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ABSTRACT Linkage mapping has been widely used to identify quantitative trait loci (QTL) in many plants
and usually requires a time-consuming and labor-intensive fine mapping process to find the causal gene
underlying the QTL. Previously, we described QTG-Finder, a machine-learning algorithm to rationally
prioritize candidate causal genes in QTLs. While it showed good performance, QTG-Finder could only
be used in Arabidopsis and rice because of the limited number of known causal genes in other species. Here
we tested the feasibility of enabling QTG-Finder to work on species that have few or no known causal genes
by using orthologs of known causal genes as the training set. The model trained with orthologs could recall
about 64% of Arabidopsis and 83% of rice causal genes when the top 20% ranked genes were considered,
which is similar to the performance of models trained with known causal genes. The average precision was
0.027 for Arabidopsis and 0.029 for rice. We further extended the algorithm to include polymorphisms in
conserved non-coding sequences and gene presence/absence variation as additional features. Using this
algorithm, QTG-Finder2, we trained and cross-validated Sorghum bicolor and Setaria viridis models. The
S. bicolor model was validated by causal genes curated from the literature and could recall 70% of causal
genes when the top 20% ranked genes were considered. In addition, we applied the S. viridis model and
public transcriptome data to prioritize a plant height QTL and identified 13 candidate genes. QTL-Finder2
can accelerate the discovery of causal genes in any plant species and facilitate agricultural trait improvement.
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Improving crop production to address the rapid increase in the global
food demand, combined with increasing limitations of arable land,
remains a major challenge. The world population is expected to
exceed 9 billion by 2050 and will require a 70% increase in global food
production (FAO 2009). Between 1985 and 2005 the world’s crop-
lands increased by only about 2.4% (Foley et al. 2011). Therefore, a
significant increase of crop yield is required to feed the growing
population, especially when there are increasing uncertainties of the
changing climate.

Two common approaches used to improve crop yield and other
agriculturally important traits are plant breeding and genome editing.

Although plant breeding contributed significantly to crop yield
improvement in the past century, it is facing obstacles such as limited
sources of genetic variation and time-consuming phenotyping and
germplasm evaluation (Rodríguez-Leal et al. 2017). With the ad-
vancement of CRISPR/Cas9 technology, genome editing has become
amuch faster way to enhance crop traits and it is possible to introduce
novel alleles for a single gene via targeted mutagenesis (Rodríguez-
Leal et al. 2017). However, genome editing will require identification
of the trait-associated genes or the causal variants (Ramstein et al.
2019). Many trait-associated causal genes in quantitative trait loci
(QTL) have been validated by mutational analysis and functional
complementation experiments (Weigel and Nordborg 2005).

As one of the most commonly used genetic mapping methods,
thousands of QTL mapping studies have been conducted on many
crops (Yonemaru et al. 2010; Mace et al. 2019) but the causal genes for
most of these QTLs have not been identified or validated by exper-
iments. For example, there are less than one hundred curated causal
genes that have been cloned and validated by complementation
experiments in Arabidopsis or rice, and there are even fewer known
causal genes in other plant species (Martin and Orgogozo 2013).
Identifying causal genes from hundreds to thousands of genes in a
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QTL region usually requires a great amount of time and effort to fine
map the causal gene (Huang et al. 2016a). Therefore, a computational
method to predict or prioritize causal genes will be helpful for
accelerating the discovery of novel trait-associated genes in QTLs.

Previously we developed a machine-learning based algorithm,
named QTG-Finder, to prioritize causal genes in QTLs (Lin et al.
2019). The algorithm uses additional information such as polymor-
phisms from re-sequencing data, function annotation, co-function
network, gene essentiality and paralog copy number to prioritize
causal genes in QTLs. We trained models for Arabidopsis thaliana
(Arabidopsis) and Oryza sativa (rice) with curated causal genes in
each species. Based on validation using an independent set of newly
curated genes, the models could recall about 64% of Arabidopsis and
79% of rice causal genes when the top 20% ranked genes in a QTL
were considered. However, the models were only developed for
Arabidopsis and rice and were trained on a relatively small number
of known causal genes from each species. There were insufficient
numbers of known causal genes in other plants to develop such
predictive models.

To devise an algorithm that would work even on species with few
or no training data available, we wondered whether orthology could
be used to create or extend training data. This idea was based on
several factors. First, many causal genes identified by linkage mapping
are evolutionary hotspots (Martin and Orgogozo 2013). Second, in
plants and animals, some genes have repeatedly been major com-
ponents of phenotypic variation of similar traits (Gompel and
Prud’homme 2009; Kopp 2009). For example, Flowering Time
(FT) has been reported to be a causal gene of flowering time QTLs
in Arabidopsis (Kojima et al. 2002; Schwartz et al. 2009), barley (Yan
et al. 2006), wheat (Yan et al. 2006), sunflower (Blackman et al. 2010)
and ryegrass (Skøt et al. 2011). There are many other examples of
conservation in causal genes for the same trait across species (Martin
and Orgogozo 2013). Therefore, we hypothesized that the orthologs
of causal genes are also likely to be causal genes.

