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A B S T R A C T   

This study aimed to better understand the relationship between bone-related biomarkers and nutrient stress in 
the context of metabolic health. We investigated plasma osteocalcin (OC) during an oral glucose challenge and 
experimental hyperinsulinemia in Type 2 diabetes (T2DM) and lean healthy controls (LHC). Older individuals 
with obesity and T2DM (n = 9) and young LHCs (n = 9) underwent a 75g oral glucose tolerance test (OGTT) and 
a 40 mU/m2/min hyperinsulinemic-euglycemic clamp. Plasma undercarboxylated OC (ucOC) and total OC were 
measured at baseline, 60mins, and 120mins of the OGTT and clamp via ELISA. In addition, plasma alkaline 
phosphatase (ALP), leptin, adiponectin, Vitamin D and insulin were measured and indices of insulin sensitivity 
and β-cell function were derived. The T2DM group had lower (p<0.05) ucOC and ucOC:total OC ratio than LHC 
during both the OGTT and clamp. Further, baseline ucOC was positively correlated to indices of β-cell function 
and negatively correlated to indices of insulin resistance when both groups were combined (all p<0.05). Sup-
pression of OC observed in T2DM may be related to glucose intolerance and insulin resistance. Similarly, our data 
suggest that the observed phenotypic differences between groups are likely a product of long-term glucose 
dysregulation rather than acute flux in glucose or insulin.   

1. Introduction 

Type 2 diabetes (T2DM) is a multifaceted disease with many related 
complications, most commonly, micro- and macrovascular disease [1]. 
However, evidence suggests that the skeletal system is also subject to 
pathological changes such as altered bone mineral density (BMD) [2], 
increased glycosylation of collagen [3], and decreased bone blood flow 
[4], leading to reduced bone quality and increased fracture risk [2,5]. 
The pathogenesis of the elevated fracture risk remains elusive, but is 
likely mediated through multiple complex and interrelated mechanisms 
sensitive to obesity, inflammation, hyperinsulinemia, and hyperglyce-
mia [6,7]. 

In addition to regulating whole-body glucose homeostasis, insulin 

plays a critical role in mediating bone health as an osteogenic hormone. 
Insulin signaling cascades within osteoblasts triggers bone resorption via 
osteoclasts and activates osteocalcin (OC) by converting it to the 
undercarboxylated form (ucOC) [8], representative of fewer than three 
terminals that are γ-carboxylated. Interestingly, ucOC has been impli-
cated as a regulator of glucose metabolism [9]. Once in circulation, 
ucOC has been demonstrated to stimulate β-cell insulin secretion [10], 
further highlighting the intimate relationship between OC and insulin. 
Independent of its effect on insulin secretion, ucOC enhances insulin 
sensitivity in peripheral tissues through stimulating adiponectin release, 
as shown in experiments utilizing heterozygote Osteocalcin +/- and 
Adiponectin +/- mice [11]. Adiponectin is an insulin-sensitizing agent 
that upon release from adipocytes and binding to adiponectin receptors 
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1 and 2, increases AMP-activated protein kinase and peroxisome 
proliferator-activated receptor-alpha activity and upregulates fatty-acid 
oxidation and peripheral tissue glucose uptake [12]. 

Despite these known signaling pathways, the relationship between 
bone and insulin metabolism in humans remains unresolved. Serum OC 
is inversely associated with BMI and body fat percentage [13], and is 
markedly lower in individuals with T2DM [14,15]. However, the acute 
effect of insulin on OC and bone metabolism in humans has been min-
imal and inconsistent [16–18], especially in the context of T2DM. 
Further, differential responses of OC to physiological hyperinsulinemia 
(i.e. postprandial) compared to experimental hyperinsulinemia (i.e. 
hyperinsulinemic-euglycemic clamp) have not been examined and most 
of the research to date has come from epidemiological studies in humans 
and rodent experiments. 

