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Abstract: The bioavailability of minerals, such as zinc and magnesium, has a significant impact
on the fermentation process. These metal ions are known to influence the growth and metabolic
activity of yeast, but there are few reports on their effects on lactic acid bacteria (LAB) metabolism
during sour brewing. This study aimed to evaluate the influence of magnesium and zinc ions on the
metabolism of Lactobacillus brevis WLP672 during the fermentation of brewers’ wort. We carried out
lactic acid fermentations using wort with different mineral compositions: without supplementation;
supplemented with magnesium at 60 mg/L and 120 mg/L; and supplemented with zinc at 0.4 mg/L
and 2 mg/L. The concentration of organic acids, pH of the wort and carbohydrate use was determined
during fermentation, while aroma compounds, real extract and ethanol were measured after the mixed
fermentation. The addition of magnesium ions resulted in the pH of the fermenting wort decreasing
more quickly, an increase in the level of L-lactic acid (after 48 h of fermentation) and increased
concentrations of some volatile compounds. While zinc supplementation had a negative impact
on the L. brevis strain, resulting in a decrease in the L-lactic acid content and a higher pH in the
beer. We conclude that zinc supplementation is not recommended in sour beer production using
L. brevis WLP672.

Keywords: sour brewing; Lactobacillus brevis; aroma compounds; carbohydrate use; magnesium; zinc;
wort enrichment

1. Introduction

Sour beer is characterised by a low ethanol content and a refreshing taste and is becoming more
popular worldwide. In the production of sour beer, the main metabolite released by lactic acid
bacteria (LAB) is lactic acid (LA), which creates the specific, crispy bouquet of the beer. The LA
decreases the pH of the beer, which is the main factor inhibiting the growth of LAB cultures and LA
production [1]. Peyer et al. [2] revealed that LAB metabolism was reduced below pH 4.9 and their
growth was completely inhibited at pH below 3.4. Therefore, delaying or reducing the rate of pH drop is
beneficial for the growth of LAB. This can be done by adding alkalising agents (e.g., calcium carbonate
or potassium hydroxide) that react with LA to form lactate salts. This method can increase the
production of LA up to eight-fold, but the produced LA must be recovered through separation [3].
Alternatively, the buffering capacity of the wort can be increased by, for example, changing the mash
profile, prolonging the protein digestion or adding a citrate-based buffer [2]. In this way, it is possible to
increase the production of LA by 30–40% compared to a standard wort while maintaining a relatively
high pH (4.3) in the fermentation medium.
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The nutritional requirements of LAB are complex and varied, even between strains within the
same genera. LAB require sufficient carbohydrates, proteins, amino acids, fatty acids, vitamins and
minerals for proper growth [4].

The metabolic activity and fermentation efficiency of LAB depend on the availability of fructose [5],
some amino acids (e.g., lysine, arginine, and glutamic acid) [5,6] and microelements (e.g., manganese,
magnesium, potassium) [7,8]. Scheme 1 shows the potential metabolic pathways for the generation of
aroma compounds from wort precursors during lactic acid fermentation.
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Metal ions play important roles in many biological processes in living organisms. They are
crucial for yeasts to grow and perform alcoholic fermentation. For most strains of LAB, the most
important ions are manganese, magnesium, potassium and sodium [8,10]. Manganese and magnesium
are crucial for the growth and metabolism of LAB; the former is important for the functioning of
numerous enzymes, such as RNA polymerase, glutamine synthetase and lactate dehydrogenase [7,8],
while the latter catalyses reactions of cell division, stabilises nucleic acids and is involved in protein
hydrolysis [11]. Recently, potassium ions have been linked with long-range electrical signalling within
bacterial biofilm communities, with potassium ions triggering depolarisation across the bacterial
ecosystem [12]. LAB show no specific iron requirements and the supplementation of growth media
with iron does not stimulate lactobacilli growth [11].

Malt wort has been shown to be a very good source of nutrients for yeast [1]. The microelements
content is usually sufficient for microorganisms, but some of them (mainly zinc) are often replenished.
Some studies have shown the role of magnesium and zinc ions in the metabolism of yeast cells [13,14]
and bacteria [8,15]. In yeast, Mg2+ affects the permeability of cytoplasmic membranes, participates
in the construction of the most important cellular structures (i.e., ribosomes, DNA and RNA) [8,15]
and activates over 300 enzymes, including synthetase, phosphofructokinase, keratin kinases and
membrane ATPase [16]. While zinc stimulates the protein synthesis during fermentation and is one of
the key glycolytic enzymes (e.g., ethanol dehydrogenase and aldolase). So that Zn2+ are crucial to
perform a successful fermentation. Their deficiency may result in a stuck fermentation [17]. In the past,



Biomolecules 2020, 10, 1599 3 of 14

research has revealed the requirements for metal ions by brewers’ yeast, showing the change in the
uptake and release of metal ions during the fermentation process, and also how it changes with
successive reuse of yeast biomass in the fermentation process [18]. It has also been revealed that ionic
composition of wort has significant influence on the resistance of yeast in the stressful environment
(high osmotic pressure, ethanol concentration, etc.) [17]. Previous studies on the metal ion requirements
of LAB were mostly performed using milk or MRS (De Man, Rogosa and Sharpe) medium (the model
growth medium) and focused on the growth of the microorganisms. In the case of LAB, the addition of
magnesium ions to the culture medium was shown to reduce the growth of the bacteria [13]. However,
it has been proved that the growth conditions during the propagation of Lactobacillus in malt wort are
significantly different to those in MRS [19]. Therefore, the novelty of the work is based on the approach
of evaluating the influence of metal ions on the LAB in the brewers’ wort as the culture medium.

