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Abstract

Motivation: Multistate protein design addresses real-world challenges, such as multi-specificity

design and backbone flexibility, by considering both positive and negative protein states with an

ensemble of substates for each. It also presents an enormous challenge to exact algorithms that

guarantee the optimal solutions and enable a direct test of mechanistic hypotheses behind models.

However, efficient exact algorithms are lacking for multistate protein design.

Results: We have developed an efficient exact algorithm called interconnected cost function net-

works (iCFN) for multistate protein design. Its generic formulation allows for a wide array of appli-

cations such as stability, affinity and specificity designs while addressing concerns such as global

flexibility of protein backbones. iCFN treats each substate design as a weighted constraint satisfac-

tion problem (WCSP) modeled through a CFN; and it solves the coupled WCSPs using novel

bounds and a depth-first branch-and-bound search over a tree structure of sequences, substates,

and conformations. When iCFN is applied to specificity design of a T-cell receptor, a problem of un-

precedented size to exact methods, it drastically reduces search space and running time to make

the problem tractable. Moreover, iCFN generates experimentally-agreeing receptor designs with

improved accuracy compared with state-of-the-art methods, highlights the importance of modeling

backbone flexibility in protein design, and reveals molecular mechanisms underlying binding

specificity.

Availability and implementation: https://shen-lab.github.io/software/iCFN

Contact: yshen@tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Designing proteins of desired structures, properties, or functions

would enable unraveling and modulating biological systems and

allow for a wide array of applications. Although this important

problem remains challenging, progress has been made with compu-

tational protein design (CPD), sometimes together with experimen-

tal approaches such as directed evolution. CPD introduces an

automated and accelerated way to tackle the problem. More import-

antly, it can rationally generate a tangible number of designs (and

their underlying mechanistic hypotheses) which can be experimen-

tally tested to refine our knowledge.

CPD is often formulated as an optimization problem where a utility

or objective function summarizing a single or multiple design objectives

is optimized over protein sequence space. As protein functions are large-

ly determined by structures and dynamics, evaluating an objective func-

tion for any given sequence often involves energy minimization over

structures (or conformations). There are two cases of structure-based

CPD problems. The first is single-state design that only considers one

desired (or ‘positive’) state (e.g. stability of a given, fixed backbone con-

formation). However, there are two limitations with single-state design:

(i) without the explicit consideration of an undesired (or ‘negative’)

state, a designed binder may not be foldable or no specificity can be

achieved; (ii) without the consideration of multiple positive or negative

substates such as conformations, folds, oligomers and on/off-target

binding, no multiple sub-objectives, positive or negative, can be accom-

plished and over-simplified assumptions often have to be made (for in-

stance, a fixed backbone despite that flexible protein structures exist in

an ensemble of conformational substates; Frauenfelder et al., 1988;

Hartmann et al., 1982). Rather, the second case of CPD—multistate de-

sign—removes both limitations by considering both positive and nega-

tive states and allowing multiple substates for either state (Harbury

et al., 1998). Some ‘multistate’ design studies only remove one limita-

tion thus we emphasize the difference between ‘state’ and ‘substate’

here to remove possible confusions.
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Even single-state CPD is extremely challenging. With protein

backbones fixed and side chains discretized as rotamers (Dunbrack

and Karplus, 1993), the resulting combinatorial optimization prob-

lem is nondeterministic polynomial time-hard (NP-hard) (Pierce and

Winfree, 2002) thus unlikely has a polynomial-time algorithm. Over

the past two decades, three types of algorithms have been developed

for single-state design: heuristic, approximation, and exact algo-

rithms, among which only exact algorithms can guarantee the global

optimum.

Heuristic algorithms include genetic algorithms (Jones, 1994) and

Markov chain Monte Carlo (MCMC) that can generate good-quality

feasible solutions efficiently. In particular, MCMC is used in the very

popular Rosetta software (Leaver-Fay et al., 2011b) and has led to

many successful applications (Ambroggio and Kuhlman, 2006; Bale

et al., 2016; Jiang et al., 2008; Kortemme et al., 2004; Kuhlman

et al., 2003; Rothlisberger et al., 2008). Approximation algorithms

include relaxed integer programing (Kingsford et al., 2005) and

loopy belief propagation (Fromer and Yanover, 2008; Yanover and

Weiss, 2002) that solve approximate forms of the problem.

Despite progress in heuristic or approximation algorithms for

single-state design, there is a critical need for exact algorithms due

to two major reasons. First, the guarantee of the global optimum

from exact algorithms assures that biophysical models and mechan-

istic hypotheses underlying the formulation can be isolated from

search algorithms and improved based on design success or failure;

and the guarantee of a gap-free list of the top sub-optimum directly

addresses uncertainty in those biophysical models (such as free en-

ergy calculation). Second, the performance gap between exact and

heuristic algorithms widens as the size of single-state design grows

(Simoncini et al., 2015) and this gap will be even wider for multi-

state design whose size grows further with the number of substates.

The first and the most known framework of exact algorithms is

dead-end elimination (DEE) followed by A* (Gainza et al., 2013;

Leach and Lemon, 1998; Lippow et al., 2007; Shen et al., 2013,

2015). DEE is widely used to prune the search space; and A* (Hart

et al., 1968) is a tree search algorithm for enumerating a gap-free

ordered list in the pruned space. Original DEE criteria (Desmet

et al., 1992, 1994) have evolved to more powerful albeit more costly

ones (Goldstein, 1994; Gordon and Mayo, 1998; Pierce et al.,

2000). Furthermore, the DEE framework has been extended by the

Donald group to first consider continuously flexible side-chain

rotamers in minDEE (Georgiev et al., 2006) and iMinDEE (Gainza

et al., 2012), then locally flexible backbones within voxel boxes

(Georgiev and Donald, 2007), and recently both locally flexible

backbones and side-chain rotamers in DEEPer (Hallen et al., 2013).

