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Previously, we reported that treatment with the G9a histone methyltransferase inhibitor BIX01294 causes bone marrow
mesenchymal stem cells (MSCs) to exhibit a cardiocompetent phenotype, as indicated by the induction of the precardiac
markers Mesp1 and brachyury. Here, we report that combining the histone deacetylase inhibitor trichostatin A (TSA) with
BIX01294 synergistically enhances MSC cardiogenesis. Although TSA by itself had no effect on cardiac gene expression,
coaddition of TSA to MSC cultures enhanced BIX01294-induced levels of Mesp1 and brachyury expression 5.6- and 7.2-fold.
Moreover, MSCs exposed to the cardiogenic stimulus Wnt11 generated 2.6- to 5.6-fold higher levels of the cardiomyocyte
markers GATA4, Nkx2.5, and myocardin when pretreated with TSA in addition to BIX01294. MSC cultures also showed a
corresponding increase in the prevalence of sarcomeric protein-positive cells when treated with these small molecule inhibitors.
These results correlated with data showing synergism between (1) TSA and BIX01294 in promoting acetylation of lysine 27 on
histone H3 and (2) BIX01294 and Wnt11 in decreasing β-catenin accumulation in MSCs. The implications of these findings are
discussed in light of observations in the early embryo on the importance of β-catenin signaling and histone modifications for
cardiomyocyte differentiation and heart development.

1. Introduction

The prevalence of cardiovascular diseases, and their impact
on human health, has spurred considerable research efforts
into discovering new therapies. Many potential therapeutic
avenues have been explored including novel surgical inter-
ventions, genetic manipulations, cytokine injections, and cell
transplantations. Great hope was placed on stem cell-based
treatments, which have yet to deliver on their initial promise
as a panacea for cardiac disease. However, cardiac-competent
stem cells are still the focus of therapeutic research, as scien-
tists continue to investigate the capabilities of stem cells to
heal the heart either by their introduction into native tissue
as nondifferentiated cells or as a source of cells that can be

used for generating differentiated myocytes within bioengi-
neered tissue [1–5].

Bone marrow has long been studied as a potential
resource for treating the heart due to its accessibility and
abundance of stem cells [6–11]. However, initial enthusiasm
for using bone marrow to heal the heart has been tempered
with disappointment, as stem cells from this noncardiac
tissue have not shown a sufficient native potential to generate
myocardial tissue [9, 10, 12]. Recently, we reported that
exposure of bone marrow stem cells to the G9a histone meth-
yltransferase (HMTase) inhibitor BIX01294 can enhance
their cardiac competency [13, 14]. Bone marrow mesenchy-
mal stem cells (MSCs) treated with BIX01294 showed an
induced expression of Mesp1 and brachyury [13, 14], which
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are markers associated with precardiac progenitors in the
early embryo [15–17]. Moreover, BIX01294 treatment sub-
sequently allowed MSCs to undergo myocardial differenti-
ation in response to Wnt11 [13, 14], which is a primary
extracellular factor that initiates cardiogenesis during early
development [18–21].

Wnt proteins are generally classified into two groups,
based on the primary signal transduction pathways that they
stimulate [22–26]. In the embryo, Wnt11 promotes cardi-
ogenesis via noncanonical Wnt pathways [18–21, 23],
which are distinct from canonical Wnt pathways that signal
via β-catenin [22, 26]. Canonical Wnts, such as Wnt3a,
stimulate cellular responses by preventing the degradation
of β-catenin, which allows this latter protein to accumu-
late and transduce signal. Although canonical Wnt signal-
ing plays a positive role in advancing the development of
the heart after it initially takes form during embryogenesis,
inhibition of β-catenin-mediated signaling is believed to be
a key event initiating cardiac specification in the early
embryo [21, 23, 27, 28].

The effect of BIX01294 on bone marrow cells was discov-
ered as part of a large screen of pharmacological reagents for
their effect on the cardiopotency of bone marrow stem cells
[13, 14]. Drugs used in this analysis were selected based on
their previously described utility for assisting the production
and/or maintenance of pluripotent stem cells in combination
with other treatments [29–32]. In our screening assays, these
drugs were tested whether they were capable of broadening
the cell phenotypic potential on bone marrow stem cells,
without making the cells pluripotent [13, 14]. Of the drugs
we analyzed, only BIX01294 displayed a capability to boost
the cardiac competency of bone marrow cells. However, since
the other drugs we screened had a reported efficacy in help-
ing generate pluripotent cells, but only as part of a compound
treatment, we examined whether any of these reagents were
capable of further enhancing the effect of BIX01294 in broad-
ening the differentiation potential of bone marrow cells.
Here, we report that the histone deacetylase (HDAC) inhibi-
tor trichostatin A (TSA) synergizes with BIX01294 in induc-
ing cardiac gene expression from MSCs. Moreover, analysis
of the mechanisms that underlie the acquisition of cardiac
competency by MSCs demonstrates that G9a HMTase inhi-
bition displays synergy with HDAC suppression in modify-
ing histone H3 and with Wnt11 in blocking β-catenin
accumulation within stem cell cultures.