Therefore, this study aims to evaluate the influence of the addition of magnesium and zinc ions
on the metabolism of Lactobacillus brevis WLP672 during fermentation of brewers’ wort. The rate of
fermentation, pH decrease, metal ion content and the concentration of organic acids. Key volatile
compounds resulting from the mixed fermentation of lactic acid bacteria and brewers’ yeast were also
evaluated in the sour beer.

2. Materials and Methods

2.1. Wort

Wort (12% w/w extract content) was prepared using pale (EBC < 9), un-hopped powdered malt
extract (SLADOVNA, SPOL. S ro., Bruntal, Czech Republic) and divided into five lots: two were
supplemented with magnesium (Mg.1 and Mg.2) and two with zinc (Zn.1 and Zn.2), while the remaining
one was used as the reference sample (REF). Magnesium sulphate (MgSO4·8H2O) was added at two
different concentrations (60 mg/L and 120 mg/L), as was zinc chloride (ZnCl2·4H2O; 0.4 mg/L and
2 mg/L). All samples were sterilised in an autoclave (121 ◦C for 30 min) and then cooled in cold water
to room temperature. Atomic absorption spectrometry was applied to check the initial concentrations
of zinc and magnesium after the sterilisation (and potential precipitation). The initial magnesium and
zinc ion contents of the different wort samples are shown in Table 1. The wort (50 mL) was poured into
100 mL sterile bottles and inoculated with microorganisms to perform the fermentation. Each treatment
had three repeats.

Table 1. Initial magnesium and zinc ion contents [mg/L] in the different wort samples before fermenting.

REF Mg.1 Mg.2 Zn.1 Zn.2

Mg2+ 115.0 ± 6.0 173.7 ± 2.0 242.7 ± 11.6 113.4 ± 0.2 114.4 ± 2.2
Zn2+ 1.7 ± 0.1 1.6 ± 0.1 1.6 ± 0.0 2.1 ± 0.2 3.9 ± 0.5

2.2. Microorganisms and Fermentation

A culture of Lactobacillus brevis WLP672 (White Labs Inc, Old Sarum, United Kingdom)
was propagated according to a procedure described in previous research [19] (12% wort extract,
temp. 25 ◦C, 72 h). The cultured bacteria (0.1 mL contained 6.5 × 107 cells) was then added to the wort
to start LA fermentation. Fermentations continued for 3 days at 25 ◦C under anaerobic conditions.
After 72 h, the alcoholic fermentation was initiated by the addition of dry yeast (Fermentis Safale US-05,
Lesaffre, France) rehydrated in water. An aliquot of rehydrated yeast slurry (0.17 mL; 5.8 × 108 cells/mL)
was added to each bottle to obtain an initial yeast content of 1.2 × 107 cells/mL (automatic yeast
counter Oculyze BB 2.0, BIOTECON Diagnostics, Potsdam, Germany). The samples were closed with
a fermentation tube and then transferred into a thermostatic cabinet at 20 ◦C for alcoholic fermentation.
At the end of fermentation, the produced sour beer samples were subjected to physicochemical analysis
(ethanol content, real extract, pH, metal ions, volatile compounds, organic acids, and carbohydrates
profiles).
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2.3. Analytical Methods

2.3.1. Physiochemical Analysis

A DMA 4500 M (Anton Paar, Warsaw, Poland) beer analyser was used to determine the
ethanol content and real extract. Before measurement, the samples were degassed and filtered
with diatomaceous earth to clarify the beer.

The pH of the beer was measured daily using a CP-411 pH meter (Elmetron, Zabrze, Poland),
which was calibrated using standard buffers before each measurement was taken.

2.3.2. Analysis of Metal Ions

Samples of wort and beer (3 mL) were placed in sealed pressure vessels, with the addition of nitric
acid (5 mL, 68%), and subjected to wet mineralisation in a Mars Xpress microwave oven (1200 W, 170 ◦C,
15 min) (CEM Corp., Matthews, NC, USA). The samples were then diluted with deionised water and
their absorbance at 202.6 nm for Mg2+ and 213.9 nm for Zn2+ was determined by atomic absorption
spectrometry with a flame atomization technique (Varian AA240FS), using an automatic dispensing
sample system (SIPS-20, Agilent, Santa Clara, CA, USA). Gas flow was 3.5 dm3/min (acetylene) and air
was 14 dm3/min. Standard solutions (Mg2+, Zn2+–respectively 100 and 5.0 mg/L) were prepared from
1000 mg/L standard solution (Merck, Bilerica, MA, USA).

2.3.3. Organic Acid and Carbohydrate Profile Analysis

Specific enzymatic kits (Megazyme, Wicklow, Ireland) were used to determine the concentrations
of L-lactic acid (kit K-LATE 06/18), acetic acid (kit K-ACET 04/18), L -malic acid (kit K-LMALQR 03/18),
succinic acid (kit K-SUCC 06/18) and carbohydrates such as D-glucose, D-fructose, maltose and sucrose
(K-FRGLQR 02/17, K-MASUG 11/16) according to the manufacturer’s instructions. LA content was
determined daily during lactic fermentation and all acids were measured at the end of the process.
The carbohydrate concentration was measured before (in the wort) and after fermentation (in beer).
The concentrations of D-glucose and D-fructose were also measured after LA fermentation.