Other promising extensions include deriving tighter bounds in

BroMAP (Hong et al., 2009) and dynamic A* (Roberts et al., 2015)

as well as exploiting the sparseness of protein residue contact maps

in AND/OR branch-and-bound search (Zhou et al., 2016).

Recently, a new framework of exact algorithms called cost func-

tion network (CFN) has been introduced to re-formulate single-state

design as a weighted constraint satisfaction problem (WCSP)

(Larrosa, 2002; Schiex et al., 1995) modeled through a CFN and to

solve it using depth-first branch-and-bound (DFBB) (Allouche et al.,

2012; Traoré et al., 2013). CFN is shown to be significantly faster

than other exact methods or solve problems of sizes unprecedented

to DEE/A* (Simoncini et al., 2015; Viricel et al., 2018). Various

local consistencies have been developed for lower bounding in

DFBB (Cooper et al., 2007, 2008; Givry and Zytnicki, 2005;

Larrosa and Schiex, 2003, 2004; Nguyen et al., 2017), among which

existential directed arc consistency (EDAC) is used the most for its

balance between tightness and cost in practice.

However, for multistate protein design with substate ensembles,

no exact algorithm exists except an extension of DEE/A*—COMETS

(Constrained Optimization of Multi-state Energies by Tree Search)

(Hallen and Donald, 2015). Progress has been focused on heuristic or

approximation algorithms (Grigoryan et al., 2009; Harbury et al.,

1998; Havranek and Harbury, 2003; Leaver-Fay et al., 2011a; Loffler

et al., 2017; Negron and Keating, 2013; Sevy et al., 2015). For multi-

state design, DEE has been extended to type-dependent DEE where

only rotamers of the same amino-acid type can prune each other

(Yanover et al., 2007). For multistate design where the objective func-

tion is a linear combination of substate energies, COMETS incremen-

tally searches for the lowest-scoring sequence with A* by exploiting

new lower bounds and generates the top few sequences.

Here we present iCFN (interconnected CFNs), a novel and efficient

exact algorithm for generic multistate CPD (with substate ensembles

for both positive and negative states). Our optimization formulation is

general enough for various design tasks. And our algorithm guarantees

a gap-free list of the best sequences and conformations with unprece-

dented efficiency for practical, large-scale multistate CPD problems.

Specifically, we have adopted the formulation of WCSP and the model

of CFN for each substate; and represented the coupled WCSPs as

iCFNs over a tree of sequences, substates and rotamers (values). Then

we have derived novel lower bounds with theoretical proofs and com-

plexity analysis; and we have designed DFBB-based tree search that

allows positive and negative designs to inform each other and substates

within and across states to prune each other. Finally, we have applied

iCFN to designing a T-cell receptor (TCR) to specifically recognize an

antigen peptide and avoid another while allowing all molecules’ back-

bones to be globally flexible. For the resulting multistate CPD problems

of unprecedented sizes to exact methods, iCFN drastically improves the

efficiency and accuracy compared with state-of-the-art methods and

provides new insights into the importance of backbone flexibility in

CPD and molecular mechanisms of binding specificity.

2 Materials and methods

2.1 Formulation
We will first introduce and formulate various cases of CPD of

increasing computational complexity and biophysical relevance.

Bold-faced notations in lower cases indicate vectors.

2.1.1 Single-state design with a single substate

A simple CPD is to find the best sequence s that optimally accommo-

dates a desired (positive) substate as measured in an objective func-

tion f ðxÞ of protein structure x. Proteins are often assumed to have

fixed backbones and discrete side-chain rotamers r at selected, mut-

able or flexible residues. So the only non-fixed part of the structure

x consists of these side-chain rotamers r. The objective function,

often some form of energy functions, is usually assumed to be a sum

of constant, singleton, and pairwise terms:

f ðrÞ ¼ cþ
X

i

EðirÞ þ
X
i< j

Eðir; jsÞ; (1)

where ir and js denote rotamers r and s at residue i and j, respectively.

An example of f ð�Þ is the energy Eð�Þ of protein structure x to stabilize

a desired, fixed backbone structure potentially for a desired function.

The resulting optimization problem can be formulated as

s� ¼ arg min
s2S

min
r2RðsÞ

f ðrÞ; (2)

where the set S, capturing the sequence design space, is the

Cartesian product of the sets of amino-acid types allowed over all
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residues; and Rð�Þ, capturing the rotamer library, is the Cartesian

product of the rotamer sets over all mutable or flexible residues of a

sequence.

2.1.2 Single-state design with substate ensembles

This slightly more complex case also considers just positive design

(or state) but considers an ensemble of positive substates rather than

one. Such treatment leads to more accurate biophysical models and

more design capabilities. For instance, it allows for treating a pro-

tein backbone flexible when these substates correspond to backbone

conformers; and it allows for designing binding profiles when these

substates correspond to various ligand-bound states. We give the

formulation as

s� ¼ arg min
s2S

min
p2P

min
r2RpðsÞ

fpðrÞ; (3)

where P is the set of positive substates and fpð�Þ is the objective func-

tion for the pth positive substate. Minimizing over P substate ob-

jective functions fpð�Þ maintains an ‘OR’ relationship among them

for the overall (positive) objective. For instance, in the case of fpð�Þ
being energies Epð�Þ, it ensures choosing the ground substate with its

sequence and conformation being optimized simultaneously. One

can also maximize over P.

2.1.3 Multistate design with a single substate per state

When compared with the two previous cases with positive state

only, this case considers both positive and negative states each

represented by a single substate. In other words, it is to find the

best sequence that specifically accommodates a desired positive

substate rather than an undesired negative substate. The objective

function here can be the gap between the two substate objective

functions fþð�Þ and f�ð�Þ. The formulation is given as

s� ¼ arg min
s2S

�
min

r2RþðsÞ
fþðrÞ � min

r2R�ðsÞ
f�ðrÞ

�
; (4)

where superscripts ‘þ’ and ‘�’ indicate positive and negative quanti-

ties, respectively. For instance, this formulation allows for binding

affinity design when positive and negative substate objective func-

tions are energies of a protein in one bound and one unbound state,

respectively. It also allows for binding specificity design when these

substate objective functions are binding energies to one target and

one off-target, respectively.