2. Material and Methods

2.1. Isolation and Culture of Bone MarrowMSCs. The Institu-
tional Animal Care and Use Committee at New York Medi-
cal College approved all animal protocols of this study.
Bone marrow was harvested from 8–12 wk C57BL/6 mice,
as described [33, 34]. MSCs were obtained from bone mar-
row using standard procedures [35, 36]. Dissociated bone
marrow cells were resuspended at 106 cells/ml in Iscove’s
Modified Dulbecco’s Medium (IMDM)/20% FBS and plated
onto tissue culture plastic, with nonadherent cells removed
after 4 hrs. The remaining adherent cells were cultured for 2
weeks and then split when still subconfluent. Cultures were

harvested at the second passage, just prior to reaching con-
fluency, for use in experimentation.

Treatments of MSCs were initiated by serum star-
vation overnight in IMDM and then culturing in fresh
10% FBS/IMDM in the absence or presence of various doses
of BIX01294, 1,5-naphthyridine pyrazole derivative-19
(Npy19; RepSox), CHIR99021, IWP4 (Stemgent), 5-
azacytidine (Sigma), 3-bromo-7-nitroindazole, and/or tri-
chostatin A (Cayman Chemical). Two days later, cells were
either harvested for RNA or cultured for an additional seven
days in fresh 10% FBS/IMDM medium, plus or minus
Wnt11, or Wnt3a (250 ng/ml; PeproTech) as previously
described [13, 14].

2.2. RNA Isolation and PCR Amplification. Quick-RNA
MiniPrep kits (Zymo Research) were used to obtain total
RNA, which was subsequently reverse-transcribed with
Moloney murine leukemia virus reverse transcriptase (Pro-
mega). Comparative levels of gene expression were deter-
mined by quantitative real-time PCR (qPCR) analysis using
the SYBR Green qPCR Master Mix kit (http://bimake.com).
Levels of phenotype-specific gene expression were normal-
ized to the expression of the housekeeping gene GAPDH
and calculated by the ΔΔCt method, as described [14, 37].

2.3. Immunofluorescence and Immunoblotting. Immunofluo-
rescent labeling of cultured cells was performed as previously
described [38, 39]. Mouse anti-β-catenin monoclonal anti-
body (BD Transduction Laboratories) was applied to MSC
cultures following processing with Dent’s fixative (80%
methanol/20% DMSO) and overnight block with 1% BSA/
PBS. Staining with antimuscle α-actinin (EA-53, Sigma)
and titin (9D10, Developmental Studies Hybridoma Bank)
antibodies followed formalin fixation and overnight blocking
with 5% BSA/PBS. DyLight 488 or TRITC-conjugated sec-
ondary antibody (Jackson ImmunoResearch) was used to
detect primary antibody labeling of the cultures, with cells
counterstained with 4′,6′-diamidino-2-phenyindole (DAPI;
Life Technologies) to identify nuclei.

For immunoblot analysis, protein was extracted from
MSCs by lysis in RIPA buffer (50mM Tris-HCl, pH 7.5,
150mM NaCl, 1% sodium deoxycholate, 0.1% sodium
dodecyl sulfate, and 1% Triton X-100) that contained
Mammalian ProteaseArrest protease inhibitors (G-Biosci-
ences). Polyacrylamide gel electrophoresis was used to sepa-
rate total protein, which was transferred to polyvinyl
difluoride membrane, and incubated with rabbit antibodies
specific to dimethylated H3K9, dimethylated H3K27, acety-
lated H3K9, acetylated H3K27 (Cell Signaling Technology),
or total histone H3 (Millipore). Antibody labeling was
detected using alkaline phosphatase-coupled anti-rabbit IgG
antibody (Promega) and Luminata Forte Western HRP sub-
strate (EMD Millipore).

2.4. Tabulating Immunolabeled Positive Cells. The percentage
of MSCs that expressed muscle α-actinin or β-catenin pro-
tein under various culture conditions was determined from
imaging immunofluorescent labeled cell cultures. MSCs were
plated onto 8-well chamber slides (Nunc) and sequentially
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cultured in the absence or presence of BIX01294±TSA for 2
days and Wnt for 2 or 7 days, prior to immunofluorescent
staining against α-actinin or β-catenin and then counter-
staining with DAPI. Digitized images were obtained with a
Zeiss LSM 710 confocal microscope using a 10x objective
from three distinct fields within the center, upper-right, and
lower-left areas of each well. These images were then
imported into ImageJ software (http://imagej.net/), with total
cell numbers tabulated from DAPI stained images using the
automated particle analysis function and immunolabeled
cells manually counted using the Cell Counter plugin (Kurt
De Vos, University of Sheffield; kurt.devos@iop.kcl.ac.uk).
Each experimental condition was repeated ≥three times and
the percentage of cells identified by DAPI labeling that
stained positive for either of the two proteins being compiled
and statistically analyzed.