2.3.4. Analysis of Aroma Compounds by Solid-Phase Microextraction–Gas Chromatography/
Mass Spectrometry

A 1 mL aliquot of saturated saline with an internal standard solution (5 mg/L 4-methyl-2-pentanol
and 0.05 mg/L ethyl nonanoate, Sigma-Aldrich, St. Louis, MO, USA) and a 1 mL sample of beer were
added into a 10 mL vial. The SPME device (Supelco Inc., Bellefonte, PA, USA) containing PDMS
(100 µm) fibres was first conditioned by placing it in the GC injector port at 250 ◦C for 1 h. For sampling,
the fibre was inserted into the headspace under stirring (300 rpm) for 30 min at 40 ◦C. Subsequently,
the SPME device was introduced into the injector port of an Agilent Technologies 7890B chromatograph
system equipped with a LECO Pegasus high-throughput time-of-flight mass spectrometry and kept in
the inlet for 3 min. The SPME process was automated using a Gerstel MultiPurpose Sampler (MPS).

The tested components were separated using a Restek™ Rxi-1ms Capillary Column (Crossbond
100% dimethyl polysiloxane, 30 m × 0.53 mm × 0.5 µm). The column was heated using the following
temperature program: 40 ◦C increasing to 230 ◦C, over 3 min at a rate of 8 ◦C/min, then held at a constant
temperature of 230 ◦C for 9 min. Carrier gas: helium at 1.0 mL/min constant flow. Electron ionisation
mass spectrometry energy: 70 eV; ion source temperature and connection parts: 250 ◦C. Analyte transfer
was performed in splitless mode; the mass spectrometry detector was set to scan mode from m/z = 40
to m/z = 400.

Compounds were identified using mass spectral libraries and linear retention indices,
calculated from a series of n-alkanes from C6 to C30. The qualitative and quantitative identification of
the aroma compounds (Ethyl Acetate; 1-Propanol, 2-methyl-; 1-Butanol, 3-methyl-; 1-Butanol, 2-methyl-;
Butanoic acid, ethyl ester; 2,3-Butanediol; 1-Hexanol; 1-Butanol, 3-methyl-, acetate; 2-Furanmethanol,
Butyrolactone; Isomaltol; Hexanoic acid; Hexanoic acid, ethyl ester; 2-Ethyl-1-hexanol; Furaneol;
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1-Octanol; Phenylethyl Alcohol; Octanoic acid; α-Terpineol; Octanoic acid, ethyl ester; Benzothiazole;
Octanoic acid, 2-methyl-, ethyl ester; Acetic acid, 2-phenylethyl ester; Geraniol; 1-Decanol,
γ-Nonalactone; n-Decanoic acid; 1-Undecanol; β-Damascenone; Decanoic acid, ethyl ester; Dodecanoic
acid; Dodecanoic acid, ethyl ester; Benzophenone, Benzyl benzoate; Tetradecanoic acid, ethyl ester;
Hexadecanoic acid, ethyl ester; Sigma-Aldrich, St. Louis, MO, USA) was based on the comparison
of retention times and peak areas from the sample and standard chromatograms. Other detected
components were determined semi-quantitatively by comparing the relative peak area of each
identified compound, according to the National Institute of Standards and Technology Database
(http://webbook.nist.gov/chemistry/), to that of the internal standard.

2.4. Statistical Analysis

Values are given as mean ± standard deviation. Data were analysed using a two-way analysis
of variance (ANOVA) to test the significance level of each factor’s influence. The differences in each
parameter were analysed separately using Duncan’s Multiple Range Test (DMRT) (Statistica v. 10,
StatSoft Inc., Krakow, Poland). For both ANOVA and DMRT, values < 0.05 were considered statistically
significant (p < 0.05).

3. Results and Discussions

3.1. Organic Acid Production and pH

The LA concentration and pH are the main characteristics used to classify a sour beer. According to
the literature, sour beers should contain LA in the range of 3–6 g/L and have a pH of 3.3–3.9 [1,2,20]
but some sour beers containing lower levels of LA (2.1–3.4 g/L) have also been reported [21].

Figure 1 shows the LA concentration and pH respectively, measured every 24 h during the LA
fermentation and in the produced beer. The LA content increased during LA fermentation to reach
the maximum level of 0.82–0.90 g/L in all samples (Figure 1a, 72 h LAF). After 24 h, there were no
significant differences between the reference and the supplemented samples (the lactic acid content
was ca. 0.4 g/L). After 48 h, the LA content had increased to 0.68 g/L in the reference sample and
0.75–0.82 g/L in the supplemented samples. Thus, the total amount of lactic acid produced by the
bacteria was the same in all trials, but supplementation with either magnesium or zinc ions shortened
the time required (48 h vs. 72 h).
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A further increase in the lactic acid content was observed after ethanol fermentation. The highest
levels were obtained in the reference sample and the samples supplemented with magnesium ions
(1.55–1.65 g/L), while the lowest levels were observed in the samples supplemented with zinc ions
(1.40–1.50 g/L). As expected, zinc ions enhanced the fermentation performed by yeast but did not
improve lactic acid production. McLeod and Snell [10] showed that zinc can be toxic to some LAB if
the growth media does not contain sufficient manganese. The requirement for zinc is around 10 times
lower in the case of LAB as compared to yeast [11]. Therefore, the addition of zinc did not enhance LAB
fermentation but improved ethanol production by yeast. According to the literature, the L-LA content
in green beer reaches ca. 1 g/L when L. brevis is used [1,5,22], which was concordant with our results.