To meet this need and to better understand the role of insulin 
resistance on key markers of bone health, we examined OC in response 
to an oral glucose tolerance test (OGTT) and to experimental hyper-
insulinemia with euglycemia via hyperinsulinemic-euglycemic clamp. 
We were also interested in understanding the effects of acute glucose 
stimulation (with physiologically concomitant hyperinsulinemia) on 
plasma OC. Importantly, we studied both the active and total forms of 
OC, which in not routinely presented in the literature. Our study 
compared the response of older individuals with T2DM to that of young, 
lean, healthy, controls (LHC). The LHC group served as a standard of 
optimal human health. We hypothesized that compared to the LHC 
group, the T2DM group would have depressed total and under-
carboxylated plasma OC at baseline. Further, compared to LHCs we 
expected T2DM individuals to have blunted ucOC responses to physio-
logical and experimental hyperinsulinemia. Last, we hypothesized that 
ucOC would be related to measures of insulin sensitivity and β-cell 
function. 

2. Materials and methods 

2.1. Study design 

Indices of bone health were examined in response to acute hyper-
insulinemia and oral glucose challenge. All individuals were metaboli-
cally phenotyped into two distinct cohorts (LHC, T2DM) by use of 
clinical laboratory assessments, an oral glucose tolerance test (OGTT), 
and a hyperinsulinemic-euglycemic clamp after a period of metabolic 
standardization. Participant characteristics and experimental outcomes 
from these cohorts have been previously published [19–21], however 
this is the first report aimed at understanding bone biomarkers and 
interorgan cross-talk. 

2.2. Participants 

Participants (n = 18) were recruited from the greater Chicago area. 
Individuals in the LHC group were young, had a normal BMI (18.5-25 
kg/m2) and were free from known medical conditions, while individuals 
in the T2DM group were older, had obesity (BMI>30 kg/m2) and had a 
clinical diagnosis of T2DM. All participants were non-smokers with 
normal kidney function and were screened using a medical history 
questionnaire, physical exam, and fasting blood work. Standard pro-
tocols were used to measure height and weight, and body composition 
was assessed using a dual energy X-ray absorptiometry (DEXA; Lunar, 
Madison, WI). Participants provided informed consent prior to enroll-
ment and study procedures were approved by the University of Illinois at 
Chicago’s Institutional Review Board (IRB # 2012-0362). 

2.3. Metabolic control 

Participants underwent a 72hr period of metabolic control prior to 
both experimental visits (OGTT, hyperinsulinemic-euglycemic clamp). 
Experimental visits were performed within one week of each other. This 

control period consisted of maintaining a 3-day diet record and 
refraining from over the counter supplements for 72hrs, purposeful ex-
ercise for 48hrs, and caffeine and alcohol for 24hrs. Participants fasted 
(no food or drink other than water) for 12hrs prior to each visit and were 
asked to withhold all medications the morning of each visit. 

To control for muscle and liver glycogen stores, participants were 
instructed to consume approximately 55% of their kcals as carbohy-
drates on the day prior to the OGTT and hyperinsulinemic-euglycemic 
clamp. For the OGTT, a 3-day diet record was collected and it was 
verified that participants followed the dietary control recommendations. 
The night before the hyperinsulinemic-euglycemic clamp, participants 
were provided a balanced (55% carbohydrates, 35% fat, and 10% pro-
tein) dinner based on their estimated energy requirements, and diet 
records were collected for all other meals. 

2.4. Glucose tolerance test 

Glucose tolerance was measured by a 75g OGTT. Blood draws were 
performed at baseline and then every 30mins following glucose inges-
tion for 120mins total. LHCs were excluded if the OGTT indicated 
impaired fasting glucose or impaired glucose tolerance as defined by the 
American Diabetes Association [22]. 