2.5. Statistics. Statistical analysis was determined with
ANOVA followed by the Tukey-Kramer test for comparisons
between multiple groups and with the unpaired Student’s
t-test for evaluating differences between individual treat-
ments and specific control groups. Statistical significance
was computed with the InStat statistical program (GraphPad
Software) and defined as p ≤ 0 05, with error bars corre-
sponding to the standard error of the mean.

2.6. Cocultures of MSCs with Neonatal Rat Cardiomyocytes.
Neonatal rat cardiomyocytes were used for coculture with
mouse MSCs. Myocytes were obtained from hearts of one-
day-old Wistar rats (Taconic Biosciences, Hudson, NY,

USA), as previously described [39]. After their isolation, rat
cardiomyocytes were allowed to attach for at least 2 days
before their use for MSC coculture experimentation. Mouse
MSCs were initially pretreated in the presence or absence of
8μMBIX01294±50nM TSA for 48 hrs, prior to their labeling
with 20μM carboxyfluorescein succinimidyl ester (CFSE)
vital dye (Thermo Fisher Scientific, Waltham, MA, USA)
for 1 hour at 37°C. After extensive washing with PBS,
CFSE-labeled mouse MSCs were plated onto beating rat car-
diomyocytes at a ratio of 1 : 10. Cocultures were provided
with fresh 2% FBS/IMDM medium on alternate days and
incubated for two weeks before immunofluorescent staining.
For cocultures, red fluorescent TRITC-labeled secondary
antibody was used in conjunction with the green fluorescent
marker CFSE. However, to avoid confusion with the fluores-
cence obtained from the MSC only cultures, Adobe Photo-
shop was used to switch the color channels for cocultures,
with the immunolabeled protein appearing green, while
dye-marked cells are shown as red fluorescence.

3. Results

3.1. TSA Synergistically Enhances BIX01294-Mediated
Responses of Bone Marrow Cells. In previous reports
[13, 14], we described a molecular screen where bone mar-
row stem cells were exposed to a variety of small molecule
inhibitors that had shown utility in assisting the production
of induced pluripotent stem cells (iPSCs). When these iPSC
helper molecules were tested for their ability to broaden the
potential of bone marrow stem cells, the only one that
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Figure 1: TSA synergistically enhances stimulation of Mesp1 expression by BIX01294. MSCs were incubated with various compounds plus or
minus BIX01294 over a broad range of concentrations, with RNA harvested 2 days later and analyzed for Mesp1 expression by qPCR. The
chart presents summarized results using optimized doses of inhibitors specific for G9a HMTase (BIX01294), DNA methylation (5-
azacytidine (5aza)), nitric oxide synthase (3-bromo-7-nitroindazole (BNI)), GSK3β (CHIR99021 (CHIR)), Wnt (IWP4), TGFβ (1,5-
naphthyridine pyrazole derivative-19 (Npy19)), and histone deacetylase (trichostatin A (TSA)). The numbers of biological repeats
represented in the graphed data are as follows: control and BIX01294 (n = 31) and BIX01294+TSA (n = 18), with remaining groups having
n values ranging from 3 to 5. BIX01294 was the only reagent by itself that was able to induce Mesp1 expression, with >83-fold increase
over control levels (∗∗p < 0 005). None of the other drugs were able to increase Mesp1 expression. However, of these latter drugs, only
TSA when combined with BIX01294 produced a significant enhancement of Mesp1-expression over the levels obtained from the
BIX01294 only treated cultures (∗∗p < 0 005). Note that the relative levels of Mesp1 gene expression are normalized to levels obtained
from BIX01294-treated MSC cultures.
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appreciably upregulated precardiac markers and allowed the
cells to respond to cardiogenic signals was the G9a HMTase
inhibitor BIX01294. As we reported, maximum induction
of the precardiac markers Mesp1 and brachyury was
obtained in cultures treated for 48hrs with 8μM BIX01294.
In the present study, we examined if we could increase car-
diac gene expression further by employing a secondary
screen to identify molecules that could act synergistically
with BIX01294 for their effect on bone marrow stem cells.
For these experiments, we examined iPSC helper molecules
that were unable to promote precardiac gene expression in
the initial screen, for their ability to enhance the BIX01294
effect on bone marrow MSCs. Therefore, MSCs were treated
with or without 8μM BIX01294 plus/minus various iPSC