Considering that the rate of LA production was enhanced in the wort samples supplemented
with either magnesium or zinc ions, but zinc supplementation inhibited the production of LA during
the mixed fermentation performed by bacteria and yeast, it is concluded that zinc supplementation is
not recommended in sour beer production.

The addition of magnesium ions to the wort had a positive influence in the performance of the
LAB as shown by the rate of pH decrease of the wort (Figure 1b). Supplementation with Mg2+ (at both
60 and 120 mg/L) resulted in a lower wort pH measured 72 h after addition of LAB (pH 3.90 and 3.85,
respectively) as compared to the reference wort (pH 3.95). Consequently, the beers produced with
Mg2+ supplementation (after alcoholic fermentation) had lower pH (<3.4) than the reference beer
(>3.4). On the contrary, the beers produced from the wort supplemented with zinc ions had slightly
higher pH (3.45 and 3.5) than the reference beer.

In addition to LA (the main metabolite), L. brevis also produced other organic acids.
Their concentrations are shown in Figure 2.
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at two different levels. Bars show the average of three replicates ± standard deviation. * and ** indicate
homogeneous groups within the same compound (p < 0.05).

According to the literature, L. brevis is able to produce 0.2–0.4 g/L of acetic acid [1,22–24], while the
detectability threshold in beer is 0.2 g/L [25]. In the current work significantly higher acetic acid
concentrations 0.6–0.7 g/L were obtained (Figure 2a). L. brevis produces CO2 and ethanol or acetic
acid in addition to LA. The proportions of these metabolites depend on the composition of the
medium: if it is rich in glucose, LA is the main metabolite, whereas if the medium is low in glucose
or if maltose/galactose dominate, the amounts of acetic acid/ethanol and CO2 produced increase,
while LA biosynthesis decreases [23]. This phenomenon was confirmed in our research. The main
carbohydrate in malt wort is maltose (approximately 50 g/L), while glucose accounts for only 12% of
the carbohydrates (7–8 g/L), which is why higher concentrations of acetic acid were obtained than
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the values reported in the literature. After alcoholic fermentation, the amount of acetic acid did not
change significantly in any of the samples. On the contrary, the l-LA content more than doubled after
alcoholic fermentation (Figure 1a).

Succinic and malic acids are also produced in the course of fermentation. According to the
literature, LAB can produce 0.2–0.8 g/L of succinic acid but this is very strain-dependent [5,22].
Figure 2b shows the succinic and malic acid contents in the beer. In the samples supplemented with
zinc ions (Zn.1 and Zn.2), the succinic acid content was almost double that in the reference (0.36 and
0.77 g/L, respectively). Tyrell [26] studied various parameters affecting the formation of succinic acid in
beer and concluded that aeration, extract content in the wort, pH and fermentation temperature are the
major ones. Our research proves that zinc ions can be also taken into account as a factor contributing
to the succinic acid concentration in beer. Nevertheless, a high concentration of succinic acid in beer is
not desirable because it stimulates the secretion of stomach acids, causing indigestion and lowering
the drinkability of the beer [27]. Supplementation of the wort with magnesium ions did not lead to a
significant difference from the reference values (0.28–0.43 g/L).

Malic acid is produced during the malting process by endogenous microorganisms [28]. In malt
wort, malic acid is present at low levels of around 0.4 g/L, decreasing to around 0.1 g/L after lactic
fermentation [5]. Bacteria transform malic acid as a result of malolactic fermentation, and the intensity
of this process depends on the bacterial strain [6]. In the present study, there were no significant
differences in malic acid content across all samples (0.07–0.1 g/L).

3.2. Carbohydrate Use

The four fermentable carbohydrates and their initial concentrations in wort were: maltose
(49.5 ± 1.3 g/L), glucose (7.7 ± 1.6 g/L) fructose (3.0 ± 0.6 g/L) and saccharose (1.8 ± 0.3 g/L). Maltose is
the most abundant carbon source in malt wort, and it is fully used by yeast during fermentation [29].
However, this is not the case for Lactobacillus-according to some studies, only about 4% of maltose
contained in the wort is used by Lactobacillus [1,5]. The crucial carbohydrates for LAB are glucose
and fructose, with their order of uptake depending mainly on the strain e.g., L. amylolyticus and
L. plantarum show a preference towards glucose, while L. brevis mainly ferments fructose [5,24].
Therefore, we focused on the use of those carbohydrates (Table 2).

Table 2. Concentration of carbohydrates [g/L] in malt wort before fermentation, after 72 h of lactic acid
fermentation and after alcoholic fermentation depending on the initial concentration of magnesium
and zinc ions: REF: reference sample (without supplementation); Mg.1, Mg.2: wort supplemented with
magnesium at two different levels; Zn.1, Zn.2: wort supplemented with zinc at two different levels.