2.5. Insulin sensitivity assessment 

Whole body insulin sensitivity was assessed using a 
hyperinsulinemic-euglycemic clamp, as previously described [19–21]. 
Briefly, for a period of 120mins, insulin was infused at a constant rate 
(40mU/m2/min) after a 10 min titrated prime while glucose (20% 
dextrose) was infused at a variable rate to clamp blood glucose at 90 
mg/dL [23]. During the clamp procedure, blood glucose was measured 
every 5mins on a YSI glucose-lactate analyzer (YSI 2300; STAT Plus, 
Yellow Springs, OH), and additional blood samples were taken every 
15mins for analysis of plasma metabolites. Clamp-derived glucose 
disposal rate (GDR) was calculated as described previously [24]. Subject 
glucose means (mg/dL) in the steady state period (~90-120 min) were 
90 ± 1 with a CV of 5.9 ± 0.7 % for the LHC group and 88 ± 4 with a CV 
of 4.8 ± 0.7% for the T2DM group. 

2.6. Plasma metabolites 

Blood was collected in EDTA collection tubes at baseline, 60mins, 
and 120mins during the OGTT and hyperinsulinemic-euglycemic clamp. 
Blood was immediately centrifuged, and plasma was stored at -80C until 
further analysis. Plasma ucOC, total OC, adiponectin, and leptin were 
measured via commercially available ELISAs (all R&D, Minneapolis, 
MN, except ucOC: Takara, Shiga, Japan) per manufacturer’s protocol. 
Insulin, C-peptide, total 25-OH vitamin D and alkaline phosphatase 
(ALP) were measured via automated clinical platform, and glucose was 
measured on a YSI glucose-lactate analyzer as mentioned above. 

2.7. Calculations and statistics 

In addition to whole body insulin sensitivity measured via the clamp, 
we calculated several insulin sensitivity and β-cell function indices from 
the OGTT to best characterize our cohort. Homeostatic model assess-
ment of insulin resistance (HOMA-IR) and homeostatic model assess-
ment of β-cell function (HOMA-B) were calculated according to 
Matthews et al. [25]. Insulinogenic index (IGI), another marker of β-cell 
function, was calculated as 30min OGTT insulin minus fasting insulin 
divided by 30min OGTT glucose minus fasting glucose. Matsuda index 
was calculated as 10,000 divided by the square root of the product of 
fasting glucose multiplied by fasting insulin and mean glucose multi-
plied by mean insulin over the 120min OGTT [26]. Finally, the oral 
disposition index was calculated as ΔInsulin0-30mins divided by 
ΔGlucose0-30mins multiplied by 1/fasting insulin [27]. 
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Statistical analyses were performed using SPSS Statistics 23 (IBM, 
Armonk, NY). Data were checked for normality by the Shapiro-Wilk test, 
and non-normally distributed data were Log10 transformed. Differences 
between group (LHC vs. T2DM) and time (baseline vs. 60mins vs. 
120mins) were assessed via a two-way repeated measures ANOVA and 
subsequent Bonferroni post-hoc test. The ANOVAs were run on the 
Log10 transformed, normally-distributed, data; however, the associated 
figures represent raw data values. Sex, age, and BMI were tested as 
covariates in the ANOVA analyses to determine whether each variable 
significantly influenceds the relationship between either group or time 
on the dependent variable. Where covariates were significant, they were 
included in the ANCOVA and reported. An independent samples t-test 
was used to compare calculated health indices and clamp-driven 
changes between groups. To determine relationships between OC, ALP 
and plasma leptin, adiponectin, and indices of metabolic health, 
Spearman’s rho nonparametric bivariate correlation coefficient was 
used. Significance was set at p<0.05 and all raw data are presented as 
mean ± SEM. The *, #, and & symbols reflect significant effects of group 
(LHC vs T2DM), time, or an interaction, respectively. If no symbol is 
present, there was no statistical difference compared to the control 
group. 