helper molecules over a range of concentrations. After
48 hrs, cultures were assayed for induction of the Mesp1
gene, whose expression is regarded as a marker of the precar-
diac phenotype in the embryo [15, 17]. These new experi-
ments confirmed that none of the iPSC helper molecules,
save BIX01294, induced Mesp1 expression (Figure 1). More
importantly, none of the other molecules further increased
the level of Mesp1 gene expression induced by BIX01294,
except the histone deacetylase (HDAC) inhibitor trichostatin
A (TSA). Depending on the dosage of these two molecules,
TSA was able to enhance the Mesp1 response of MSCs to
BIX01294 as much as 5.6-fold (Figures 1 and 2(a)). Overall,
the highest levels of Mesp1 expression were generated from
MSCs exposed to the combined treatment of 8μM
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Figure 2: Synergistic enhancement of precardiac gene expression by bone marrowMSCs in response to coaddition of TSA with BIX01294. (a)
MSCs were incubated for 48 hrs with various doses of BIX01294 in absence or presence of 50 nM TSA, prior to harvesting RNA and
measuring Mesp1 expression by qPCR. On the left side of the chart, the y-axis is normalized to Mesp1 levels obtained from MSC cultures
treated with 8μM BIX01294. The right side y-axis is scaled to the relative increase in Mesp1 expression resulting from the TSA coaddition
to a given concentration of BIX01294. For this series of experiments, BIX01294 generated an ~160-fold increase in Mesp1 expression as
compared to control levels, with TSA coaddition enhancing further the Mesp1 response an additional 5.6-fold. The numbers of biological
repeats represented in the graphed data are as follows: 2 μM BIX01294 and 2 μM BIX01294+TSA (n = 12), with remaining groups having
n values = 14. (b) RNA was assayed for brachyury expression by qPCR, following its isolation from MSC cultures incubated for 48 hrs in
the absence or presence of 8 μM BIX01294 and/or 50 nM TSA. The coaddition of TSA synergistically enhanced BIX01294-stimulation of
brachyury expression 7.2-fold (n = 14; ∗p < 0 05; ∗∗p < 0 01).
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BIX01294 plus 50nM TSA for 48 hrs (Figure 2(a)). Similar
results were obtained for brachyury gene expression, as
TSA was the only molecule tested that demonstrated synergy
with BIX01294, with the two drugs generating levels of bra-
chyury expression that were on average 7.2-fold higher than
elicited with BIX01294 alone (Figure 2(b)).

3.2. BIX01294 and TSA Cooperatively Promote Cardiac
Gene Expression by MSCs. The above results indicated that
TSA synergistically enhanced the induced expression by
BIX01294 of key transcription factors characteristic of
embryonic precardiac progenitors (Figures 1 and 2). Sub-
sequent experimentation demonstrated that TSA also

displayed synergy with BIX01294 in allowing MSCs to
respond to cardiac stimuli and undergo myocardiogenic
differentiation (Figure 3). For these latter experiments,
MSCs were cultured in the absence or presence of 8μM
BIX01294±TSA for 48 hrs, prior to subsequent incubation
with the cardiogenic stimulating factor Wnt11. After 7 days
of culture with Wnt11, RNA was harvested from the cells
and analyzed for cardiac gene expression by real-time qPCR.
MSCs collected from cultures that were not exposed to
BIX01294 displayed only minimal expression of cardiac
genes, regardless of whether or not they were subsequently
treated with Wnt11. However, preincubation of MSCs with
BIX01294 allowed for the induced expression of the cardiac

⁎
⁎

⁎

600
Nkx2.5

500

400

300

200

100

0

Pretreatment TSA BIX
BIX+ BIX+
TSA Npy19

WNT11

%
 m

RN
A

 le
ve

ls 
re

lat
iv

e t
o 

BI
X/

W
N

T1
1-

tre
at

ed
 cu

ltu
re

s

−
−

−
+ + + + +

(a)

GATA4
350

300

250

200

150

100

50

0

TSA BIX
BIX+ BIX+
TSA Npy19−

−
−
+ + + + +

⁎
⁎

⁎

(b)

Myocardin
800

700

600

500

400

300

200

0

TSA BIX
BIX+ BIX+
TSA Npy19−

−
−
+ + + + +

100

⁎⁎
⁎

⁎

(c)

(d)

%
 �훼
-a

ct
in

in
-p

os
iti

ve
 ce

lls

Ntx/Ntx Ntx/Wnt11
Treatments of BM MSCs

BIX/Wnt11 BIX+TSA/Wnt11

8

7

6

5

4

3

2

1

0

⁎⁎⁎

⁎⁎⁎
⁎⁎

⁎

(e)