Wort After Lactic Acid Fermentation After Ethanol Fermentation

Carbohydrate
[g/L] REF Mg.1 Mg.2 Zn.1 Zn.2 REF Mg.1 Mg.2 Zn.1 Zn.2 REF Mg.1 Mg.2 Zn.1 Zn.2

Glucose 7.7 ± 1.6

6.7
±

0.5
*

7.1
±

0.8
*

6.7
±

0.2
*

7.1
±

0.1
*

8.1
±

0.3
**

0.1
±

0.0
*

0.1
±

0.0
*

0.1
±

0.0
*

0.1
±

0.0
*

0.1
±

0.0
*

Fructose 3.0 ± 0.6 0.0 ± 0.0 0.0 ± 0.0

Sucrose 1.8 ± 0.3 0.0 ± 0.0

Maltose 49.5 ± 1.3

3.3
±

0.5
*

3.6
±

0.4
*

3.4
±

0.4
*

3.6
±

0.4
*

3.6
±

0.6
*

Results are presented as the mean of three replicates ± standard deviation, * indicates that the sample is not
significantly different from the reference and ** indicates that the sample is significantly different from the reference
sample (p < 0.05).

After 72 h of lactic fermentation, fructose was fully used, regardless of the supplementation
variant. There have been no reports to date proving that fructose is an essential carbohydrate for LAB
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growth, but it can be supposed that its higher concentration in the medium could contribute to an
increase in the bacteria’s metabolic activity. The use of fructose as an electron acceptor gives the LAB
an additional ATP gain without ATP expenditure when converting acetyl-P to acetate [30]. Therefore,
it is suggested that the production of fructose-rich wort (e.g., with the use of unmalted raw materials)
may be a good solution for the production of sour beers, especially when Lactobacillus brevis is used.

Glucose is the main carbohydrate fermented by LAB according to many studies [1,23,24]. In work
presented by Nsogning et al. [5], LAB used 20–50% of the glucose present in the wort. The strain
L. amylolyticus La.TL3 has the highest preference for glucose (using 6 g/L), while the lowest preference
is expressed by L. brevis Lb.986 (2 g/L). In the current work, glucose was only slightly processed at
about 1 g/L. Interestingly, an increase in glucose content was noted in samples supplemented with
zinc after lactic fermentation (8.06 g/L in Z.2 vs. 6.68 g/L in REF), which could be associated with the
action of enzymes released from the cytoplasm after cell death that may have broken down sucrose
into glucose and fructose. A similar relationship was observed in research by Peyer [1], where he noted
an increase in glucose content in the medium during L. brevis R2∆ fermentation while hydrolysing
sucrose. Nsogning et al. [5] noted an increase in fructose content during LAB fermentation, with a
high percentage of dead cells (60–80%).

Sucrose is not considered as an essential carbohydrate for LAB fermentation, especially for
heterofermentative strains [5], so we did not monitor its concentration beyond the 72 h of lactic
fermentation. However, after alcoholic fermentation, all the monosaccharides present in the wort had
been completely consumed (Table 2), while around 93% of the maltose was used, regardless of the
experiment variant (p = 0.9). Assume that, supplementation with Mg2+ and Zn2+ had no effect on
carbohydrate use by bacteria and yeast, but slightly affected the ethanol content and the real extract in
beer (Table 3). The addition of zinc positively influenced alcoholic fermentation, resulting in a slightly
higher ethanol concentration compared to the reference.

Table 3. Ethanol and real extract content in beer depending on the initial concentrations of
magnesium (Mg.1 Mg.2) and zinc (Zn.1 and Zn.2) ions in wort. REF-beer obtained from wort
without supplementation.

REF Mg.1 Mg.2 Zn.1 Zn.1

Ethanol [% v/v] 3.9 ± 0.0 * 4.0 ± 0.0 ** 3.9 ± 0.0 * 4.0 ± 0.0 ** 4.2 ± 0.0 **
Real extract [% w/w] 6.2 ± 0.0 * 6.5 ± 0.1 ** 6.4 ± 0.0 ** 6.3 ± 0.0 * 6.6 ± 0.0 **

Results are presented as the mean of three replicates ± standard deviation, * indicates that the sample is not
significantly different from the reference and ** indicates that the sample is significantly different from the reference
sample (p < 0.05).

3.3. Aroma Compounds

According to the literature, the main volatile compounds produced by LAB in malt-based
fermented beverages are principally associated with carbohydrate metabolism (esters, aldehydes and
ketones) and amino acid metabolism (higher alcohols and aldehydes) [31,32]. They may arise as a
result of malt wort fermentation or the conversion of precursors derived from malt wort by LAB
enzymes [32]. Both LAB and yeast produce many aroma compounds during the fermentation of malt
wort. Yeast produces mainly higher alcohols, esters, aldehydes and fatty acids, while LAB produce
organic acids and aldehydes [1,33].

It was proved that the initial concentration of metal ions in wort influences the concentration of
some aroma compounds in beer. Zinc ions have a significant impact on the biosynthesis of higher
alcohols, carboxylic acids and terpenes; their content was higher by more than double in samples
supplemented with zinc ions, as compared to the reference and to the magnesium supplemented
samples (Table 4).
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Table 4. The amounts of aroma compounds (higher alcohols, esters, fatty acids and terpenes) in sour
beer produced during subsequent lactic acid and alcoholic fermentation of brewers’ wort depending on
the initial concentrations of magnesium (Mg.1 Mg.2) and zinc (Zn.1 and Zn.2) ions. REF-beer obtained
from wort without supplementation.