We tested this hypothesis by training models in Arabidopsis and
rice with orthologs of known causal genes. The performance in-
dicated the feasibility of this approach. We further tested the ap-
proach by training models for Sorghum bicolor (sorghum) and Setaria
viridis (Setaria), which have only few known causal genes. We
validated the sorghum model by testing QTLs with known causal
genes curated from the literature. We also demonstrated the usage of
the Setaria model by combining the prioritization results with
published transcriptome data to obtain 13 causal gene candidates
for a Setaria height QTL.

MATERIALS AND METHODS

The orthologs of known causal genes
The list of causal genes used for orthology analysis was based on a
list of causal alleles previously published (Martin and Orgogozo
2013). Since the original list only provided the gene name of those
causal genes, we first curated their gene ID or UniProt ID from
the references cited. When the ID was not available in the pa-
pers, we searched the gene name in genome annotation databases
such as RAP-DB (https://rapdb.dna.affrc.go.jp), maizeGDB (https://
www.maizegdb.org), soyKB (http://soykb.org/) or the UniProt data-
base (https://www.uniprot.org). The gene ID or UniProt ID was used
as a query to search the EggNOG database (v4.5.1) (Huerta-Cepas
et al. 2016) to obtain the ortholog group to which it belongs and its
fine-grained orthologs. Fine-grained orthologs in EggNOG are de-
fined as orthologs derived from a pairwise orthology between

members of two species in an orthologous group based on phylogenic
analysis. For genes that were not found in EggNOG, we obtained their
protein sequences from UniProt or Genbank and used a HMMER-
based sequence search (http://eggnogdb.embl.de/#/app/seqscan) to
find the ortholog group. When available, the fine-grained orthologs
were used as the orthologs of causal genes. When fine-grained ortho-
logs were not available, all members in the ortholog group were used
as orthologs. We examined the orthology in major crops and model
organisms of eudicots and monocots: Arabidopsis thaliana, Solanum
lycopersicum, Brassica rapa, Glycine max, Oryza sativa japonica,
Oryza sativa indica, Setaria italica, Sorghum bicolor, Brachypodium
distachyon, Hordeum vulgare and Zea mays (Supplemental Table S1).

We obtained the ortholog list for Setaria viridis in a different way
because the EggNOG database only includes S. italica genes and not
S. viridis genes. Since S. italica is a domesticated line derived from
S. viridis and has excellent collinearity with S. viridis (Supplemental
Figure S1), (Bennetzen et al. 2012), we used DAGChainer (Haas et al.
2004) in CoGe to identify collinear gene pairs that fall in contiguous
chains between S. viridis and S. italica. The DAGChainer results
allowed us to convert S. italica gene IDs to S. viridis gene IDs
(Supplemental Table S1).

Building new features based on polymorphisms in
conserved non-coding regions and gene presence/
absence for Arabidopsis and rice models
The conserved non-coding regions, the Conserved Elements (CE) and
the Transcription Factor Binding Sites (TFBS), were downloaded from
the Plant Transcriptional Regulatory Map (PlantRegMap, last mod-
ified on 2019-10-11, http://plantregmap.cbi.pku.edu.cn/). The CEs
were identified based on the genome alignments of plants (Jin et al.
2014). The TFBSs were based on the correlation between frequencies
in binding motifs and conservation scores (Tian et al. 2019). The
TFBSs and CEs were assigned to genes that were located within 1kb
upstream or downstream of the genes. We incorporated the TFBSs
and CEs as regulatory annotations in SnpEff (v 4.3r) and identified
SNPs and Indels in these TFBSs or CEs. We counted the number of
SNPs and Indels in these conserved non-coding regions for each gene
and built four features: CE_snp, TFBS_snp, CE_indel, TFBS_indel.

The gene presence/absence data were obtained from published
studies. The Arabidopsis gene presence/absence data were based on
80 A. thaliana accessions with 10 to 24x sequencing coverage (Tan
et al. 2012). The rice gene presence/absence data were based on 453O.
sativa accessions with sequencing depth of over 20x (Hu et al. 2018).
The percentage of absence across the sequenced accessions was
calculated for each gene and used as the feature “percent_absence”.

Features and model training of sorghum and
Setaria models
Features for sorghum and Setaria models were generated as follows.
Polymorphism features were extracted in the same way as previously
described (Lin et al. 2019). Briefly, SNP data were annotated by
SIFT4G (v 2.4) and SnpEff (v 4.3r) and assigned to each gene in the
genome. The polymorphism features were mostly binary features that
represent the presence of a specific type of SNP for each gene. For
example, if a gene contained any deleterious non-synonymous SNPs,
the “is_nonsyn_deleterious” feature was set to 1, otherwise it was set
to 0. The sorghum SNP data were downloaded from Sorghum
Genome SNP Database (SorGSD) (Luo et al. 2016), which provides
SNP data for a diverse panel of 48 sorghum lines. The Setaria
SNP data and gene presence/absence data are based on a diverse
panel of 598 S. viridis accessions (Huang et al. 2019). Since there is no
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pre-built SnpEff database for S. viridis, we built a S. viridis database
using the .gff file of S. viridis v2.1 downloaded from Phytozyme12
(https://phytozome.jgi.doe.gov).