Figure 3: TSA coaddition with BIX01294 promotes greater responsiveness to the cardiogenic stimulating factor Wnt11. MSCs were cultured
in the absence or presence of 8μM BIX01294 plus or minus either 50 nM TSA or 1μM Npy19 for 48 hrs, prior to seven-day culture in fresh
media with or without Wnt11. (a)–(c) Real-time qPCR analysis of RNA harvested from the cultures indicates that the primary cardiac
transcription factors Nkx2.5, GATA4, and myocardin were significantly upregulated in MSCs in response to Wnt11, but only when
pretreated with BIX01294. When TSA (but not Npy19) was combined with BIX01294 during the initial 48 hr incubation period, a
significant enhancement was observed for Nkx2.5 (n = 11), GATA4 (n = 11), and myocardin (n = 8) of 4.3-, 2.6-, and 5.6-fold, respectively.
Statistical significance is shown for comparative levels of Nkx2.5, GATA4, or myocardin expression displayed by Wnt11 stimulated
cultures pretreated with either TSA plus BIX01294 or BIX01294, and nonpretreatment controls (∗p < 0 05; ∗∗p < 0 01). (d) Identification
of individual sarcomeric α-actinin positive cells (arrows) by immunofluorescent staining indicated that cardiac protein expression within
the MSC cultures was in accordance to the gene expression patterns, as shown in this panel for cultures treated sequentially with TSA plus
BIX01294 followed by Wnt11. Scale bar = 25μm. (e) Tabulation of α-actinin positive cells within these cultures demonstrated that
BIX01294 or BIX01294+TSA pretreatments significantly increased the number of cardiac protein expressing cells as compared to
nontreated or Wnt11 only conditions. Statistical significance is indicated by ∗p < 0 05; ∗∗p < 0 01; ∗∗∗p < 0 001.
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transcription factors Nkx2.5, GATA4, and myocardin in
response to Wnt11 (Figures 3(a), 3(b), and 3(c)). No
enhancement over this BIX01294-mediated response was
observed when the cultures were supplemented during the
48 hr pretreatment phase with other iPSC helper molecules
(e.g., the TGFβ inhibitor Npy19)—except when TSA was
supplied. Again, BIX01294 and TSA displayed synergy, as
this combined pretreatment allowed Wnt11 to generate
levels of Nkx2.5, GATA4, and myocardin that were 4.3-,
2.6-, and 5.6-fold greater than those produced by cultures
that were pretreated with BIX01294 alone (Figures 3(a),
3(b), and 3(c)).

We next examined the extent that BIX01294 and TSA
enhanced the prevalence of cardiac phenotypes within the
MSC-derived cultures. For these experiments, MSCs were
plated at densities that allowed individual cardiac protein
positive cells to be definitively identified within the cultures.
MSCs were sequentially incubated in the absence or presence
of BIX01294±TSA for 2 days and Wnt11 for 7 days, prior to
immunofluorescent staining for sarcomeric α-actinin

(Figure 3(d)). Tabulation of immunofluorescent-labeled cells
(Figure 3(e)) indicated that Wnt11 in combination with
BIX01294 or BIX01294+TSA pretreatments exhibited α-acti-
nin staining in 5.46 and 5.57% of cells, respectively, within
the cultures as compared to cells cultured with Wnt11 only
(1.87%) or nontreated conditions (0.32%). MSCs plated at
higher densities generated clusters of α-actinin-positive cells
in response to Wnt11 when pre-exposed to BIX01294
(Figure 4(a)) or BIX01294+TSA (Figures 4(b) and 4(c)).
High-resolution views of these α-actinin-positive cells within
these cultures indicated that this sarcomeric protein was
exhibited in a nonstriated pattern (Figure 4(c)). In contrast,
α-actinin-positive cell clusters were not observed if the cul-
tures were either not pretreated with BIX01294±TSA
(Figure 4(d)), or if Wnt11 was absent (Figure 4(e)) or
replaced with the noncardiogenic growth factor Wnt3a
(Figure 4(f)) following pretreatment with BIX01294±TSA.
Further indications that MSCs could be converted to cardiac
phenotypes was provided by their expression of the sarco-
meric protein titin when stimulated with Wnt11 after

(a) (b) (c)

(d) (e) (f)