Sample [µg/L]

LRI 2 REF Mg.1 Mg.2 Zn.1 Zn.2 Sig. 1

Esters
Ethyl acetate 614 2716 a 3224 a 2740 a 4099 b 2733 a *
Butanoic acid, ethyl ester 3 789 0.3 b 0.4 b 0.5 c 0.0 a 0.0 a ***
1-Butanol, 3-methyl-, acetate 872 16.7 d 9.5 c 6.6 b 3.7 a 2.7 a ***
Hexanoic acid, ethyl ester 986 2.8 b 2.5 b 2.1 ab 1.6 a 1.9 ab *
Octanoic acid, ethyl ester 1180 34.6 a 53.6 b 61.9 b 54.6 b 57.9 b *
Octanoic acid, 2-methyl-, ethyl ester 3 1209 69.3 b 33.4 a 26.3 a 30.6 a 30.1 a ***
Acetic acid, 2-phenylethyl ester 1228 64.2 c 63.2 c 46.8 b 37.4 ab 30.5 a ***
Decanoic acid, ethyl ester 1397 11.8 b 11.4 b 11.7 b 7.9 ab 6.9 a *
Dodecanoic acid, ethyl ester 1581 6.3 a 8.1 b 6.2 a 6.0 a 4.7 a *
Benzyl Benzoate 1750 1.3 a 3.8 b 3.8 b 10.7 c 13.2 d ***
Tetradecanoic acid, ethyl ester 3 1790 0.8 a 2.6 ab 3.5 b 12.6 c 14.7 d ***
Hexadecanoic acid, ethyl ester 3 1990 0.6 a 2.0 a 2.6 a 12.2 b 14.7 c ***
Higher alcohols
1-Propanol, 2-methyl- 617 433.6 a 699.2 b 725.5 b 977.8 c 1046.8 c ***
1-Butanol, 3-methyl- 723 13,787 a 21,007 bc 19,298 b 24,456 c 29,083 d ***
1-Butanol, 2-methyl- 740 4984 a 6818 b 5173 a 6093 ab 7235 b ***
2,3-Butanediol 768 1663 bc 1861 c 1322 b 838 a 553 a ***
1-Hexanol 865 23.7 a 36.0 b 25.8 a 24.9 a 23.8 a *
2-Furanmethanol 3 880 48.8 a 130.1 c 73.1 ab 75.4 b 73.3 a b ***
Isomaltol 3 975 48.5 a 104.4 c 72.1 ab 77.3 b 146.0 d ***
2-Ethyl-1-hexanol 3 1020 99.9 b 97.3 b 78.1 a 73.2 a 64.5 a ***
Furaneol 3 1057 35.8 43.3 41.2 40.1 42.3 ns
1-Octanol 3 1070 19.9 21.5 16.9 14.7 13.6 ns
Phenylethyl Alcohol 1084 3320.3 a 4966.0 b 3233.5 a 3193.6 a 5582.0 b ***
1-Decanol 3 1272 192.3 a 179.6 a 312.3 c 244.2 b 159.3 a ***
1-Undecanol 3 1374 44.2 59.0 56.3 57.5 73.3 ns
Fatty acids
Hexanoic acid 982 2.7 a 7.2 b 6.9 b 19.7 c 27.6 d ***
Octanoic acid 1160 62.2 a 173.5 a 184.2 a 584.3 b 1102.2 c ***
n-Decanoic acid 1368 3.9 a 9.5 a 11.2 a 30.7 b 36.8 b ***
Dodecanoic acid 1568 0.6 a 2.0 b 1.4 ab 4.3 c 6.8 d ***
Terpenes
α-Terpineol 1171 13.0 a 28.6 ab 50.3 b 96.8 c 159.1 d ***
Geraniol 1257 27.6 a 59.2 ab 91.5 b 201.1 c 248.0 d ***
β-Damascenone 3 1386 29.2 30.6 32.6 31.6 30.5 ns
Lactones
Butyrolactone 3 916 79.7 72.0 80.9 73.3 42.9 ns
γ-Nonalactone 3 1360 64.4 75.2 62.2 54.2 57.4 ns
Other compounds
Benzothiazole 3 1186 247.8 a 437.2 b 592.8 c 586.1 c 772.4 d ***
Benzophenone 3 1610 5.2 6.5 4.9 4.8 5.0 ns
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The colours (from light to dark) indicate increasing values within the same volatile compound. 1 Sig.: significance;
* and *** indicate significance at the 5, 1 and 0.5% levels by least significant difference; ns: not significant. Values with
different superscript roman letters (a–d) in the same row are significantly different according to the Duncan test
(p < 0.05) 2 LRI: Linear retention index 3 Determined semi-quantitatively by measuring the relative peak area of
each identified compound, according to the NIST database, and comparing it to that of the internal standard.

Fatty acids have a beneficial effect on yeast growth during fermentation as well as a negative effect
on the foam and sensory stability of beer [34]. In general, long-chain fatty acids originate from raw
materials, whereas short-chain acids are produced by yeast during fermentation [35]. The high levels of
fatty acids seen in the samples supplemented with zinc ions (Table 4) may be caused by increased yeast
metabolism (as in the case of higher alcohols) or a LAB response to stress factors (oxidative, osmotic,
acid or heat) during fermentation [36]. Usually, high levels of hexanoic, octanoic and n-decanoic acid
in beer are not desirable because they cause an unpleasant, rancid smell and taste [34].
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Geraniol, α-terpineol and β-damascenone (Table 4) are always associated with hop oils but they
have also been reported to be present in un-hopped wort [37]. They may be formed during malolactic
fermentation by glycosidase and arabinosidase from precursors, or thermal cleavage by heat treatment
under acidic conditions [32]. In the trials supplemented with zinc ions, we observed 7–12 times higher
concentrations of geraniol and α-terpineol compared to the reference. It is not entirely clear why the
increased zinc supplementation resulted in higher amounts of these two terpenes. Metal ions, such as
manganese, have been reported to increase the beta-glucosidase activity by as much as twofold [38];
perhaps Zn2+ also plays an important role in the activity of glucosidase, which is responsible for
releasing terpenoids from the bound form [24]. Nevertheless, the values are below the flavour threshold
of 1 mg/L [39].