3. Results 

3.1. Participant characteristics 

Baseline participant characteristics are reported in Table 1. By 
design, the T2DM group was older and had a greater BMI than the LHC 
group. Additionally, the T2DM group was more insulin resistant, glucose 
intolerant, had lower β-cell function, and had higher total BMD. The 
number of individuals in the T2DM group on the following medications 
for management of their T2DM was as follows: sulfonylureas (3), DPP-4 
inhibitors (2), insulin glargine (3), and metformin (3). When medication 
use was cross-referenced against OC responses, no apparent effects of the 
medications were identified. 

3.2. Plasma osteocalcin, alkaline phosphatase and total 25-OH vitamin D 

At baseline, plasma total OC, ucOC, and the ucOC:Total OC ratio 
were 25%, 51%, and 47% lower in T2DM compared to LHCs (p = 0.035, 
0.001, and 0.001 respectively). During a 75g OGTT, there was a sig-
nificant main effect of group (LHC vs. T2DM) on both Log10- 
transformed ucOC and the ucOC:Total OC ratio (p = 0.004, 0.002 
respectively; Fig. 1A, C). In both cases, the T2DM group had depressed 
ucOC levels compared to the LHC group. However, we did not observe 
this group effect on Log10-transformed total OC (Fig. 1B) and did not see 
any effect of time on the OC variables. 

During the hyperinsulinemic-euglycemic clamp, there were signifi-
cant group, time, and interaction effects on Log10-transformed ucOC (p 
= 0.019, <0.001, 0.040 respectively). Post-hoc comparisons of the 
interaction effect revealed group differences within time at baseline and 
60mins, but no group difference at steady state insulin stimulation 
(120mins). Further, insulin stimulation decreased plasma ucOC at both 
timepoints compared to baseline (Fig. 2A). We also report a similar main 
effect of time, and group x time interaction, for Log10-transformed Total 
OC (p = 0.002, 0.035 respectively; Fig. 2B). Last, the T2DM group had a 
lower ucOC:Total OC ratio during the clamp compared to controls (main 
effect, p = 0.035; Fig. 2C). When covariates of sex, age, and BMI were 
tested, none were found to significantly adjust the associations reported 
between group and time on the OC variables either during the OGTT or 
clamp (Figs. 1 and 2). 

Baseline plasma ucOC at the OGTT was significantly correlated with 
many markers of metabolic health. With both groups combined, but not 
within either group individually, ucOC was positivity correlated to β-cell 
function as estimated by IGI (rho = 0.659, p = 0.003; Fig. 1D) and 
negatively correlated to HOMA-IR (rho = -0.547, p = 0.019). Similarly, 
both ucOC and the ucOC:Total OC ratio at baseline of the 
hyperinsulinemic-euglycemic clamp were positively correlated to insu-
lin sensitivity via clamp-derived glucose disposal rate (rho = 0.507, p =
0.032; rho = 0.612, p = 0.007 respectively). 

Despite changes in plasma OC, there was no group, time, or inter-
action effect on Log10-transformed plasma ALP during the 
hyperinsulinemic-euglycemic clamp (p = 0.098, 0.580, 0.357 respec-
tively; Fig. 2D). No correlations between fasting ALP or the change in 
ALP with any of the insulin sensitivity or β-cell function health indices 
were observed. Similarly, no differences in total 25-OH vitamin D were 
observed between groups (Table 1) and no correlations were observed 
with OC, ucOC, ALP, insulin sensitivity, or β-cell function indices. 

3.3. Plasma leptin and adiponectin 

Given the group and insulin effects on plasma OC, and since ucOC 
regulates glucose metabolism through adiponectin [11], we investigated 
the effects of insulin stimulation (clamp) on adiponectin. There was no 
group, time, or interaction effect on unadjusted plasma adiponectin (p 
= 0.055, 0.056, 0.726 respectively; Fig. 3A). Age was a significant co-
variate for Log10-transformed adiponectin, revealing a significant dif-
ference between the groups after adjustment for age (p = 0.01; adjusted 
means of Log-transformed data are 4.023 and 3.463 for LHC and T2DM, 
respectively). Further, there were no correlations between plasma adi-
ponectin and any of the metabolic health variables. 