Figure 4: Expression of sarcomeric α-actinin by MSCs cultured under various conditions. MSCs were immunostained for α-actinin (green)
and DAPI counterstained (blue), after incubation in the presence or absence of BIX01294 and/or TSA for 2 days and Wnt treatments for 7
days. MSCs treated with Wnt11 following exposure to (a) BIX01294 or (b), (c) BIX01294+TSA exhibited clusters of α-actinin-positive cells.
(c) A higher magnification view of the boxed area in the previous panel indicates that the high intensity α-actinin staining was not yet
exhibited in a striated pattern. In contrast, α-actinin staining was not observed either if the cultures were (d) not pretreated with
BIX01294±TSA or if pretreatment with BIX01294 and TSA was followed by either (e) the absence of Wnt11 or (f) treatment with Wnt3a
instead of Wnt11. Scale bar = 25μm.
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exposure to BIX01294 (Figure 5(a)) or BIX01294+TSA
(Figure 5(b)). Consistent with these results were experimental
data indicating that BIX01294 pretreatment enabled MSCs
to undergo cardiac differentiation and show evidence of a
striated muscle phenotype when cocultured with primary
neonatal rat cardiomyocytes (Figures 5(c), 5(d), 5(e),
and 5(f)).

3.3. Mechanisms of BIX01294 and TSA Action on Bone
Marrow MSCs. To begin to decipher how BIX01294 and
TSA synergistically upregulated cardiac gene expression, we
looked at the global methylation and acetylation patterns of
histone H3 (Figure 6). Incubation of MSCs in BIX01294
reduced methylation of histone H3 at both lysine 9 (H3K9)
and lysine 27 (H3K27). The coaddition of TSA did not
affect this BIX01294-mediated decrease in methylation at
H3K9 and H3K27, nor did the presence of TSA by itself

reduce histone H3 methylation at either lysine residue
(Figures 6(a) and 6(b)). As expected, acetylation at H3K9
and H3K27 was enhanced by TSA, but not by BIX01294.
When TSA and BIX01294 were added together, the
acetylation at lysine 9 was similar to the levels obtained
when TSA was added alone (Figure 6(c)). Yet, the acetylation
pattern at lysine 27 had a different result, as coaddition
of BIX01294 synergistically enhanced the TSA-mediated
acetylation at H3K27 (Figure 6(d)), which is a marker
of active enhancers that are enriched during cardiac
development [40–43].

As a second element in elucidating the regulatory mech-
anism of BIX01294 and TSA enhancement of MSC cardiac
competency, we investigated how these reagents affected
the intracellular expression of β-catenin, which is a down-
stream target for Wnt signal transduction. Again, bone mar-
row MSCs were subjected to a two-part culture protocol with

(a) (b) (c)

(d) (e) (f)

Figure 5: Cardiac differentiation of MSCs following treatment with BIX01294±TSA. (a), (b) MSCs were immunostained for titin (green) and
DAPI counterstained (blue), after 7 day incubation with Wnt11, following pretreatment with (a) BIX01294 or (b) BIX01294+TSA. (c)–(f)
Coculture of CFSE vital dye-labeled MSCs (red) with neonatal rat cardiomyocytes that were immunostained for α-actinin (green) and
DAPI counterstained (blue). (c) MSCs that were nontreated prior to coincubation with rat myocytes did not display cardiac phenotypes,
as indicated by cells that exhibited only the red vital dye (arrowheads). (d)–(f) In contrast, MSCs pretreated with BIX01294 label showed
evidence of cardiac differentiation when in proximity to the rat myocytes. (d) While the majority of MSCs in these later cultures remained
nondifferentiated, as indicated by the sole display of the red vital dye (arrowheads), individual BIX01294-treated MSCs were observed that
exhibited dual red and green fluorescence (arrow). (e), (f) Higher-magnification view of this coculture shown in the successive panels for
both the vital dye fluorescence and actinin immunostaining or vital dye-label only indicates that the red and green colabeled MSC-derived
cell (arrow) exhibits α-actinin in a striated pattern. Scale bar = 25μm.
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an initial treatment in the absence or presence of BIX01294
plus or minus TSA for 2 days. Subsequently, these MSC cul-
tures were incubated for two additional days with or without
Wnt11, prior to their fixation and immunofluorescent stain-
ing for β-catenin (Figures 7 and 8). Cultures of nontreated
MSCs exhibited large numbers of cells that exhibited
high-intensity β-catenin staining (Figure 7(a)). Prevalence
of β-catenin-positive cells was not overtly diminished by
treatment with BIX01294 (Figure 7(b)). Cultures that were
exposed to Wnt11 without prior exposure to BIX01294,
also exhibited prominent β-catenin staining (Figure 7(c)).
When viewed at higher magnification (Figures 7(d), 7(e),
and 7(f)), the cells that displayed high β-catenin immuno-
reactivity appeared to exhibit this protein within the cyto-
plasm, perinuclear region, and nuclei (Figures 7(e) and
7(f)). However, the presence of the brightly stained β-
catenin-positive cells was eliminated when MSCs were
sequentially exposed to BIX01294 and Wnt11 (Figure 8(a)).
In contrast, pretreatment with TSA, prior to Wnt11 expo-
sure, did not cause a reduction in β-catenin immunoreac-
tivity (Figure 8(b)). But when TSA was combined with
BIX01294, subsequent treatment with Wnt11 prevented