The Gene Ontology (GO) annotations for sorghum and Setaria
were obtained from PLAZA4.0 (https://bioinformatics.psb.ugent.be/
plaza/versions/plaza_v4_monocots/) (Van Bel et al. 2018). We used
GOslim (http://current.geneontology.org/ontology/subsets/goslim_
metagenomics.obo) to aggregate the molecular function GO terms
to higher-level terms such as is_transporter and is_transcription_
factor. For genes encoding an enzyme, we further determined their
metabolic domains based on Plant Metabolic Network databases
(PMN, release 12.5) (Schläpfer et al. 2017).

The paralog copy number of each gene was determined by
OrthoFinder (v2.3.3) (Emms and Kelly 2019). We used the
DIAMOND algorithm and the default setting of OrthoFinder. Pro-
tein sequences of thirteen species or subspecies were downloaded
from PLAZA4.0, including Arabidopsis thaliana, Brachypodium dis-
tachyon, Brassica rapa, Glycine max, Hordeum vulgare, Oryza sativa
japonica, Oryza sativa indica, Populus trichocarpa, Sorghum bicolor,
Setaria viridis, Setaria italica, Solanum lycopersicum and Zea mays.
The paralogs counted for each species in the orthologous group were
determined by OrthoFinder.

The Setaria and sorghum models were trained with orthologs of
causal genes from any other plant species. To train the models, we
used the random forest algorithm, which is an ensemble learning
method that fits a number of decision trees on various sub-sampled
datasets (Ho 1998). Random forest integrates the votes from these
trees to improve accuracy and reduce the chance of over-fitting.
Model parameters including the number of trees, maximum number
of features to consider when seeking for the best split, the minimum
number of samples required to split a node in a decision tree and the
ratio of positives and negatives in the training set were used to
optimize the models to maximize cross-validation AUC-ROC (Sup-
plemental Figures S2 and S3).

Cross-validation, external validation and feature
importance analysis
The methods for model training, cross-validation, external validation
and feature importance analysis were the same as previously de-
scribed (Lin et al. 2019). Briefly, we used random forest as the
machine learning algorithm backbone. We split the data into training
and testing sets using a 5-fold cross-validation and validated the
model with an independent, external dataset. Feature importance was
measured by the reduction of AUC-ROC after removing each feature
from the models. The causal genes used for external validation were
not used for training the QTG-Finder models. However, some of
them are orthologs of known causal genes in other species, which
could have been used for training QTG-Finder2models.We therefore

excluded these orthologs from the training set of QTG-Finder2 to
avoid over-estimation of model performance.

The external validation of the sorghummodel was conducted on a
set of causal genes curated from the literature (Table 1) (Magalhaes
et al. 2007; Jordan et al. 2010; Kawahigashi et al. 2011; Murphy et al.
2011; Lin et al. 2012; Saballos et al. 2012; Murphy et al. 2014; Yang
et al. 2014; Boyles et al. 2017; Hilley et al. 2017).We applied themodel
to all genes in the QTL regions, which were defined by the literature.

We used Fisher’s exact test for the pairwise comparison of external
validation results. Each gene in the external validation set was
assigned to one of two classes: (1) the gene was included in the
prioritized fraction (e.g., top 5%, 10% or 20%), or (2) the gene was not
included in the prioritized fraction. The number of genes in the
two classes (prioritized vs. not prioritized) was used for Fisher’s
exact tests.

Sequence alignment for candidate genes
Multiple sequence alignments were performed using Clustal Omega
(v1.2.4, https://www.ebi.ac.uk/Tools/msa/clustalo/) across grass spe-
cies including Brachypodium distachyon, Panicum virgatum, Oryza
sativa, Setaria viridis, Setaria italica, Sorghum bicolor and Zea mays.
Homologous protein sequences in these species were obtained from
Phytozyme12. Human and yeast RIO2 sequences were obtained from
NCBI (https://www.ncbi.nlm.nih.gov).

For promoter sequence comparison, we used pairwise global
sequence alignment (EMBOSS Needle, https://www.ebi.ac.uk/
Tools/psa/emboss_needle/). The promoter sequences were defined
as 1kb upstream of the coding sequence (CDS) and downloaded from
Phytozome12. We further examined the putative Transcription
Factor Binding Sites (TFBS) in the promoters. TFBSs were predicted
by Plant Transcriptional Regulatory Map tool (PlantRegMap, http://
plantregmap.cbi.pku.edu.cn/binding_site_prediction.php).

Data availability
The source code and training data for Arabidopsis, rice, sorghum and
Setaria are available at Github (https://github.com/carnegie/QTG_
Finder). The pre-trained QTG2-Finder2 models are available at
Dryad (https://doi.org/10.5061/dryad.hhmgqnkdj). All models were
trained and tested using Python 3.7.3 and scikit-learn 0.21.2. Sup-
plemental material available at figshare: https://doi.org/10.25387/
g3.11789646