While adiponectin is an insulin-sensitizing and anti-inflammatory 
adipokine [12], leptin is most well-known for regulating food intake 
and bodyweight [28]. However, leptin also modulates β-cell function 
and bone metabolism [29], which may contribute to abnormalities in 
T2DM due to the observed leptin-resistance in diabetes [30]. Thus, we 
assessed plasma Log10-transformed leptin and found a significant (p =
0.003) group effect (Fig. 3B), whereby the T2DM group had 21% higher 
plasma leptin than the LHC group. The difference between LHC and 
T2DM remained significant (p = 0.009) when covaried for age and BMI. 
Further, baseline ucOC at the OGTT was significantly correlated with 
baseline leptin (rho = -0.538, p = 0.021; Fig. 3D). This correlation was 

Table 1 
Subject characteristics and metabolic data.  

Variable (units) LHC T2DM p value 

n (M,F) 9 (3,6) 9 (5,4)  
Age (y) 28 ± 1 58 ± 4* <0.01 
BMI (kg/m2) 22.0 ± 0.9 34.1 ± 2.1* <0.01 
Body Fat (%) 23.9 ± 2.0 40.2 ± 2.8* <0.01 
Bone Mineral Density (g/cm2) 1.2 ± 0.04 1.3 ± 0.04* 0.02 
Total 25-OH Vitamin D (ng/mL) 29.3 ± 1.8 28.1 ± 4.7 0.81 
Fasting Insulin (μU/mL) 5.5 ± 0.7 7.9 ± 1.2 0.09 
Fasting Glucose (mg/dL) 90 ± 4 129 ± 16* 0.03 
Fasting C-peptide (ng/mL) 1.5 ± 0.1 2.0 ± 0.3 0.21 
HbA1c (%) 5.3 ± 0.1 7.2 ± 0.6* <0.01 
OGTT Glucose iAUC (mg/dL/2hr) 2654 ± 428 10827 ± 1797* <0.01 
OGTT 120 min (mg/dL) 102 ± 4 225 ± 36* <0.01 
GDR (mg/kg/min) 9.8 ± 0.4 4.7 ± 0.6* <0.01 
Steady State Clamp Insulin (μU/mL) 62.0 ± 3.9 87.5 ± 6.5* <0.01 
HOMA-IR (AU) 1.3 ± 0.2 2.5 ± 0.4* 0.02 
HOMA-B (AU) 76.6 ± 8.0 63.3 ± 14.1 0.42 
Insulinogenic Index (IGI) 0.9 ± 0.1 0.3 ± 0.1* 0.01 
Matsuda Index (AU) 8.6 ± 1.0 5.9 ± 1.5 0.14 
Oral Disposition Index (mMol-1) 5.3 ± 1.1 2.3 ± 1.0 0.06 

Data are presented as Mean ± SEM. LHC, lean healthy control participants; 
T2DM, participants with Type 2 Diabetes Mellitus; BMI, body mass index; 
HbA1c, hemoglobin A1c; OGTT, 75g oral glucose tolerance test; iAUC, incre-
mental area under the curve; GDR, Glucose Disposal Rate as calculated from the 
hyperinsulinemic-euglycemic clamp; HOMA-IR, Homeostatic Model Assessment 
of Insulin Resistance; HOMA-B, Homeostatic Model Assessment of β-cell func-
tion. *p<0.05 via independent samples t-test. 
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not significant when assessed within each group. 
The leptin-to-adiponectin ratio serves as an indicator of adipocyte 

health and has been proven to be a better indicator of metabolic disease 
compared to either leptin or adiponectin alone [31]. For these reasons, 
we investigated the leptin-to-adiponectin ratio in the context of dia-
betes, insulin-stimulation, and in relation to OC, ALP, and other markers 
of insulin sensitivity and secretion. There was a significant (p = 0.003, 
Fig. 3C) group effect on the Log10-transformed leptin:adiponectin ratio, 
which remained significant (p<0.001) when covaried for age and BMI. 
More specifically, individuals with T2DM had a 73% higher leptin:adi-
ponectin ratio compared to LHC, suggesting poorer adipocyte health. 