2.1.4 Multistate design with substate ensembles

The most generic formulation, for which our exact algorithm will

solve, considers both positive and negative states explicitly and con-

siders an ensemble of substates for either state. The formulation can

be written as

s� ¼ arg min
s2S

�
min
p2P

min
r2Rþp ðsÞ

fþp ðrÞ �min
q2Q

min
r2R�q ðsÞ

f�q ðrÞ
�
; (5)

where P and Q denote the positive and the negative substate ensem-

ble with p and q being the positive and negative substate index, re-

spectively. Moreover, constraints on substate objective functions

can be introduced and addressed (e.g. those linear ones in our TCR

design).

This generic formulation includes all aforementioned formula-

tions as special cases. It helps improve the accuracy of biophysical

models and strengthen the capability to design for multiple desired

substates over multiple undesired ones. For instance, one can design

a tight binder that can fold using protein-complex and binder alone

as positive and negative states in conformational ensembles, respect-

ively, as our XRCC1 design does in Section 3.1. One can also design

a protein that specifically binds to a target ‘ensemble’ rather than an

off-target one with fpð�Þ and fqð�Þ being energies for the pth target

and qth off-target, respectively, as our TCR design does in Section

3.2. The min operator over all positive substates can be replaced by

max for multi-specificity and solved similarly.

2.2 iCFN for multistate design with substate ensembles
With the generic formulation given, we proceed to introduce our

exact algorithms based on CFNs. CFN is the state-of-the-art ap-

proach to single-state protein design with a single substate (Allouche

et al., 2012; Traoré et al., 2013). We extend CFN for multistate de-

sign with substate ensembles. We first design a tree structure of

sequences, substates, and rotamers and a tree-search algorithm using

CFN as a corner stone, which leads to a reduced version of the ul-

timate iCFN. Here CFN is used to solve each substate energy mini-

mization problem for any given sequence, a problem also known as

side-chain packing (SCP). We further improve the reduced version

to iCFN by deriving novel bounding schemes across CFNs.

A high-level schematic illustration of iCFN is shown in Figure 1.

For either positive or negative state, iCFN first reads data (singleton

and pairwise energy values) and prunes the search space using type-

dependent DEE within and across substates sequentially. Individual

substate designs are reformulated as WCSPs and modeled with iCFNs

over a tree representation of the search space. Using a DFBB ap-

proach, iCFN then searches over sequence space with newly proposed

and proven lower bounds to prune partially or fully defined sequences

and searches over substate-rotamer space for un-pruned, fully defined

sequences (i.e. SCP). After the global optimum is found, it will redo

DEE pruning and DFBB search with updated bounds and relaxed en-

ergy thresholds for an ensemble of the best sequences in an ensemble

of the best positive and negative conformations.

Next we will explain these steps in more details. In the interest

of space, we place all proofs and pseudocodes in the Supplementary

Material.

2.2.1 Sequential reading and pruning of rotamers

iCFN first sequentially reads data and incrementally prunes rotamers

for either state. When reading each substate, it prunes rotamers within

the substate using type-dependent DEE—Goldstein and single split

DEE for all substates as well as single pair and single double DEE

just for positive substates. It then prunes rotamers for substates

read so far using our extended, across-substate type-dependent DEE.
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This approach drastically reduces peak memory usage to store

substate rotamers. We provide its flowchart and pseudocode in

Supplementary Figure S1 and Algorithm 1, respectively.

We extend within-substate type-dependent DEE (Yanover et al.,

2007) to across-substate type-dependent DEE as follows:

Theorem 1. Rotamer ia of position i in Substate 1, provably pruned by

rotamer ib of the same position in Substate 2, is not part of the optimal

solution if both substates are of the same state, both rotamers are of the

same amino-acid type, and the following criterion holds:

L1ðiaÞ ¼ c1 þ E1ðiaÞ þ
X
j;j 6¼i

min
s1

ðE1ðjs1
Þ þ E1ðia; js1

ÞÞ

þ
X

j>k;k6¼i;j 6¼i

min
s1 ;u1

E1ðjs1
;ku1
Þ > U2ðibÞ ¼ c2 þ E2ðibÞ

þ
X
j;j 6¼i

max
s2

ðE2ðjs2
Þ þ E2ðib; js2

ÞÞ

þ
X

j>k;k6¼i;j6¼i

max
s2 ;u2

E2ðjs2
; ku2
Þ

(6)

An extension for the top d-kcal/mol ensemble is that rotamer ib
of Substate 2 prunes rotamer ia of Substate 1 if L1ðiaÞ > U2ðibÞ þ d.

In some applications especially for the optimal ensemble, these

across-substate DEEs can increase computational cost more than

they add pruning power and thus can be disregarded in iCFN as we

later do for TCR design.

2.2.2 Global sequence-level search

The second stage of iCFN performs DFBB search over the sequence

space that is represented in a hierarchical tree structure together with

states, substates, and conformations. The overall search strategy is

illustrated in Figure 2. Beginning with a completely undefined se-

quence indicated by all ‘X’, it splits the current sequence space (parent

node) into two subspaces (child nodes), based on the first amino acid

being valine (V) or not. It then evaluates the lower bound on the right

child corresponding to a partially defined sequence and determines

whether to prune its entire subtree or to split it again. The so-called

binary branching repeats until reaching a sequence-level leaf node (i.e.

a fully defined sequence) whose lower bound is evaluated for pruning.

If the sequence is not pruned, state, substate, and rotamer-level search

follows with similar DFBB (next subsections). Then iCFN calculates

the sequence’s specificity score and updates the upper bound for opti-

mal specificity if the score is lower than the best specificity so far.