RESULTS

Incorporating an orthology approach in the QTG-
Finder2 algorithm
The QTG-Finder algorithm described previously only used known
causal genes of a single species to train a model of that species (Figure

n■ Table 1 Curated S. bicolor QTL causal genes and external validation results

QTL Trait Gene name Gene ID Genes in QTL Percent rank Reference

Light sensitivity phyB Sobic.001G394400 144 1% Yang et al. 2014
Brown midrib bmr2 Sobic.004G062500 27 3% Saballos et al. 2012
Amylose Wx Sobic.010G022600 706 3% Boyles et al. 2017
Fungus resistance Ds1 Sobic.005G065000 389 15% Kawahigashi et al. 2011
Plant height Dw2 Sobic.006G067700 335 15% Hilley et al. 2017
Seed shattering Sh1 Sobic.001G199200 117 18% Lin et al. 2012
Aluminum tolerance MATE Sobic.003G403000 26 19% Magalhaes et al. 2007
Light sensitivity ghd7 Sobic.006G004400 115 61% Murphy et al. 2014
Pollen fertility PPR Sobic.002G057050 26 69% Jordan et al. 2010
Flowering time PRR37 Sobic.006G057900 22 77% Murphy et al. 2011
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1A). For QTG-Finder2, we trained models with not only the known
causal genes in the target species but also the orthologs of causal genes
from other species (Figure 1B).

With 253 curated causal genes from any plant species (Figure 2),
we identified their orthologs in 12 species and subspecies: Arabidopsis
thaliana, Solanum lycopersicum, Brassica rapa, Glycine max, Oryza
sativa japonica, Oryza sativa indica, Setaria italica, Setaria viridis,
Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare and
Zea mays (Supplemental Table S1). The 12 species included major
crops and model organisms of eudicots and monocots. Each species
had orthologs for about 60% of the causal genes (Supplemental Figure
S4A). Some causal genes had multiple orthologs and the average
number of orthologs varied across species (Supplemental Figure S4B).

Testing Arabidopsis and rice models trained
with orthologs
We asked if the models trained with orthologs would perform as well
as models trained with only the known causal genes in the target
species. To test this hypothesis, we trained models in Arabidopsis and
rice using three different sets of positive training data: 1) only known
causal genes in the target species, 2) only orthologs, and 3) known
causal genes plus orthologs. For the Arabidopsis model, we used
60 known causal genes from Arabidopsis and 146 orthologs of causal
genes from other species (Figure 3A). In the rice model, we used
45 known causal genes from rice and 206 orthologs of causal genes
from other species. The negative train sets included genes that were
randomly selected from the genome as described previously (Lin et al.
2019).

We first performed cross-validation to evaluate models that were
trained with the three training sets (Figure 3B). We used the Area
Under the Receiver Operating Characteristic Curve (AUC-ROC) to
evaluate the training performance of these models. For both species,
models trained with any of the training sets was significantly higher
than the models trained with randomly selected genes (Figure 3B,
One-way ANOVA followed by Tukey HSD post-hoc test, p-value ,
0.05). In Arabidopsis, the models trained with only the known causal
genes had the highest average AUC-ROC score (0.86). The model
trained with only orthologs had an average AUC-ROC of 0.82, which
is comparable to the model trained with known causal genes. The
model trained on both the orthologs and known causal genes had an
average AUC-ROC of 0.81, which was not distinguishable from the
model with just the orthologs. This indicates that orthologs have
similar properties as known causal genes. Compared to these scores,
the model trained with randomly selected genes had an average AUC-
ROC of 0.52. In rice, the model trained with only orthologs had the
highest average AUC-ROC of 0.84. This is not simply due to the
sample size increasing since this trend was not observed in Arabi-
dopsis where the sample size was also increased in the ortholog
training data. Interestingly, the model trained with only the known
genes showed the lowest score of 0.73. Combining the orthologs with
the known causal genes for training gave a score of 0.81. Since the
models trained with only orthologs had significantly higher AUC-
ROC than models trained with random genes, these results indicate
the orthologs by themselves will be useful for model training. The F1
scores were 0.23 for the Arabidopsis model (precision = 0.33 and
recall = 0.19) and 0.05 for the rice model (precision = 0.036 and recall
0.22).

After optimizing model parameters from cross-validation results,
we evaluated the final models with an external validation set, which
contained independently curated causal genes that had not been seen
by the models. The validation method and data set were the same as

previously described (Lin et al. 2019). For each causal gene in the
validation set, the models were applied to rank all genes in the QTL
region where the causal gene is located. We applied the model to rank
and prioritize the top 5%, 10% and 20% of genes in the QTL region
and examined if the known causal gene was included in the prior-
itized gene list. All models performed significantly better than the
models trained with randomly selected genes (Figure 4). The models
trained with only orthologs not only performed significantly better
than background, but also were not different from models trained
with just the known causal genes. For Arabidopsis, the model trained
with only orthologs could recall 27%, 36% and 64% of causal genes
at the top 5%, 10% and 20% cutoffs, respectively (Figure 4). For rice,
the model trained with only orthologs can recall 28%, 56% and
83% of causal genes at the top 5%, 10% and 20% cutoffs, respectively
(Figure 4). At all three cut-offs, the Arabidopsis models that com-
bined the Arabidopsis causal genes and orthologs performed better
than models using either causal genes or orthologs alone, though not
significantly (Fisher’s exact test, p-value.0.05). For rice, all three
models performed similarly. All the Arabidopsis and rice models
performed significantly better than the background at 10% and
20% cutoffs (Fisher’s exact test, p-value, 0.05) but not at 5% cutoff.
The background was determined as the theoretical probability of

Figure 1 Incorporating an orthology approach to the QTG-Finder
algorithm facilitates training models in other plant species (A) The
original QTG-Finder algorithm. Only the known causal genes were
used to train a model for a given species. (B) QTG-Finder2 algorithm.
Orthologs of the known causal genes from any species were also used
to train a model. This method allows QTG-Finder to be implemented in
species without enough or any known causal genes.
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including the causal gene when we randomly selected 5%, 10% or
20% of the genes from the QTL region. For Arabidopsis, the
average precisions were 0.073, 0.039, and 0.027 at the top 5%,
10%, and 20% cutoffs. For rice, the average precisions were 0.057,
0.037, and 0.029 at the top 5%, 10%, and 20% cutoffs (Supple-
mental Table S2).