4. Discussion 

T2DM is a multifaceted disease that when uncontrolled, results in 
numerous complications including disorders to the skeletal system. 
Diabetes-related bone disease presents as weakened bone structure and 
function and its pathophysiology is related to whole body glucose and 
insulin regulation. Here, we investigated the effect of insulin and glucose 
via a hyperinsulinemic-euglycemic clamp and oral glucose via a 75g 
OGTT, respectively, on markers of bone metabolism in two distinct 
groups: LHC and T2DM. As expected, the T2DM group had lower plasma 
ucOC and ucOC: Total OC ratio than the LHC group, which agrees with 
previous meta-analysis work on this topic [15]. Depressed ucOC not 

Fig. 1. T2DM present with lower undercarboxylated osteocalcin but oral glucose intake does not change plasma OC. Plasma ucOC (A), Total OC (B), and the ucOC: 
Total OC Ratio (C) during an OGTT are represented for each group. Log10-transformed data were analyzed via two-way ANOVA and raw values are presented as 
mean ± SEM. ** Main effect of group p<0.01. In both groups combined, baseline ucOC was correlated to the Insulinogenic Index, a marker of insulin secretion (D). 
The correlation was analyzed via Spearman’s rho bivariate correlation coefficient, p<0.05. 

Fig. 2. Insulin-stimulation and T2DM impact plasma osteocalcin but not alkaline phosphatase. Basal and insulin-stimulated plasma ucOC (A), Total OC (B), the 
ucOC:Total OC Ratio (C) and ALP (D) are represented for each group. Log10-transformed data were analyzed via two-way ANOVA and raw values are presented as 
mean ± SEM. * Main effect of group or post-hoc difference between groups within time p<0.05; ** post-hoc difference between groups within time p<0.05; ## Main 
effect of time or post-hoc difference from baseline p<0.01; & Interaction effect p<0.05. 
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only associates with poor bone turnover but suboptimal glucose meta-
bolism. From prior work we know that both ucOC and OC directly in-
crease basal and insulin-stimulated glucose transport in muscle and 
adipose cells [32], signal insulin release by pancreatic β-cells, and in-
creases the secretion of adiponectin [11]. Our present work supports 
OC’s role in these insulin-sensitizing processes as we show strong re-
lationships between baseline ucOC and both clamp-derived glucose 
disposal rate and OGTT-derived insulinogenic index and further, a 
negative relationship between ucOC and HOMA-IR. These data are novel 
because unlike previous studies [16,17] because our work spans both 
physiological (OGTT) and experimental (clamp-derived) metabolic 
perturbations and can be applies across the metabolic spectrum, rather 
than specifically to the absence or presence of diabetes. 

Mechanistic evidence suggests that not only is OC release from os-
teoblasts an insulin-dependent process, but that once active, ucOC leads 
to further insulin secretion [8]. These data lead us to hypothesize that 
ucOC would increase with insulin stimulation, however in contrast to 
our hypothesis we report decreased plasma ucOC and total OC under 
conditions of the hyperinsulinemic-euglycemic clamp. Further, there 
was no change in the ucOC:Total OC ratio, which signals a uniform 
decrease with insulin. This effect may be due to compensatory mecha-
nisms in response to the experimental hyperinsulinemia, whereby in-
dividuals downregulate their endogenous production of ucOC to prevent 
further increases in plasma insulin through OC-stimulated β-cell secre-
tion of insulin. Our finding of no difference in ucOC between T2DM and 
LHC at steady state insulin, further supports this and may suggest that 
the LHC group is able to adapt and compensate to a larger degree than 
the T2DM group. In addition, our results agree with previous work in 
healthy elderly women that reported a 35% and 22% decrease in ucOC 
and Total OC respectively with a 2hr hyperinsulinemic-euglycemic 
clamp [16]. 