Two types of lower bounds with proofs (Supplementary Material)

and complexity analysis are developed for iCFN to prune sub-trees of

sequences (including their associated substates and rotamers) when

the search reaches a sequence-level leaf node (i.e. a fully defined se-

quence) or otherwise. They are not included in reduced iCFN to assess

their sole contribution to numerical efficiency.

The first lower bound is generically applicable to all sequences,

fully defined or not. Details and proofs can be found in

Supplementary Material.

Theorem 2. For any sequence space S, a lower bound of the objective

function for multistate protein design with substate ensembles

[Formulation in Equation (5)] is given by (� denotes Cartesian product):

min
ðk;lÞ2P�Q

�
Dckl þ

X
i

min
a2SðiÞ

min
ðr;r0Þ

�
DEklðir;r0 Þ

þ
X
j>i

min
a02SðjÞ

min
ðs;s0 Þ

DEklðir;r0 ; js;s0 Þ
��

; where

(7)

Dckl ¼ cþk � c�l ;

DEklðir;r0 Þ ¼ Eþk ðirÞ � E�l ðir0 Þ;

DEklðir;r0 ; js;s0 Þ ¼ Eþk ðir; jsÞ � E�l ðir0 ; js0 Þ;
(8)

i.e. differences in constant, singleton and pairwise energies between a

positive substate k and a negative substate l.

We also give the time complexity of the lower bound as follows.

By using a lookup table of size Oðn2aÞ that contains minimal/

maximal energy between all position pairs for each positive/

negative substate, we accelerate this lower bound calculation

by O(r).

Theorem 3. The lower bound in Theorem 2 can be computed in

OððnRaÞ2rÞ, where n is the number of positions, R the average number

of rotamers per position, a the average number of substates per state,

and r the average number of rotamers per amino acid.

In practice, we only use the first lower bound for partially

defined sequences and have derived a tighter one for fully defined

sequences:

Theorem 4. For any fully defined sequence s, a lower bound can be

given by

min
k2P

Lþk ðsÞ �min
l2Q

U�l ðsÞ (9)

in which Lþk ðsÞ is the lower bound on all rotamers for sequence s and kth

substate in positive design and U�l ðsÞ is the upper bound on all rotamers

for sequence s and lth substate in negative design.

We use EDAC to calculate the lower bound and limited discrepancy

search (LDS) to calculate the upper bound for a fully defined

sequence.

Last, we can allow at most M mutations among all mutable posi-

tions using LDS again (pseudocode included as part of Algorithm 3

in the Supplementary Material).

2.2.3 State and substate-level search

Once a fully defined sequence s is reached and cannot be pruned, it

splits into child nodes of positive and negative states and follows

positive substates then negative ones. iCFN repeats DFBB in the

Fig. 2. Schematic illustration of global sequence search
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rotamer space for SCP in each substate. We use the following

bounding criteria to prune substates.

• Within the same state: Substate k prunes l if they are in the

same state (positive/negative) and U�kðsÞ < L�lðsÞ � d where the

superscript � stands for either þ or �. We again use EDAC and

LDS for L�lðsÞ and U�kðsÞ, respectively.
• Across the two states: For a negative substate q, all the

subsequent negative substates will be skipped if no rotamers

both pass the within-state pruning and satisfy min ffþðsÞg�
f�q ð�Þ < Sbest þ e, where min ffþðsÞg denotes the optimal value

among all positive substate functions for the sequence s and Sbest

is the lowest (best) specificity score of the best sequence so far. If

q¼1 (the first negative substate), the sequence s is also pruned.

There might be more substate constraints in practice. For in-

stance, our TCR design formulation has a stability condition for

positive substates: Lþp ðsÞ > min ffþðWTÞg þ s. Therefore, a positive

substate p is pruned if its stability lower bound is worse than wild

type by more than s. Other user-defined constraints on substates can

further speed up the search.

2.2.4 Value-level (rotamer) search (side-chain packing)

Once reaching a substate that is not pruned, iCFN again uses binary

branching to iteratively split during search the conformational space

into a chosen rotamer and all the rest. For pruning conformational

subtrees, the search again uses EDAC as lower bounds and LDS as

upper bounds in each SCP. After a leaf node of the tree (a fully

defined conformation for a fully defined sequence) is visited and

cannot be pruned, it either becomes the best solution so far or enters

the d-ensemble for the corresponding sequence in the substate. The

ensemble size for each sequence in each substate can be limited to K

where the K choices can be the first or the best (implemented with a

max-heap data structure).

2.2.5 Backtracking

When a sequence- or rotamer-level node is pruned with its subtree,

our tree search backtracks to its parent node, re-orders variables

(positions) and values (amino acids or rotamers) in the tree (see

ordering in the next subsection), and repeats the DFBB process.

2.2.6 Ordering

The ordering of positions, amino acid types and rotamers in the

search tree also has an impact on the pruning efficiency. We use sev-

eral ordering heuristics, originally developed for constraint satisfac-

tory problems (CSPs) and later extended for weighted CSPs, to

boost the speed of iCFN without compromising its guarantee of the

global minimum or the gap-free top list.

For variable (position) ordering, the state of the art is the increas-

ing order by the number of amino acids or rotamers over the median

of pre-calculated energy terms for global sequence search or SCP, re-

spectively. The principle is to visit nodes of higher energies earlier to

prune their child nodes more likely and visit nodes of fewer combi-

nations to prune more or bigger subtrees. We improve the efficiency

for iCFN by using the median of singleton terms only. The rationale

is that singleton terms (e.g. interactions between side chains and

backbones) often dominate over pairwise terms in SCP problems

(Desmet et al., 2002; Eisenmenger et al., 1993). Note that this treat-

ment does not affect the accuracy of iCFN. In practice it may lead to

slightly increased number of nodes expanded or leaves visited but

still saves running time with much less time spent on each node for

bound estimation. More results on this treatment can be found in

Supplementary Tables S1 and S2.

For amino acid ordering per position, the wild type is by default

the first and the rest is ordered by increasing singleton energy values.