To determine if different levels of orthology affected performance,
we compared the orthology method described above with two
alternative methods: 1) using taxon-constrained orthologs and 2)
using only EggNOG’s fine-grained orthologs defined as orthologs
derived from a pairwise orthology between members of two species in
an orthologous group based on phylogenic analysis (Huerta-Cepas
et al. 2016). For the taxon-derived orthology method, we only
considered the orthologs for species that are in the same lineage
(monocot or eudicot) as the causal gene being queried. For example, if
the known causal gene were identified in a monocot species, then we
would only consider its orthologs in monocot species. Using the same
external validation set, we compared the original orthology method
with these twomethods and found that their performance was similar
to each other (Fisher’s exact test, p-value.0.05) (Supplemental
Figure S5).

Models trained with both the known causal genes in the species
and orthologs from other species represent a more generalized model
since it combines information from known causal genes in target
species and information from causal genes in other species. The
models trained with known causal genes plus orthologs performed
similarly as the models trained with only orthologs in cross-validation
and external validation (Figures 3 and 4). Therefore, we used models
trained with known causal genes plus orthologs for subsequent
analyses.

Exploring and adding new features to QTG-Finder2
We explored new features that may help distinguish causal genes
from other genes such as polymorphisms in conserved non-
coding regions and structural variations such as gene presence/
absence. SNPs or Indels in some conserved non-coding sequences
may disrupt transcription factor binding and influence gene
expression patterns and traits. In addition, gene presence/absence
variation has been linked to phenotypic variations. For example,
causal genes like RLM3 and FRIGIDA in Arabidopsis (Werner
et al. 2005; Staal et al. 2008), Sub1A in rice (Xu et al. 2006) and
ZCCT1 and ZCCT2 in barley (Yan et al. 2004) are absent in some
accessions.

To generate features from polymorphisms in non-coding se-
quences, we used two types of predicted non-coding sequences in
PlantRegMap (Tian et al. 2019): Conserved Elements (CE) and
functional Transcription Factor Binding Sites (TFBS). In Arabidopsis
and rice, there are significantly more SNPs and Indels in the CEs
nearby causal genes than in the CEs nearby an average gene in the
genome (Mann-Whitney U Test, p-value ,0.05, Figure 5A, Supple-
mental Tables S3 and S4). However, the SNPs or Indels in TFBS were
not significantly different between causal genes and non-causal genes
(Mann-Whitney U Test, p-value .0.05, Figure 5A, Supplemental
Tables S3 and S4).

In addition, we constructed a percent absence feature using
previously published gene presence/absence analyses (Tan et al.
2012; Hu et al. 2018). In both Arabidopsis and rice, the causal genes
had significantly higher percent absence than genome genes (Mann-
Whitney U Test, p-value ,0.05, Figure 5A, Supplemental Tables S3
and S4).

We were encouraged by the enrichment of the CEs and presence/
absence variation in the causal genes and added them as new features.
However, these new features did not change the model performance
significantly (Fisher’s exact test, p-value.0.05). We first compared
the external validation results for models with or without the new
features (Figure 5B). Then, we examined the feature importance of

Figure 2 Most plant species do not have enough curated known causal
genes to train a model as Arabidopsis or rice does. Numbers indicate
the number of known causal genes in each species. Arabidopsis,
Arabidopsis thaliana; rice, Oryza sativa japonica; maize, Zea mays;
tomato, Solanum lycopersicum; barley, Hordeum vulgare; wheat,
Triticum aestivum; soybean, Glycine max. Data from Martin and
Orgogozo, 2013.

Figure 3 Models trained with orthologs have
comparable performance as the models trained
with known causal genes (A) The number of
known causal genes and orthologs derived from
causal genes in any plant species (B) Cross-val-
idation of models trained with known causal
genes, with orthologs, or with causal genes plus
orthologs. AUC-ROC (Area Under the Curve -
Receiver Operating Characteristic) was used to
compare training performance of the models.
Error bars represent standard deviation, N =
50 for each bar. One-way ANOVA followed by
Tukey HSD post-hoc test was performed to de-
termine the statistical difference (P , 0.05)
among the groups as represented by letters.
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those new features by using a leave-one-out analysis (Supplemental
Figure S6). Paralog copy number remains to be the most important
feature, which is consistent with the previous version of QTG-Finder
(Lin et al. 2019). The CE_snp feature was the fourth most important
feature in the Arabidopsis model. The other new features were not
within the top 5 most important features. Since these new features do
not reduce model performance, we kept them in the algorithm for
subsequent analyses.