the appearance of brightly stained β-catenin-positive cells
(Figure 8(c)). In consideration of the known differential
properties of Wnt11 and Wnt3a, it was not surprising that
the prevalence of β-catenin-positive MSCs increased when
cultures were treated with Wnt3a without prior exposure
to BIX01294 (Figure 8(d)). What was surprising, however,
was the obvious decrease in β-catenin immunoreactivity
when the cultures were first treated with BIX01294 prior
to Wnt3a exposure (Figure 8(e)). This effect of BIX01294
pretreatments in reducing β-catenin expression was verified
statistically by tallying the numbers of immunoreactive cells
that were present under these various conditions. For
cultures that were not pretreated with BIX01294, 7.5% and
36% of the cells, respectively, exhibited high β-catenin
immunoreactivity in response toWnt11 or Wnt3a. However,
cultures treated with either Wnt protein saw a drop in the
prevalence of these immunolabeled cells to <1%, when previ-
ously exposed to BIX01294. The implications of these find-
ings in regard to crosstalk between epigenetic and WNT
regulation of stem cell specification are discussed below.

4. Discussion

Bone marrow has long attracted the attention of research sci-
entists and clinicians for use in cardiac repair because it pro-
vides an accessible and abundant source of stem cells [6–11].
However, the initial hope that bone marrow stem cells would
provide an effective treatment for cardiac disease has yet to
come to fruition. The development of technologies for con-
verting adult somatic cells to iPSCs, which in turn can give
rise to cardiomyocytes, has indicated that noncardiac tissues
may serve as a resource of cells that potentially could be used
for repairing a diseased or damaged heart [44–47]. An obsta-
cle in using iPSCs for stem cell therapy is that pluripotent
cells possess a proliferative and differentiation potential that
is difficult to control and can lead to tumorigenesis [48, 49].
Even when iPSCs are used to generate nonpluripotent pro-
genitor of differentiated cells, or if somatic cells are coaxed
to dedifferentiate to a pluripotent state and then subsequently
differentiate in the same dish [44], the presence of contami-
nating pluripotent cells within the final cell preparation
may potentially carry a risk of tumor formation or inappro-
priate tissue remodeling. An alternative approach for pro-
ducing cardiopotent stem cells from accessible adult tissues
is to harvest their stem cells and expose them to treatments
that would broaden their differential potential, but without
making the cells pluripotent [13, 14]. It is this approach that
we have pursued in screening pharmacological reagents,
which had been utilized as components of treatments that
are able to contribute to generating iPSCs [29–32], for their
utility in expanding the differentiation potential of bone mar-
row MSCs.

The present study is a continuation of our previous
efforts into developing protocols for converting MSCs to a
cardiac competent phenotype [13, 14]. The hypothesis
underlying this research is based on the shared mesodermal
lineage of bone marrow and heart. Accordingly, if the differ-
entiation potential of bone marrow MSCs could be broad-
ened, while stopping short of making the cells pluripotent,

H3K9me2

(a)

(b)

(c)

(d)

(e)

17 kD

BIXO1294 – – + +

– + – +TSA

H3K27me217 kD

H3K9 acetyl17 kD

H3K27 acetyl17 kD

Total H317 kD

Figure 6: Modification of histone H3 by BIX01294 and TSA.
Protein was isolated from bone marrow MSCs that were cultured
in the absence or presence of BIX01294 and/or TSA. Following
electrophoretic separation, the protein preparations were blotted
with antibodies that recognized either total or specifically modified
histone H3. (a), (b) Immunoblots of total protein demonstrated
that methylation of H3K9 and H3K27 was reduced by G9a
HMTase inhibition by BIX01294. (c) Treatment with the HDAC
inhibitor TSA led to increased acetylation at H3K9. (d) While
culturing MSCs with TSA also enhanced H3K27 acetylation, this
increase was slight. However, the coaddition of BIX01294 to TSA
synergistically stimulated the acetylation of this lysine residue. (e)
Blotting for total histone H3 as control verified that each cellular
sample consisted of equal amounts of protein.
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these cells could be converted to cardiocompetent, panmeso-
dermal cells. Our previous investigations have demonstrated
that the G9a HMTase inhibitor BIX01294 will cause these
cells to exhibit the early mesodermal, precardiac markers
Mesp1 and brachyury, without any corresponding enhance-
ment of either endodermal, ectodermal, or pluripotency
markers [13]. Furthermore, we showed that BIX01294 treat-
ments allowed bone marrow cells to express cardiac genes
and proteins in response to the cardiogenic stimulus Wnt11
[13, 14]. Here, we report our results with a secondary screen
that demonstrated that coaddition of the HDAC inhibitor
TSA with BIX01294 increased the expression of Mesp1 and
brachyury, 5.6- and 7.2-fold, respectively, over levels induced
by BIX01294 exposure alone. Additionally, we have shown
that the TSA acted synergistically with BIX01294 to upregu-
late GATA4, Nkx2.5, and myocardin in response to Wnt11.
Thus, incubation of MSCs with Wnt11, following exposure
to both BIX01294 and TSA, resulted in GATA4, Nkx2.5,
and myocardin expression levels that were 2.6- to 5.6-fold