And rotamer ordering for each amino acid type is again by the

increasing order of singleton energy values. These two orderings are

following the principle of increasing the chance to find a good feas-

ible solution early.

2.3 Test on TCR design
We will now introduce the design problem to test our algorithms,

with formulation specifics and implementation details.

2.3.1 Background

TCRs recognize peptide antigens presented by major histocompati-

bility complex (MHC) and play a critical role in the immune re-

sponse. Therefore, TCRs have been actively pursued for cancer

immunotherapy. For instance, the first TCRs developed for melan-

oma are DMF4 and DMF5 which recognize two structurally distinct

peptide epitopes of MART-1 (melanoma antigen recognized by T

cells 1) bound to MHC Class I protein Human Leukocyte Antigen

(HLA)-A*0201 (HLA-A2). Regulation of redesigned TCR with high

affinity and specificity toward target peptide-MHC (pMHC) has

been a major task to develop effective TCR-based immunotherapies.

Whereas improving binding affinity has represented major efforts so

far because of TCRs’ relatively weak binding to pMHC, such

improvements often come at a cost of binding specificity to target

peptides and thus bring the risk of off-target effects (for instance,

strong affinity to MHC regardless of peptide antigens). In addition,

evidence shows that TCR affinity above a certain threshold would

cause T-cell responsiveness to attenuate. In total, there is a pressing

need for the rational design of TCRs of carefully tailored affinity

and specificity profiles.

We used the example of TCR DMF5 (Pierce et al., 2014) to design

optimal binding specificity while constraining the target-complex

folding stability. The target, AAG peptide, is MART-1 non-americ

epitope (AAGIGILTV) and the off-target, ELA peptide, is MART-1

decameric epitope (ELAGIGILTV). We modeled global backbone

flexibility of bound DMF5, peptides and MHC with a conformation-

al ensemble sampled by molecular dynamics (MDs) simulations.

2.3.2 Biophysical model

Each conformation of TCR-pMHC in the ensemble was treated as a

substate. A hierarchy of energy models is used. (i) During the tree

search, folding energy (stability) of TCR-pMHC was used as the

substate function. Energy terms included Coulomb electrostatics,

van der Waals and internal energies as calculated in a CHARMM22

force field as well as nonpolar contributions of hydration energy

based on solvent-accessible surface area. (ii) After iCFN generates

the top sequence-conformation ensemble, binding energy difference

between the target and the off-target (specificity) was used as the

overall objective. Folding energies were re-evaluated with a higher-

resolution energy model where implicit-solvent Poisson-Boltzmann

electrostatics replaces Coulombic electrostatics (Shen, 2013; Shen

et al., 2015). Binding energy for the lowest folding-energy conform-

ation was reported for each sequence in each substate.

2.3.3 Substate ensembles

Both peptides were previously crystallized in complex with MHC

HLA-A2 or TCR DMF5 and available with PDB accession codes

3QDJ or 3QDG. Both structures were first minimized using a
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molecular modeling software CHARMM in a CHARMM22 force

field with missing residues and atoms added. They were then sol-

vated using VMD with explicit water molecules of 10 Å padding

thickness from the molecular boundary and ionized to reach neutral

charge and a concentration of 0.145 M. Either system was mini-

mized for 5000 steps and a 10-ns MD simulation was performed

using a computer program NAMD2. Starting from the beginning of

MD simulations, snapshots were retained every nano-second. In

total, there are 11 positive and 11 negative substates.

2.3.4 Computational mutagenesis

We chose four positions as in an earlier study (Pierce et al., 2014):

residues 26 and 28 on the a chain of DMF5 and residues 98 and 100

on the b chain. Each mutable position is allowed for 26 amino-acid

types (some amino acids with multiple protonation states are each

counted more than once). Since folding energy was first used, speci-

ficity cutoff e and positive-substate stability cutoff s were set loose

at 1000 kcal/mol while ensemble cut-off d per sequence at 2 kcal/

mol. iCFN searched for the best K¼1000 conformations for each

sequence. To reduce conformational representatives for higher-

resolution energy evaluation while maintaining diversity, top con-

formations of each sequence in each substate were geometrically

grouped (Lippow et al., 2007) and only the representatives were

evaluated for higher-resolution folding and binding energies.

3 Results and discussion

3.1 Numerical comparison to COMETS
We first compare iCFN to the only alternative exact method for

multistate protein design, COMETS (Hallen and Donald, 2015),

released in OSPREY V2.2 (Gainza et al., 2013). COMETS uses the

weighted sum of substate energies as its objective function, which

differs from our formulation in Equation (5). So we resort to com-

pare the methods using the same objective function (without con-

straints), energy calculations and rotamers (without continuous

ones) as in OSPREY, which leads to multistate design with a single

substate per state as in Equation (4). Specifically, the task is to min-

imize the binding energy of a protein complex (XRCC1 N-term do-

main and DNA polymerase beta; PDB code: 3K75) as the difference

between the bound (or positive) and the unbound (or negative) state

(Hallen and Donald, 2015).

Out of five positions in XRCC1 (residues 391, 409, 411, 422

and 424), we incrementally choose the first Nmut to be mutable; and

for each choice of mutable residues, we set all the Nflex residues

within d ¼ 3 or 6 Å to be flexible, and increasingly demand the top

affinity sequence ensemble (e¼0.5, 1.0 and 1.5 kcal/mol while d
stays at 2 kcal/mol).

From Table 1 we conclude that our algorithms outperform

COMETS in both memory usage and CPU time, which enables large

designs in practice. Whereas COMETS couldn’t handle designs of

more than two mutable positions under a 20-Gb memory limit,

reduced iCFN and iCFN can design for all five positions operating

below 80-Mb memory. For the single and double designs where all

algorithms produced results, reduced iCFN and iCFN are faster

than COMETS by one to two orders of magnitude.