Furthermore, the contents of higher alcohols, such as 1-Propanol, 2-methyl-; 1-Butanol, 3-methyl-;
1-Butanol, 2-methyl- and Phenylethyl Alcohol were significantly higher in the trials with Zn2+

supplementation as compared to the reference sample (Table 4). Similar results were obtained by
Gutierrez [40], who revealed lower production of 1-Propanol, 2-methyl and 1-Butanol, 3-methyl- with
zinc deficiency in the fermentation medium. This can be explained by the essential role played by
zinc ions in the operation of several enzymes, such as alcohol dehydrogenase, aldolase and alkaline
phosphatase [11]. Higher alcohols originate from the metabolism of amino acids. In yeast, the synthesis
of branched-chain amino acids is regulated by the expression of the genes ILV2, ILV3 and BAT2.
These genes were found to be downregulated in zinc-limited yeast growth in the presence or absence
of oxygen [41].

In work, the ester concentration was not influenced by the initial zinc and magnesium ion content.
This may be because ionic supplementation of wort does not affect the production of amino acids or
fatty acids, which are precursors of esters, as the ions are not cofactors for enzymes involved in the
production of esters (i.e., esterase, alcohol acetyltransferase) [42]. Biosynthesis of esters by LAB is
based on the transfer of a fatty acyl group from acylglycerol and acyl-CoA to an alcohol (Scheme 1).
However, as a result of the low ethanol production by LAB (<0.5% v/v) [2], lactic fermentation does not
favourably affect esterification, which is generally desirable because esters give a sweet, fruity taste.
LA and acetic acid (the main organic acids produced during lactic acid fermentation) may be involved
in the formation of the esters ethyl lactate and ethyl acetate, respectively [32].

3.4. Metal Ion Release by LAB and Yeast

Figure 3 shows the concentration of magnesium (a) and zinc (b) ions in the wort during the mixed
fermentation depending on the initial content of this ions in the wort. The lactic acid fermentation did
not cause any changes in the magnesium content in the wort, which indicates that the LAB did not take
up or release magnesium during the 72 h of the process. On the contrary, yeast released magnesium,
which resulted in a slight increase in the magnesium content.
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initial concentrations of magnesium and zinc ions: REF: reference sample (without supplementation);
Mg.1, Mg.2: supplemented with magnesium at two different levels; Zn.1, Zn.2: supplemented with zinc
at two different levels. Results are the means of three replicates and the error bars are ± SD, *, ** and ***
indicate homogeneous groups within the same trial (p < 0.05).

In all of the trials supplemented with metal ions (either magnesium or zinc), the yeast released
magnesium into the medium at the end of the process. In the samples with magnesium supplementation,
the release was less pronounced than in the case of the zinc supplementation. In the former one
(trial Mg.1, 60 mg/L supplementation) the increase in the Mg2+ content was ca. 10% (from 165 to
190 mg/L), while in the case of trial Mg.2 (120 mg/L supplementation) it was ca. 20% (from 225 to
280 mg/L). In the latter case (zinc supplemented samples), the increase in the magnesium ion in the beer
after fermentation was much higher, reaching 50% (from 120 to 175 mg/L in both the 0.4 and 2 mg/L
Zn2+ supplementation trials). Similar trends were observed in study Poreda et al. [43], which proved
that increased content of zinc ions in wort can block the uptake of magnesium ions by the yeast.
The current results show that in the case of L. brevis strain the uptake and release of magnesium ions is
not affected by the zinc ion content.

The pattern of release of zinc ions during subsequent LA and alcoholic fermentation was different
from that observed for magnesium (Figure 3b). First of all, there was already an increase in the zinc
ion concentration in the wort after performing the lactic acid fermentation (in all treatments except for
the one with the highest level of Zn2+ supplementation). It is worth noting that the highest release
of zinc ions (Zn2+ increased from 2 to 6 mg/L in the wort) was observed in the trial with the highest
supplementation of magnesium ions (120 mg/L). In the reference sample and the sample with 60 mg/L
magnesium supplementation, the zinc ion concentration in the wort increased from around 2.5 mg/L up
to ca. 4.5–5 mg/L. In the trial with Zn2+ supplementation at 2 mg/L, neither the LAB nor the yeast cells
released zinc ions into the wort. It seems that the concentration in the wort was high enough to block
any leakage of Zn2+ ions out of the cells. Based on the results two conclusions can be drawn. First of all,
the release of zinc ions from both LAB and yeast cells proceeds via passive transport dependent on
the Zn2+ concentration gradient. The higher the content of zinc ions in the wort, the fewer ions were
released by the microbes. Secondly, the rate of zinc ion release from the yeast cells depends not only
on the zinc ion content in wort but also on the magnesium ion content. The more magnesium that
was present in the wort (Mg.2), the more zinc ions were released out of the cell. A similar trend was
observed in earlier studies, which proved that at levels above 150 mg/L, magnesium ions effectively
limit zinc bioaccumulation in yeast biomass [43].