Applying QTG-Finder2 to train sorghum and
Setaria models
To demonstrate that the QTG-Finder2 algorithm can be used to train
models for species that have few or no known causal genes, we trained
and cross-validated models in Setaria viridis (Setaria) and Sorghum
bicolor (sorghum) with the orthologs derived from causal genes in
other species. S. bicolor is an important C4 photosynthesis crop with
excellent drought resistance (Calviño andMessing 2012). S. viridis is a
C4 photosynthesis model grass and the wild ancestor of foxtail millet
(Setaria italica), an important crop in Asia and Africa (Huang et al.
2016b).

We first conducted cross-validation for the Setaria and sorghum
models (Figure 6A). The AUC-ROCs were 0.79 (Setaria model) and
0.77 (sorghum model), respectively, which were reasonable, though
lower than the Arabidopsis and rice models trained on causal genes.
The precisions were 0.12 (Setaria model) and 0.1 (sorghum model) at
a recall of 20%.

With the models that were trained only with causal gene ortho-
logs, we performed external validation. Since there is insufficient data
to perform external validation for Setaria, we performed external
validation only for the sorghum model. We curated ten sorghum
causal genes from the literature (Table 1). When the top 5%, 10% and
20% of the genes in the QTL region were prioritized by the sorghum
model (Supplemental Table S5), 30%, 30% and 70% of the causal
genes were recalled, respectively (Figure 6B). The precisions were
0.065, 0.041, and 0.044 for top 5%, 10%, and 20% (Supplemental
Table S5). The sorghum model’s performance was similar to the

Arabidopsis model, which recalled 27%, 36%, and 64% of the causal
genes when the top 5%, 10%, and 20% of the genes in the QTL were
prioritized. While the performance of the sorghum model was lower
than that for the rice model, there was no statistical difference in the
performance between sorghum and Arabidopsis or rice models. All
models performed significantly better than the background where the
same number of genes were randomly prioritized at 10% and 20%
cutoffs (Fisher’s exact test, p-values . 0.05, Figure 5B) but not at the
5% cutoff.

Combining the Setaria model and transcriptome data to
prioritize causal genes for a Setaria height QTL
Since there are no cloned QTL causal genes available for Setaria, we
could not evaluate the Setaria model’s performance with independent
data. To demonstrate the usage of the Setaria model, we applied it to
prioritize a well-determined plant height QTL in Setaria. This QTL is
located on chromosome 5 and has been reported by two independent
studies (Mauro-Herrera and Doust 2016; Feldman et al. 2017) and
has large effects on height under many conditions such as different
watering levels and density of planting (Feldman et al. 2017). There
are 335 genes in the LOD1.5 interval of this major QTL (Feldman
et al. 2017).

To select a testable number of candidates for this height QTL, we
combined the Setaria model with published transcriptome data
(Martin et al. 2016). We first applied the Setaria model to the
QTL and prioritized 67 genes that ranked within the top 20%. Given
that the experimental validation for this number of candidates would
still constitute a large effort at this time, we incorporated tran-
scriptome data to further narrow down the candidate gene list. Based
on a transcriptome study on the developing internode of S. viridis, we
selected genes that were up-regulated by more than 2-fold in the
internode meristem or cell elongation zone relative to the maturation
zone. We posited that genes that were up-regulated in these zones are
more likely to be involved in internode elongation and therefore
contribute to plant height. In the QTL interval, 60 genes were
up-regulated either in the meristem or elongation zone relative to
the maturation zone (Figure 7A). By comparing the top 20% of the
prioritized genes with the up-regulated genes, we found 13 genes that
met both criteria (Figure 7B, Supplemental Table S6).

In addition to the 13 candidates we prioritized, there is one gene
(Semidwarf, SD1, Sevir.5G410400) in this QTL interval, which was
suggested to be a putative causal gene, though it has not been
experimentally validated. SD1 encodes gibberellin20 oxidase2 in rice,
involved in gibberellin biosynthesis, and a loss of function allele gives
a dwarf phenotype in rice (Spielmeyer et al. 2002). The putative causal
gene SD1 has a percent rank of 24% according to the prediction of our
Setaria model. Though not within the top 20% ranked genes, SD1 is
up-regulated in the meristem zone of S. viridis internode (Martin et al.
2016). Therefore, SD1 could also be considered as a candidate gene.

We next examined if any of these candidate genes had changes in
protein sequence or gene expression patterns in the parental lines,
S. viridis and S. italica. SD1 and the proteins encoded by four
candidate genes have differences in the protein sequence between
S. viridis and S. italica (Supplemental Table S6). One candidate
Sevir.5G413600 (its S. italica ortholog, Seita.5G407900) is particularly
interesting because the encoded protein contains four amino acid
replacements between S. viridis and S. italica, which change the
physicochemical property in a conserved C-terminal domain (Sup-
plemental Figures S7 and S8). The protein is most similar to RIO2
kinase/ATPases. RIO2 proteins are widely conserved from archaea to
eukaryotes and are involved in the maturation of small ribosome

Figure 4 Models trained only with orthologs have similar performance
as the models trained with known causal genes based on external
validation. Model performance was evaluated when the top 5%, 10% or
20% of the ranked QTL genes were considered. Fisher’s exact test was
performed between the models trained only with known causal genes
vs. the models trained with only orthologs or the models trained with
causal genes plus orthologs. No statistical difference was detected (P.
0.05). The black dashed lines indicate the theoretical background esti-
mated by the percentage of causal genes being recalled when we
randomly selected 5%, 10% or 20% of the genes from the QTL region.
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subunits during ribosome biogenesis throughATPase activity (LaRonde-
LeBlanc andWlodawer 2005; Knüppel et al. 2018). The protein has three
domains (Ferreira-Cerca et al. 2012). While deletions in each of
these domains render the protein non-functional and are lethal, a
shorter truncation in the C-terminal domain is not lethal but leads
to synthetic lethality with a non-essential ribosome factor called
LTV1 (Ferreira-Cerca et al. 2012).