Theoretical reasons underlie the better performance of our algo-

rithms. On the memory demand, the space complexity of our DFBB

is O(N) where N is the number of mutable and flexible positions

whereas that of A* used in COMETS is OðeNÞ. On the computa-

tional speed, CFN-based DFBB enjoys stronger lower and upper

bounds. Specifically, (i) DFBB uses lower bounds such as EDAC

which proved more powerful than partial forward checking-directed

arc consistency (PFC-DAC) used in DEE/A* (Allouche et al., 2014).

In particular, even when it could not prune the whole subtree for a

given position, EDAC can still reduce the subtree size by pruning

rotamers of the remaining positions. (ii) For larger problems, DFBB

often reaches good-quality solutions much faster than A*, which

provides tighter upper bounds earlier.

3.2 TCR design: efficiency
We now apply iCFN to TCR design described in Methods. As

shown later, these multistate designs with substate ensembles and

dense rotamer libraries are even larger than those with single sub-

states seen in XRCC1 designs. Therefore, we could not apply

COMETS under our cluster’s memory and CPU-time limits (50 Gb

and 7 core days). Instead, we compare exhaustive search, reduced

iCFN (separate CFNs for individual substates), and iCFN to evalu-

ate the benefit of treating CFNs jointly for powerful substate prun-

ing during search.

3.2.1 Reduction in the sequence and conformer spaces

We compare the effective size of the search space after DEE pruning

among exhaustive search, reduced iCFN, and iCFN, using the fol-

lowing metrics: (i) the number of fully defined sequences searched,

which is the same for exhaustive search and reduced iCFN but much

lower for iCFN; and (ii) the number of conformers searched, which,

Table 1. Search space statistics and running time (in seconds) comparison between COMETS, reduced iCFN, and iCFN over a series of in-

crementally larger multi-state XRCC1 design problems with a single substate for either positive or negative state

e¼ 0.5 kcal/mol 1 kcal/mol 1.5 kcal/mol

Nmut d(Å) Nflex Pre-DEE

Size

Post-DEE

Size (Ensemble)

COMETS Reduced

iCFN

iCFN COMETS Reduced

iCFN

iCFN COMETS Reduced

iCFN

iCFN

1 3 9 2.88e17 2.04e8 4.03 0.02 0.02 4.27 0.03 0.3 4.37 0.03 0.03

1 6 16 5.24e30 2.75e19 6.84 0.16 0.12 6.97 0.17 0.12 7.72 0.19 0.13

2 3 10 1.00e22 1.73e12 6.85 0.28 0.15 8.36 0.28 0.16 9.29 0.28 0.16

2 6 19 5.88e37 1.58e25 19.46 2.63 1.41 29.07 2.67 1.44 29.27 2.79 1.47

3 3 11 7.94e27 8.31e18 M 12.64 6.15 M 12.67 6.51 M 12.65 6.54

3 6 20 1.81e43 1.44e30 M 62.17 32.9 M 62.22 33.26 M 62.31 33.47

4 3 14 6.54e36 8.31e26 M 493.26 268.28 M 493.31 268.3 M 493.95 268.41

4 6 26 7.94e56 4.36e38 M 2060 1458 M 2156 1493 M 2161 1498

5 3 15 3.54e42 2.34e30 M 9810 5570 M 9943 6005 M 10 046 6040

5 6 26 1.65e61 1.58e42 M 49 373 37 198 M 49 978 37 223 M 50 405 39 553

Note: ‘M’ indicates an out-of-memory error under a 20-Gb limit.
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for reduced iCFN and iCFN, include not only leaves (fully defined

conformations) visited but also nodes (partially defined conforma-

tions) expanded at the rotamer level of SCP for those sequences

searched. These results are summarized in Table 2 for the global

optimum-specificity sequence and Table 3 for the top e-kcal/mol en-

semble (e ¼ 3) of sequences.

As seen in both tables, the TCR design problems feature sizes un-

precedented to exact protein-design methods even after type-dependent

DEE: up to 1056 (1082), 10104 (10132) and 10134 (10162) for global

optimum (ensemble) single, double and triple designs, respectively.

Reduced iCFN drastically shrinks the conformational space for

search. For the global optimum, it only evaluates up to the order of

102; 105 and 106 fully defined conformations and up to the order of

104; 106 and 108 partially defined conformations en route for single,

double, and triple designs, respectively. This space-reduction power

does not weaken significantly with the increase of the space size as

type-dependent DEE does. For the top ensemble, it still only evalu-

ates to the order of 104 and 106 fully-defined conformations or par-

tially defined conformations en route for single and double designs,

respectively.

iCFN shows even more space-reduction power compared with

reduced iCFN because, unlike the latter, it reduces the sequence

space (and associating substrees) besides the conformational space.

In fact, iCFN visits on average 6.7 (7.4), 58.8 (110.8) and 455.1

(1397.2) times less sequences for the best single (ensemble of)

sequence(s) in single, double, and triple designs, respectively.

Therefore, iCFN for global optimum impressively only evaluates to

the order of 102; 103 and 103 fully defined conformations and

103; 105 and 105 partially defined conformations en route, which

translates to 9.2, 214.7 and 2358.6 times more space reduction

on average compared with reduced iCFN, for single, double and tri-

ple designs, respectively. For the top ensemble, iCFN has similar

Table 2. Comparing search space statistics and running time between reduced iCFN and iCFN for global optimum in multi-state TCR design

with substate ensembles

Reduced iCFN iCFN

Position(s) Pre-DEE

Size

Post-DEE

Size

Nodes

Expanded

Leaves

Visited

Sequences Time (s) Nodes

Expanded

Leaves

Visited

Sequences Time (s)