We were also interested in understanding the effects of acute glucose 
stimulation (with physiologically concomitant hyperinsulinemia) on 
plasma OC. In the present study we report no effect of a 75g oral glucose 
load on ucOC, total OC, or the ucOC:Total OC ratio. These findings 
combined with the experimental insulin-stimulated dynamics of OC 
suggest that acute fluctuations in glucose and insulin do not explain the 
large baseline differences in ucOC between LHC and T2DM. Further, our 
correlation analyses suggest that the long-term metabolic status (i.e. 

insulin resistance) of an individual is more closely associated to plasma 
ucOC and bone metabolism than the short-term hyperglycemic or 
hyperinsulinemic excursions that may occur during the day. 

Despite well-established evidence of elevated ALP in T2DM [33], we 
report no statistically significant differences in ALP by group or with 
insulin stimulation. It is also possible that the group differences were 
masked by the glucose-lowering effects of diabetes medication, as ALP 
has been previously associated to fasting glucose levels [34]. Further, 
our reported changes in OC but not ALP, may be reflective of the tem-
poral changes underlying the pathology of diabetic bone disease. 
Meaning that, depressed OC and impaired bone turnover may precede 
increased ALP and subsequent pathological mineralization of soft tissue. 
Despite evidence that soft tissue mineralization occurs at a greater rate 
with longer duration of T2DM [35] and poor glucose control [36], this 
time course remains speculative. A longitudinal study design is needed 
to answer this question. 

Finally, we report higher plasma leptin and a higher leptin:adipo-
nectin ratio at baseline and across the hyperinsulinemic-euglycemic 
clamp in T2DM compared to LHC. Since OC modulates peripheral in-
sulin sensitivity through adiponectin [11], we also expected to see 
depressed adiponectin in the T2DM group, however we reported no 
group differences in the unadjusted means. We believe we were un-
derpowered for this outcome, as its likely that the p value of 0.055 
would reach significance with a greater n size, especially given that 
adiponectin is statistically different between groups when covaried by 
age. However, we only measured total adiponectin rather than the 
multiple isoforms found in human circulation (high molecular weight, 
hexameric middle molecular weight, trimeric low molecular weight, and 
albumin-binding low molecular weight) [37], which may have impacted 
our results. Our data of elevated leptin and a high leptin:adiponectin 
ratio in the T2DM group confirms previously established phenotypes of 
diabetes [28,31,38]. However, our data expands beyond this as we 
report a negative relationship between plasma ucOC and leptin. This, 
combined with leptin’s powerful role in inhibiting bone formation [29, 
39], may help explain the mechanisms underlying weakened bone 
structure in T2DM. 

This study investigated OC and ALP dynamics in humans under in-
sulin stimulation, and OC change during an OGTT. The strengths of this 
study include the measurement of insulin sensitivity with the gold 

Fig. 3. Group effects on leptin and the adiponectin:leptin ratio and the relationship between leptin and OC. Adiponectin (A), Log10-transformed leptin (B), and the 
leptin:adiponectin ratio (C) show changes between experimental insulin stimulation and the LHC and T2DM groups. Data were analyzed via two-way ANOVA and 
raw values are presented as mean ± SEM. ** Main effect of group p<0.01. In both groups combined, basal leptin was correlated to baseline ucOC during the OGTT 
(D) according to Spearman’s rho bivariate correlation coefficient, p<0.05. 
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standard hyperinsulinemic-euglycemic clamp, further characterization 
of insulin secretion via OGTT-derived indices, the metabolic control 
period prior to testing, and the use of two distinct metabolic groups. 
Further, we measured both total OC and ucOC along a dynamic time 
course, which allowed us to more appropriately look at osteocalcin in 
the context of regulating glucose metabolism and insulin sensitivity. 

