Cross-validation results of PM2.5 data for spring 2015.

https://doi.org/10.1371/journal.pone.0201011.g004

Fig 5. Fitting results of PM2.5 data for summer 2015.

https://doi.org/10.1371/journal.pone.0201011.g005
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Fig 6. Cross-validation results of PM2.5 data for summer 2015.

https://doi.org/10.1371/journal.pone.0201011.g006

Fig 7. Fitting results of PM2.5 data for autumn 2015.

https://doi.org/10.1371/journal.pone.0201011.g007

Short period PM2.5 prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0201011 July 26, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0201011.g006
https://doi.org/10.1371/journal.pone.0201011.g007
https://doi.org/10.1371/journal.pone.0201011


Fig 8. Cross-validation results of PM2.5 data for autumn 2015.

https://doi.org/10.1371/journal.pone.0201011.g008

Fig 9. Fitting results of PM2.5 data for winter 2015.

https://doi.org/10.1371/journal.pone.0201011.g009
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prediction validity was good. The reason would be that the mean and maximum PM2.5 con-

centrations in winter were the highest for the entire year. Meteorological conditions were sta-

ble during this period, without conducive to diffusion, resulting in good spatiotemporal

stability in the data for the various parameters and variables [24].

Discussions

Effective PM2.5 prediction is a complex issue that is easily affected by numerous factors, includ-

ing weather and climatic conditions, and environmental seasonality. Different factors also

have different degrees of impact on the regression results used for PM2.5 prediction. The corre-

lation between PM2.5 and the other parameters and variables is shown in Table 4, and the pair-

wise Pearson correlations among the parameters are given in Table B in S1 Appendix. During

the study period, there was an extremely strong correlation between the mean concentration

of PM2.5 and those of CO, NO2, and SO2, and a strong correlation between the former and

AOD (highlighted in blue colour). The results reflected, to a certain extent, the rationality of

the variables selected for constructing the regression model. This was especially so for regres-

sion analysis between PM2.5 and AOD: the model’s predictive validity improved substantially

after inclusion of the four synergistic variables CO, SO2, NO2, and O3 to capture the contribu-

tion of gaseous pollutants to PM2.5 formation.

Fig 10. Cross-validation results of PM2.5 data for winter 2015.

https://doi.org/10.1371/journal.pone.0201011.g010

Table 4. Pearson correlation between PM2.5 and the various parameters.

PM2.5 AOD Temp RH SPD CO NO2 SO2 O3

PM2.5 1.000 0.416 -0.176 0.276 -0.134 0.784 0.772 0.500 -0.329

https://doi.org/10.1371/journal.pone.0201011.t004
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Separately, a comparative analysis was made between the proposed regression model and

those used by other scholars. One example was the geographical weighted regression model

used by Ma et al. [10] to predict PM2.5 in China, which had an R2 of 0.71. The prediction accu-

racy of the proposed model was higher (R2 = 0.76) than other models because the data resolu-

tion of 3 km retained much more information than studies that used data at 50 km resolution.

However, this study only predicted PM2.5 for Beijing City, but did not take into consideration

any regional differences in the atmospheric environment. To this end, it is critical to consider

the spatial heterogeneity presented by PM2.5, as well as the impact of this heterogeneity when

enhancing the model’s accuracy. The linear mixed-effect model proposed by Zheng et al. [45]

used Beijing–Tianjin–Hebei as the study area and had an accuracy and cross-validation of R2

= 0.77 and 0.84, respectively. Although the fitting results were good, the model did not con-

sider seasonal differences. Lv et al. [46] predicted the surface concentrations of PM2.5 in north-

ern China (including Beijing, Tianjin, Hebei, and Shandong) using a Bayesian hierarchical

model. The R2 of 0.78 was slightly better than our proposed model. A possible reason was that

more AOD data were available for their use, which expanded the training set of their model,

thus improving its prediction accuracy. In addition, their study took into consideration the

effects of seasonal differences on PM2.5. This indirectly verified the rationale of our study, in

which the individual seasons were used for model construction.

Although the model proposed here had higher predictive accuracy (to a certain extent) than

earlier models constructed by other scholars, few uncertainties are remained. First, uncertain-

ties in the PM2.5 data sources: on the one hand, this was a reflection of the uneven spatial dis-

tribution of PM2.5 ground monitoring stations, which were mainly concentrated in cities and

urban areas, but lacking in the suburbs; and on the other hand, it revealed the systemic devia-

tions inherent in the TEOM method of measuring PM2.5 concentrations [47]. Second, uncer-

tainties in the AOD data: Although the quality of AOD products at 3 km resolution was

relatively high, these were more prone to generating random noise, which affected prediction

accuracies [43]. Third, uncertainties in the proposed model itself: This study only assumed a

possible linear relationship between PM2.5 and the numerous factors but did not consider the

formation mechanism of PM2.5, which would have an impact on the effectiveness of the

model. And the fourth is the uncertainty caused by spatiotemporal heterogeneities. Depending

on the region and time period, significant differences exist in PM2.5. The good predictions

achieved by the model proposed here were limited to a region and over short duration. Further

examination would be needed to determine whether the model could be applied to PM2.5 pre-

dictions at larger geographical scales and temporal dimensions.