26 e61 e27 2.45e3 1.41e2 26 1.46 8.55e2 36 3 0.56

28 e66 e49 3.75e4 1.26e3 26 24.5 4.12e3 114 4 6.29

98 e58 e42 2.51e4 8.16e2 25 9.98 2.11e3 88 8 3.38

100 e84 e56 4.92e4 1.75e3 26 19.85 3.78e3 101 3 4.44

26, 28 e87 e62 1.46e6 3.75e4 676 1335.95 5.99e4 791 40 228

26, 98 e119 e68 1.74e6 3.88e4 650 809.18 9.85e3 231 14 182.10

26, 100 e142 e82 4.08e6 1.02e5 676 1510.03 1.01e4 234 5 303.64

28, 98 e126 e92 5.20e6 9.34e4 650 3707.04 3.04e5 4568 106 745.84

28, 100 e141 e104 9.78e6 1.80e5 676 5603.60 2.00e4 349 8 796.96

98, 100 e112 e88 6.03e6 9.34e4 650 4384.48 3.39e4 633 19 526.97

26, 28, 98 e146 e106 1.68e8 2.66e6 16 900 133 672 7.09e5 8171 180 16879

26, 28, 100 e161 e122 2.94e8 5.11e6 17 576 205 865 4.41e4 652 14 22 941

26, 98, 100 e169 e117 3.28e8 4.32e6 16 900 202 001 1.88e5 2425 55 23 430

28, 98, 100 e168 e134 5.86e8 7.35e6 16 900 496 051 7.45e5 8284 103 46 685

Table 3. Comparing search space statistics and running time between reduced iCFN and iCFN for the top sequence ensemble in multi-state

TCR design with a substate ensemble per state

Reduced iCFN iCFN

Position Pre-DEE

Size

Post-DEE

Size

Nodes

expanded

Leaves

visited

Sequences Time (s) Nodes

expanded

Leaves

visited

Sequences Time (s)

26 e61 e54 6.35e4 6.20e4 26 66.69 6.14e3 6.00e3 10 21.86

28 e66 e61 5.92e4 5.70e4 26 114.22 4.09e3 4.00e3 2 23.55

98 e58 e55 5.15e4 5.00e4 25 103.29 4.16e4 4.00e4 20 43.35

100 e84 e77 7.43e4 7.11e4 26 154.51 5.19e3 5.00e3 2 23.74

26, 28 e87 e82 1.70e6 1.62e6 676 7454.93 9.44e3 9.00e3 4 1063.89

26, 98 e119 e111 1.82e6 1.73e6 650 15 449.04 2.51e5 2.38e5 108 3872.32

26, 100 e142 e132 1.89e6 1.75e6 676 19 780.68 2.62e4 2.40e4 10 2226.52

28, 98 e126 e119 1.45e6 1.37e6 650 23 378.51 3.13e4 3.00e4 13 2810.31

28, 100 e141 e132 1.77e6 1.60e6 676 24 631.34 4.22e3 4.00e3 2 2359.10

98, 100 e112 e106 1.60e6 1.51e6 650 17 303.91 3.98e4 3.80e4 19 2056.47

26, 28, 98 e146 e141 — — 16 900 — 5.86e4 5.50e4 27 105 343

26, 28, 100 e161 e154 — — 17 576 — 1.48e4 1.40e4 6 99 012

26, 98, 100 e169 e161 — — 16 900 — 6.76e4 6.00e4 27 185 886

28, 98, 100 e168 e162 — — 16 900 — 3.73e4 3.40e4 12 158 995

Note: ‘—’ indicates an out-of-time error under a 7-day limit. Note that the ensemble versions are run after corresponding global optima are derived to reach

tight sequence-level specificity bounds and their statistics do not include those in the global optimum stage reported in Table 2.
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space-reduction improvement compared with reduced iCFN and vis-

its only up to 105 conformations, fully or partially defined, to solve

triple designs that could not be handled by reduced iCFN within 7

CPU days.

3.2.2 Acceleration in running time

Since search space reduction can come at a cost of relatively expen-

sive bound calculations, we proceed to compare running time in

Table 2 for the global-optimum sequence and Table 3 for the top se-

quence ensemble. The design jobs (especially for the top ensemble)

are daunting for an exhaustive search or even COMETS. So we only

compare between reduced iCFN and iCFN to examine the algorith-

mic benefits of interconnections among substate CFNs. The pre-

search step of sequential reading and pruning of rotamers is the

same between both and excluded in running time reported.

iCFN drastically accelerates conformational search even com-

pared with reduced iCFN and the acceleration is observed to im-

prove with the increase of the problem complexity. Specifically,

iCFN runs 3.4, 5.9 and 9.0 times faster than reduced iCFN does for

global optimum in an average single, double and triple design, re-

spectively. For the top ensemble, iCFN runs 4.2 and 7.8 times faster

than reduced iCFN does in an average single and double design, re-

spectively; and it solves triple designs within 1–2 CPU days whereas

reduced iCFN could not within 1 CPU week. The results show that

the benefit of pruning power clearly outweighs the burden of bound

calculations.

3.2.3 Performance improvement versus problem complexity

In Figure 3 we summarize how much the power of sequence bound-

ing among CFNs grows with the increase of the problem complex-

ity. iCFN manifests its power in reducing sequence space and

running time even more with the increase of problem complexity

when more positions are mutated or more top solutions are desired.

Additional algorithmic contributions to performance improvement

are discussed in the Supplementary Material.

3.3 TCR design: accuracy
3.3.1 Comparison to experimental results and Rosetta

We list all TCR designs predicted to be AAG-specific, using an en-

semble of backbone structures, in the Supplementary Table S3.

When comparing these results to experimental results reported ear-

lier (Pierce et al., 2014), we found that iCFN correctly predicted al-

most all known AAG-specific TCRs. Specifically, seven AAG-

specific mutants involving four residues were previously reported,

including a chain D26W, G28L, G28I, G28Y and G28N as well as b
chain F100Y and F100W (bL98W is excluded for its specificity

being below experimental error bar). iCFN correctly predicted 6 of

the 7 (missing G28N) and produced a false positive (FP) D26Y. In

contrast, when Pierce et al. used Rosetta V2.3 (Leaver-Fay et al.,

2011b) for specificity design, they only found 3 (all at residue 28

and missing G28N as well).