4. Conclusions

The objective of this study was to determine how metal ion (magnesium and zinc) supplementation
affects the metabolism of Lactobacillus brevis WLP672 in brewers’ wort, the production of organic acids
and volatile compounds, and the rate of sour beer fermentation.

Supplementation of wort with magnesium resulted in a slightly faster decrease in the pH during
the fermentation and an overall the lowest pH of the sour beer. The differences, though statistically
significant, may be negligible at the industrial production, so more work is necessary in this field to
further increase the rate of pH decrease during LAB fermentation. Additionally, the concentration
of lactic acid after 48 h of LAB fermentation was higher in the samples with Mg2+ supplementation,
compared to the reference sample. On the other hand, zinc ions supplementation resulted in a higher
pH and lower content of lactic acid in the sour beer. It is an important finding, as zinc supplementation
is a standard procedure in many breweries, and it is worth considering reducing or abandoning
Zn2+ supplementation when producing wort for sour beer. We also found almost twofold higher
concentrations of succinic acid in the Zn2+ supplemented samples than in the reference sample or the
Mg2+ supplemented samples. High concentration of succinic acid in beer is not desirable, as it results
in beer with lower drinkability. Regarding aroma compounds, supplemental magnesium increased the
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concentrations of 1-Propanol, 2-methyl-; 1-Butanol, 3-methyl-; Hexanoic acid, Octanoic acid, ethyl ester;
Benzothiazole and Benzyl Benzoate, while zinc most of all enhanced the synthesis of carboxylic acids
and terpenes. Supplementation with magnesium and zinc had no effect on carbohydrate use but
slightly affected the ethanol content and the real extract in beer. The addition of zinc positively
influenced alcoholic fermentation, resulting in a slightly higher alcohol concentration compared to
the reference.

This work will contribute to the brewing industry by providing new knowledge about the impact
of magnesium or zinc supplementation on the lactic acid and alcoholic fermentation. It will also help
to understand the relation between ionic content of wort and the aroma profile of beer, which can lead
to improvement of sour beer quality. Further work is needed to evaluate how changes in other wort
characteristics (carbohydrates profile, free amino nitrogen content) influence the lactic acid production
and sensory quality of sour beers.

Author Contributions: Conceptualization, A.P. and A.C.; methodology, A.C.; validation, A.P., P.S.; formal analysis,
A.C., A.P. and P.S.; investigation, A.C. and K.F.; resources, A.P. and P.S.; data curation, A.C. and A.P.;
writing—original draft preparation, A.C.; writing—review and editing, A.C., A.P., P.S., O.H.; visualization,
A.C.; supervision, A.P.; funding acquisition, A.P. All authors have read and agreed to the published version of
the manuscript.

Funding: The research was financed in part by the Ministry of Science and Higher Education of Poland.

Conflicts of Interest: The authors declare no conflict of interest

References

1. Peyer, L.C. Lactic Acid Bacteria Fermentation of Wort as a Tool To add Functionality in Malting, Brewing and
Novel Beverages. Ph.D. Thesis, University College Cork, Cork, Ireland, 2017.

2. Peyer, L.C.; Bellut, K.; Lynch, K.M.; Zarnkow, M.; Jacob, F.; De Schutter, D.P.; Arendt, E.K. Impact of buffering
capacity on the acidification of wort by brewing-relevant lactic acid bacteria. J. Inst. Brew. 2017, 123, 497–505.
[CrossRef]

3. Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial
fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [CrossRef] [PubMed]

4. Geissler, A.J.; Behr, J.; von Kamp, K.; Vogel, R.F. Metabolic strategies of beer spoilage lactic acid bacteria in
beer. Int. J. Food Microbiol. 2016, 216, 60–68. [CrossRef] [PubMed]

5. Nsogning, S.D.; Fischer, S.; Becker, T. Investigating on the fermentation behavior of six lactic acid bacteria
strains in barley malt wort reveals limitation in key amino acids and buffer capacity. Food Microbiol. 2018,
73, 245–253. [CrossRef] [PubMed]

6. Davis, C.R.; Wibowo, D.J.; Lee, T.H.; Fleet, G.H. Growth and Metabolism of Lactic Acid Bacteria during
and after Malolactic Fermentation of Wines at Different pH. Appl. Environ. Microbiol. 1986, 51, 539–545.
[CrossRef]

7. Raccach, M. Manganese and Lactic Acid Bacteria. J. Food Prot. 2016, 48, 895–898. [CrossRef]
8. Hébert, E.M.; Raya, R.R.; Savoy de Giori, G. Evaluation of Minimal Nutritional Requirements of Lactic Acid

Bacteria Used in Functional Foods. In Environmental Microbiology; Humana Press: Totowa, NJ, USA, 2009;
pp. 139–148.

9. Dongmo, S.N.; Procopio, S.; Sacher, B.; Becker, T. Flavor of lactic acid fermented malt based beverages:
Current status and perspectives. Trends Food Sci. Technol. 2016, 54, 37–51. [CrossRef]

10. MacLeod, R.A.; Snell, E.E. Some mineral requirements of the lactic acid bacteria. J. Biol. Chem. 1947,
170, 351–365. [CrossRef]

11. Boyaval, P. Lactic acid bacteria and metal ions. Lait 1989, 69, 87–113. [CrossRef]
12. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Süel, G.M. Ion channels enable electrical communication

in bacterial communities. Nature 2015, 527, 59–63. [CrossRef]
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