Conclusions

A multivariate linear regression equation was developed between PM2.5 and AOD, meteoro-

logical parameters, and various gaseous pollutants. The aim was to overcome the inadequacies

in spatiotemporal observations by ground monitoring stations. The results showed that the

regression model using annual data for Beijing City in 2015 could explain 76.6% of the city’s

PM2.5 concentrations. Apparent seasonal differences in PM2.5 concentrations were found, with

R2 values of 0.852, 0.761, 0.788, and 0.874 for models utilizing the data for spring, summer,

autumn, and winter seasons, respectively. The results of the regression models that used spring

and winter data were superior to those that used summer and autumn data. Further studies

will investigate the effectiveness of the proposed model. These will include the model’s sensi-

tivity to changes in time and region, and the effects of different resolutions of satellite-acquired

AODs on prediction accuracy. The constituent components and formation of PM2.5 will also

be analysed, so that the model can be further improved to validate its prediction.
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and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air

Qual Atmos Health. 2014, 7(1): 41–58.

32. Xie Y, Zhao B, Zhang L and Luo R. Spatiotemporal variations of PM2.5 and PM10 concentrations

between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology. 2015a; 20:

141–149.

33. Liu Y, Paciorek C J, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5 concentra-

tions using satellite data, meteorology, and land use information. Environ Health Persp. 2009; 117(6):

886–892.

34. Kloog I, Nordio F, Coull B A and Schwartz J. Incorporating local land use regression and satellite aero-

sol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environ

Sci Technol. 2012; 46(21): 11913–11921. https://doi.org/10.1021/es302673e PMID: 23013112

Short period PM2.5 prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0201011 July 26, 2018 14 / 15

https://doi.org/10.1021/es502113p
http://www.ncbi.nlm.nih.gov/pubmed/25184953
https://doi.org/10.1021/acs.est.5b01413
http://www.ncbi.nlm.nih.gov/pubmed/26310776
https://doi.org/10.1021/es302673e
http://www.ncbi.nlm.nih.gov/pubmed/23013112
https://doi.org/10.1371/journal.pone.0201011


35. Hu X, Waller L A, Al-Hamdan M Z, Crosson W L, Estes M G, Estes S M, et al. Estimating ground-level

PM2.5 concentrations in the southeastern US using geographically weighted regression. Environ Res.

2013; 121: 1–10.

36. Di Q, Koutrakis P and Schwartz J. A hybrid prediction model for PM 2.5 mass and components using a

chemical transport model and land use regression. Atmos Environ. 2016; 131: 390–399.

37. Unger N, Shindell D, Koch D and Streets D. Cross influences of ozone and sulfate precursor emissions

changes on air quality and climate. Proc Natl Acad Sci. 2006; 103(12): 4377–4380.

38. Rae J G L, Johnson C E, Bellouin N, Boucher O, Haywood J M and Jones A. Sensitivity of global sul-

phate aerosol production to changes in oxidant concentrations and climate. J Geophys Res. 2007; 112:

D10312.

39. Kloster S, Dentener F, Feichter J, Raes F, van Aardenne J, Roeckner E, et al. Influence of future air pol-

lution mitigation strategies on total aerosol radiative forcing. Atmos Chem Phys. 2008; 8: 6405–6437.

40. Shindell D, Lamarque J F, Unger N, Koch D, Faluvegi G, Bauer S, et al. Climate forcing and air quality

change due to regional emissions reductions by economic sector. Atmos Chem Phys. 2008; 8: 7101–

7113.

41. Leibensperger E M, Mickley L J, Jacob D J and Barrett S R. Intercontinental influence of NOx and CO

emissions on particulate matter air quality. Atmos Environ. 2011; 45(19): 3318–3324.

42. Levy R C, Remer L A, Kleldman R G, Mattoo S, Ichoku C, Kahn R, et al. Global evaluation of the collec-

tion 5 MODIS dark-target aerosol products over land. Atmos Chem Phys. 2010; 10: 14815–14873.

43. Munchak L A, Levy R C, Mattoo S, Remer L A, Holben B N, Schafer J S, et al. MODIS 3 km aerosol

product: applications over land in an urban/suburban region. Atmos Meas Tech. 2013; 6(7): 1747–

1759.

44. He X, Shen S, Miao S, Dou J and Zhang Y. Quantitative detection of urban climate resources and the

establishment of an urban climate map (UCMap) system in Beijing. Build Environ. 2015; 92: 668–678.

45. Zheng Y, Zhang Q, Liu Y, Geng G and He K. Estimating ground-level PM2.5 concentrations over three

megalopolises in China using satellite-derived aerosol optical depth measurements. Atmos Environ.

2016; 24: 232–242.

46. Lv B, Hu Y, Chang H H, Russell A G and Bai Y. Improving the accuracy of daily PM2.5 distributions

derived from the fusion of ground-level measurements with aerosol optical depth observations, a case

study in North China. Environ Sci Technol. 2016; 50 (9): 4752–4759.

47. Engel-Cox J, Oanh N T K, van Donkelaar A, Martin R V and Zell E. Toward the next generation of air

quality monitoring: Particulate matter. Atmos Environ.2013; 80: 584–590.

Short period PM2.5 prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0201011 July 26, 2018 15 / 15

https://doi.org/10.1371/journal.pone.0201011