To assess iCFN’s conformational search and energy models, we

also compare computed and measured relative binding affinities

(DDG) as well as binding specificities (DDDG) for the six correct

designs (G28N not included) and D26Y. For DDG, iCFN achieved a

Pearson correlation coefficient of 0.52, which is between that of

Rosetta with interface backbone minimization (0.39) and Rosetta

without (0.62) (Pierce et al., 2014). iCFN’s DDG values over-

estimated weak binding affinities for ELA, possibly due to its lenient

DEE-pruning and constraints for negative substates. Using DDDG

< 0 calculated to predict specificity, we find in Table 4 that Rosetta

led to one FP and two false negatives (FN) and Rosetta Min did

three FNs (Pierce et al., 2014) whereas iCFN found the most true

positives (TP) with only one FP and no FN.

3.3.2 The impact of substate ensemble and backbone flexibility

We also perform a multistate design with a single substate for either

state (i.e. a fixed backbone conformation) and list TCR designs pre-

dicted to be AAG-specific in Supplementary Table S4. Whereas a

flexible-backbone treatment correctly predicted 6 of 7 AAG-specific

mutants, a fixed-backbone treatment only did for 3 (G28L, F100W

and F100Y). In fact, for the flexible-backbone treatment, various

backbone conformations were adopted in iCFN for various success-

ful designs in the AAG- or ELA-bound complex (see Supplementary

Table S5). These results echo the biophysical concept of protein con-

formational substates and highlight the importance of backbone

flexibility to multistate protein design for more diverse solutions and

higher success rates.

3.3.3 Characterization of the design space

Beyond individual predictions, iCFN effectively produced energetic

landscapes in the design space by generating the top sequences and

conformation ensembles. Although conformational flexibility is lim-

ited, it predicted that position 98 on the a chain, having much less

sequence solutions and worse binding affinities, is much less ‘desig-

nable’ for AAG-specificity compared to the other three positions,

which agrees with previous experimental observations (Pierce et al.,

2014). Other potentially promising designs for AAG-specificity can

be found in Supplementary Table S3.

3.3.4 Molecular mechanisms for AAG-binding specificity

Our results correctly predicted that introducing bulkier hydrophobic

residues properly to position 26/28/100 could improve binding spe-

cificity. Moreover, consistent with experimental results, they

60 80 100 120 140 160

1
2

5
1

0

sp
e

e
d

u
p

 t
im

e

40 60 80 100 120 140

1
2

5
1

0

sp
e

e
d

u
p

 t
im

e

60 80 100 120 140 160

1
5

5
0

5
0

0
5

0
0

0

sp
e

e
d

u
p

 s
e

q

40 60 80 100 120 140

1
5

5
0

5
0

0
5

0
0

0

log (Confromational size of the problem)

sp
e

e
d

u
p

 s
e

q

log (Confromational size of the problem)

log (Confromational size of the problem)log (Confromational size of the problem)

A B

C D

Fig. 3. When compared with reduced iCFN, the speedup of iCFN in the num-

ber of sequences explored for (A) the global optimum and (B) the best en-

semble as well as that in running time for (C) the global optimum and (D) the

best ensemble.

Table 4. AAG-specificity predictions by Rosetta, Rosetta Min and

iCFN

Method TP FP FN

Rosetta G28I, G28L, G28Y, F100W D26Y D26W, F100Y

Rosetta

Min

G28I, G28L, G28Y N/A D26W, F100W,

F100Y

iCFN D26W, G28I, G28L, G28Y, D26Y N/A

F100W, F100Y
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predicted various patterns for AAG-specificity including (i) strength-

ening AAG-binding but weakening ELA-binding (G28I); (ii)

strengthening both binding but more to AAG (D26W); and (iii)

weakening both binding but less to AAG (G28Y and F100W/Y).

They also correctly predicted G28L to have weakened binding to

ELA but incorrectly predicted its improved binding to AAG.

Taking G28I as an example, we examine the mutant’s energetic

and structural consequences in details. Our results show that G28I

achieves binding specificity by exploiting the peptide sequence dif-

ference, namely the N-terminus being alanine in AAG but glutamate

in ELA. Specifically, a bulkier I28 would strengthen interactions

with AAG, mainly van der Waals packing with the N-terminal ala-

nine in AAG; but it would weaken interactions with ELA due to

both van der Waals clashes with MHC/peptide and worse con-

tinuum electrostatics (Fig. 4). This explanation agrees with the de-

sign rationale from the previous study (Pierce et al., 2014). And it

further suggests the importance of continuum electrostatics for

G28I’s peptide binding specificity, which has not been raised else-

where. We note that the negatively charged N-terminal glutamate in

ELA was solvent-accessible with TCR wild type but partially

blocked from the solvent with the bulky substitution G28I, which

can lead to increased desolvation penalty.

4 Conclusions

We have developed, for the first time, an exact algorithm that is effi-

cient for generic multistate protein design of unprecedented sizes to

previous exact methods. The combinatorial optimization problem is

formulated as coupled WCSPs where each WCSP corresponds to a

substate design and is modeled by a CFN. The algorithm exploits

novel bounds that can be quickly evaluated in the framework of CFN

as well as joint consideration of substate CFNs that can quickly prune

subtrees at the sequence, substate, and conformer levels with guaran-

tee. Applications to XRCC1 binding affinity design and TCR specifi-

city design prove that iCFN can be at least one to two orders of

magnitude faster than COMETS with much less memory demand and

can solve problems of sizes intangible to COMETS. Also, iCFN shows

competitive accuracy compared with Rosetta in replicating experi-

mental results. More importantly, our results suggest that the consid-

eration of backbone global flexibility leads to more diverse solutions

and higher sensitivity in protein design. And they provide new mech-

anistic insights into specificity in protein interactions. Future direc-

tions include parallelizing the algorithm and its codes on the

architecture of graphics processing unit (GPU), incorporating more

types of constraints seen in applications while allowing for more gen-

eral objective functions and continuous rotamers, and deriving tighter

yet economic bounds under the framework of CFN.
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