However, this study is not without limitations. While we utilized 
various measures of insulin sensitivity and markers of beta-cell function, 
we did not include any direct non-invasive measures of beta-cell func-
tion or mass [40]. Also, our plasma ALP measurement was not specific to 
bone-derived ALP. Even though bone-specific ALP is the primary 
contributor to dysregulated ALP in diabetes, without measuring the 
bone, hepatic, and renal contributions separately, the translation of our 
ALP findings is limited. Additionally, we did not account for the po-
tential influences of vitamin K on our findings. Future work should 
include these measures as the undercarboxylation of OC is a vitamin K 
dependent process [9]. Similarly, we did not evaluate any potential ef-
fects of diabetes medications on our outcomes of interest as it is likely 
that when examined individually, these medications may have direct 
effects on osteocalcin metabolism. Our sample size was relatively small, 
with only 9 individuals in each group and these groups were not 
matched on age, weight, or sex. With regard to age, our experimental 
groups were different by design, with the T2DM group being older than 
the LHC group. The purpose of this was to study a cohort of T2DM 
beyond the average age of diagnosis [41], and to discern long-term 
hyperglycemia versus acute hyperglycemia. However, we cannot 
ignore that aging has been shown to modulate both circulating OC and 
ucOC [42,43]. For example, lower total circulating OC, but not circu-
lating ucOC, was associated with a higher HOMA-IR in older adults [44]. 
Similarly, previous clinical reports have found that low OC was associ-
ated with impaired glucose metabolism in men and premenopausal 
women only, and that no association was found in women ≥50 [45]. 
Finally, our two groups had difference BMIs by design, but we cannot 
ignore previous literature showing correlative relationships between OC 
and BMI, at least in young men with type 1 diabetes [46]. In an effort to 
recognize this important body of work on the impact of sex, age, and 
BMI on OC function, we tested these variables as covariates and in all of 
our OC outcomes. While we found no significant influence of age, sex, or 
BMI on group differences in OC, it may be possible that due to our small 
sample size we are unable to discern the true influences of each of these 
factors. Therefore, inferences should be interpreted with caution until 
larger study designs can verify our results. 

From a translational perspective, species specific differences in OC 
exist between mice and humans at the genomic and protein levels [9], 
complicating the interpretation of human observations on OC’s rela-
tionship to insulin and glucose metabolism based on pre-clinical litera-
ture. While there are several rodent models that also report ucOC as the 
mechanism by which the skeleton maintains glucose homeostasis [11, 
47], as well as a clinical investigation describing the ability of acute 
exercise to increase circulating ucOC in a manner associated with insulin 
sensitivity [48], conflicting data also exists. In experiments conducted 
by Hill et al. [32], OC increased glucose transport and insulin sensitivity 
in cultured adipocytes and muscle cells regardless of its carboxylation 
status, suggesting that ucOC may not be exclusive as the active isoform. 
Further, Lambert et al. reported OC knockout rats (generated using 
CRISPR technology) did not develop glucose intolerance or insulin 
resistance [49]. The OC-null rats also had better trabecular bone vol-
ume, thickness, and density measured using microCT. Altogether these 
data point to a future need for mechanistic studies to fully verify and 
elucidate the role and activity of different OC isoforms on insulin dy-
namics in a species-specific manner. 

In conclusion, our study shows marked decreases in plasma ucOC 
and the ucOC:Total ratio in T2DM compared to LHC, likely representing 
both reduced bone turnover and impaired glucose metabolism. Further, 
the lack of OC response to the OGTT, depressed ucOC with insulin 
stimulation, and no group difference in ucOC at steady state insulin, 

suggest that acute flux in glucose or insulin are not responsible for the 
large phenotypic difference in ucOC with T2DM. But rather, our data 
suggest that it is the long-term metabolic dysfunction (low GDR, IGI, and 
leptin; high HOMA-IR) in T2DM that is associated with lower active OC 
and likely subsequent skeletal complications. 

Data sharing 

The data that support the findings of this study are available from the 
corresponding author upon reasonable request. 
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