The SD1 protein sequence in S. viridis has two amino acid
replacements (Supplemental Figure S9). The first substitution is a
glutamate to aspartate change at position 157 of the S. viridis SD1
protein. This amino acid replacement occurs within a relatively
conserved region across grass species (Supplemental Figure S9)
but is a conservative replacement in the same physicochemical group
and this change occurs in other grasses. The second substitution is an
alanine to aspartate change at position 366 of the S. viridis SD1
protein. This amino acid replacement is a non-conservative replace-
ment but the sequence nearby it is not conserved across grass species.
Neither amino acid replacements are within the catalytic Fe2OG
dioxygenase domain of SD1.

We also examined gene expression differences between S. viridis
and S. italica for the thirteen candidate genes and the SD1 gene based
on the RNAseq data available at Phytozome12 (Supplemental Table
S6). One candidate gene, Sevir.5G394900, has lower expression in
most S. viridis tissues than its S. italica ortholog Seita.5G389700
(Supplemental Figure S10). This gene is annotated as a gene encoding
a ribosomal protein belonging to the L1P family (Byrne 2009). The
expression difference may be caused by polymorphisms in the pro-
moter region of this gene. We therefore compared the 1kb upstream
sequence flanking this gene between S. viridis and S. italica. We
identified five SNPs and one insertion in S. viridis, including a SNP
located at a predicted MYB transcription factor binding site (Sup-
plemental Figure S11 and Supplemental Table S7).

DISCUSSION
The QTG-Finder we previously developed relies on known causal
genes as a training set and cannot be extended to other plant species
with few or no known causal genes. Since nearly all plant species,
including important crops, do not currently have a sufficient set of

Figure 5 Exploring new features for QTG-
Finder2 (A) Several new features we added were
enriched for causal genes relative to an average
genome gene. New features include the number
of SNPs and Indels in conserved non-coding
sequences flanking genes and the percent ab-
sence of a gene in the collection of natural variant
accessions. The Mann-Whitney U Test was used
to compare the statistical difference between
causal genes and genome genes. Significance
levels were defined as: �, P , 0.05, ��, P ,
0.01,���, P , 0.001. (B) External validation shows
that the model performance did not change
much after adding the new features. Indepen-
dent validation sets were used to evaluate model
performance. The black dashed lines indicate the
theoretical background. Fisher’s exact test was
performed between models with and without
new features. No statistical difference was de-
tected (P . 0.05).
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cloned causal genes, this algorithm could not be applied to species
beyond Arabidopsis and rice. Here, we have developed QTG-Finder2,
which solves this problem by using the orthologs of causal genes to
train models in other species.

Some orthologous genes have been repeatedly found to cause
variation in similar traits across species. There are more than
100 examples showing that mutations occur at orthologous loci
and cause similar phenotypic variation (Martin and Orgogozo
2013). Therefore, we posited that the orthologs of causal genes might
determine similar trait variation as the causal genes. Why these genes
become genetic hotspots of trait variation is still unknown but there
are two theories (Martin and Orgogozo 2013). The first theory is
mutational bias. The hotspot genes may be more prone to ectopic
changes due to being in unstable chromosomal regions or structures
like repeat-rich regions (Chan et al. 2010; Martin and Orgogozo
2013). The second theory is optimal pleiotropy (Kopp 2009). The
hotspot genes may be able to generate variations in a trait without
interfering with other traits. These hypotheses remain to be rigor-
ously tested. In the meantime, given that many known causal genes
are genetic hotspots of trait variation, we hypothesized, tested and
showed that we can use an orthology approach to transfer the
information about causal genes between species.

The major advantage of QTG-Finder2 over QTG-Finder is that it
facilitates building models for species that have a limited number of
known causal genes, which currently represents almost all plant
species, including all major crops except rice. We have shown that

Arabidopsis and rice models that were trained on orthologs of causal
genes from other species have similar performance as models trained
with known causal genes in Arabidopsis and rice. This result indicates
that the orthologs derived from known causal genes in other species
contain information that can be used to train models. As proof of
concept, we applied QTG-Finder2 to train new models for Setaria
viridis and Sorghum bicolor. The sorghummodel has a 70% chance to
recall a real causal gene (unseen during training) when the top 20% of
genes in a QTL are prioritized, which is a comparable performance to
the Arabidopsis and rice models.

Sorghum is an important C4 crop with good drought resistance.
There are 2605 sorghum QTLs identified by linkage mapping accord-
ing to Sorghum QTL Atlas (Mace et al. 2019). For most of these
QTLs, the causal genes have not been identified. The sorghum model
can be used to prioritize candidate genes and accelerate the discov-
ery of causal genes in these QTLs. Setaria viridis has been developed
as a model grass due to advantages like short life span, small plant
stature and small diploid genome (Huang et al. 2016b). High-
throughput phenotyping techniques have been developed for both
underground and above-ground traits (Fahlgren et al. 2015; Rellan-
Alvarez et al. 2015; Sebastian et al. 2016), which facilitate not only
more QTL mapping studies but also faster phenotype screening for
characterizing mutants of candidate genes. The Setaria model will
play an important role in this pipeline by refining the candidates
identified by QTL mapping for the downstream validation and
functional analyses.

Figure 6 Performance of Setaria
and sorghum models (A) The new
Sorghum bicolor (sorghum) and
Setaria viridis (Setaria) models
trained by QTG-Finder2 algorithm
have similar performance as the
Arabidopsis thaliana (Arabidopsis)
and Oryza sativa (rice) models.
Cross-validation indicated by AUC-
ROC (Area Under the Curve -
Receiver Operating Characteristic).
Error bars indicate standard devia-
tion, N = 50 per species. (B) Exter-
nal validation of the models for
Arabidopsis, rice and sorghum that
had independent causal gene data

available. Fisher’s exact test was performed between the sorghum model vs. Arabidopsis or rice model, and no statistical difference was detected
(P . 0.05). The black dashed lines indicate the theoretical background when the same fraction of genes in the QTL was randomly prioritized.

Figure 7 Candidate causal genes of a Setaria plant
height QTL prioritized by QTG-Finder2 and transcriptome
analysis (A) The overlap among genes up-regulated in the
Meristem Zone (MsZ) and the Cell Elongation Zone (CEZ)
relative to the maturation zone of the internode and all
genes in the height QTL interval. (B) The overlap among
genes up-regulated in the Meristem Zone (MsZ) and the
Cell Elongation Zone (CEZ) relative to the maturation
zone of the internode and the top 20% genes prioritized
by QTG-Finder2 (QTG top 20%). Transcriptome data
were obtained from Martin, 2016.
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We have applied the Setaria model to prioritize genes in a height
QTL and combined the results with published transcriptome, gene
function and sequence data to generate a hypothesis for candidate
genes. We prioritized 13 candidate genes including two strong
candidates, a RIO2 kinase/ATPase gene (Sevir.5G413600) and an
L1P ribosome protein gene (Sevir.5G394900). RIO2 has two do-
mains, a winged helix (wHTH) and a kinase, which are conserved
from archaea to eukaryotes, and a C-terminal extension domain that
is conserved only in eukaryotes (LaRonde-LeBlanc and Wlodawer
2005; Ferreira-Cerca et al. 2012). While deletions in each of these
domains render the protein non-functional and are lethal, a shorter
truncation in the C-terminal domain was not lethal but led to
synthetic lethality with a non-essential ribosome factor called
LTV1 (Ferreira-Cerca et al. 2012). It is this region where there are
four non-synonymous substitutions between S. viridis and S. italica
(Supplementary Figures S7 and S8). RIO2 is found as a single-copy
gene in most plants (Gao et al. 2018) but has not been functionally
characterized in any plants to date.

The other candidate gene (Sevir.5G394900) encodes an L1P
family ribosomal protein. L1P family ribosomal proteins are involved
in binding and releasing de-acylated tRNA from the E site of
ribosomes (Nikulin et al. 2003; Byrne 2009). Arabidopsis mutants
of an L1P family ribosomal protein, PGY1, are not lethal and have
subtle leaf phenotypes (Pinon et al. 2008). PGY1 may function with
proteins like ASYMMETRIC LEAVES1 (AS1) and REVOLUTA (REV)
to affect plant development in different organs. For example, the as1
pgy1 double mutant has ectopic leaf lamina outgrowth and the rev pyg1
double mutant has inflorescence defects (Pinon et al. 2008). This
candidate gene has higher expression in S. italica than S. viridis across
leaf, shoot and root tissues (Supplemental Figure S10) and therefore
may have a broad effect on development in Setaria. The expression
difference of this gene is likely caused by a SNP in a putative MYB
transcription factor binding site located in the promoter of this gene
(Supplemental Table S7).

Though not prioritized as a top 20% gene, the SD1 gene (Sev-
ir.5G410400) is also a potential causal gene based on its function in
other species and up-regulation in internode meristem zone relative
to maturation zone. SD1 gene encodes gibberellin20 oxidase2 in rice
and a loss of function allele gives a dwarf phenotype in rice
(Spielmeyer et al. 2002). However, the rice SD1 has three orthologs
in S. viridis: Sevir.3G242400, Sevir.5G410400, Sevir.7G114500, and
we do not know if they are functionally redundant.

In summary, we developed the QTG-Finder2 algorithm by in-
corporating an orthology approach, which can be used to train
models in species that have few or even no known causal genes.
We have built new models using QTG-Finder2 for S. bicolor and S.
viridis to accelerate the causal gene discovery in these cereal crops and
models. The algorithm can also be potentially applied to other
important crop species such as maize, barley and wheat to accelerate
gene discovery and trait improvement.
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