greater than those of cultures pretreated with BIX01294
only—which was 35- to 45-fold above and beyond the levels
generated from cultures incubated with Wnt11 without any
pretreatment. Moreover, data in this report indicated that
these pharmaceutical reagents, which prevent specific modi-
fications of histone H3, significantly enhanced the ability of
Wnt11 to promote cardiac protein expression, suggesting
that the MSC cultures gave rise to cells exhibiting an imma-
ture cardiac phenotype.

BIX01294 and TSA are small molecule inhibitors of epi-
genetic modifying enzymes that, respectively, demethylate
and acetylate histone lysine residues [50–54]. The mechanis-
tic importance of these epigenetic changes in influencing
MSC gene expression and differentiation potential is indi-
cated by two findings outlined in this study, which are sum-
marized in Figures 9 and 10. The first finding, which may
explain how the coaddition of TSA boosts BIX01294-
mediated cardiac gene expression, is that these two molecules
synergistically act to upregulate H3K27 acetylation (Figures 6

(1) Nontreated
(2) Nontreated

(a)

(1) BIX01294
(2) Nontreated

(b)

(1) Nontreated
(2) WNT11

(c)

(1) Nontreated
(2) Nontreated

(d)

(1) Nontreated
(2) Nontreated

(e)

(1) Nontreated
(2) Nontreated

(f)

Figure 7: β-catenin expression within MSCs cultures. MSCs were immunostained for β-catenin (green) and nuclear counterstained with
DAPI (blue), following a two-step protocol that involved the culturing of cells (1) for 2 days in the absence or presence of BIX01294 and
then (2) for an additional 2 days with or without Wnt11. (a) MSCs cultured without treatment contained many brightly stained β-
catenin-positive cells. (b) Cultures treated with BIX01294 without Wnt11 or (c) with Wnt11 without pretreatment also displayed many
brightly stained β-catenin-positive cells. (d)–(f) Higher magnification views of nontreated MSCs revealed the pattern of β-catenin
fluorescence within these cells. (e), (f) High resolution of brightly stained β-catenin-positive cells shown in successive panels for β-catenin
immunoreactivity only or both β-catenin and DAPI fluorescence, indicated that β-catenin protein is displayed within the cytoplasm,
perinuclear region (arrow), and nucleus (arrow). Scale bar = 20μm.
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and 9). The epigenetic repercussions of BIX01294 and TSA
treatments share similarities, as their effect on histone H3
demethylation and acetylation relaxes the structure of chro-
matin that then promotes gene transcription [55, 56]. Yet,
one of the differences between BIX01294 and TSA is that
the former is a much more selective inhibitor. BIX01294
has a narrow target range, as its inhibitory activity is specific
for the related histone methyltransferases G9a and G9a-
related protein (GLP) [50, 52, 57]. Both enzymes act on the
same lysine residues of histone H3 and exert their function
in vivo by forming homomeric or heteromeric complexes.
In contrast, TSA is a broad-spectrum inhibitor that affects
all class I, II, and IV HDACs [51, 54, 58]. These latter
enzymes catalyze the deacetylation of lysine residues within
the aminoterminal tail of core histone proteins H2A, H2B,
H3, and H4. In addition, each HDAC protein has multiple
nonhistone targets, which may account for the functional dif-
ferences among the various HDAC proteins and complicate

the analysis of HDAC involvement in epigenetic regulation.
It is unclear if improved outcomes in promoting a cardiac
phenotype could be obtained if more selective HDAC inhib-
itors were employed. In that regard, experiments using
MOCPAC or BATCP—which are preferential inhibitors of
class I or II HDACs, respectively [59]—generated results
similar to TSA in enhancing BIX01294 stimulation of precar-
diac gene expression (not shown). This latter observation is
supportive of the interpretation that the TSA effect on MSC
cultures is due to its influence on histone modification.
Moreover, the synergism between BIX01294 and TSA in both
promoting cardiac gene expression and H3K27 acetylation
correlates with observations in the early embryo that have
shown that acetylated H3K27 is a key marker of cardiomyo-
cyte differentiation and heart development [40–43].

The second finding is that BIX01294 pre-exposure acts
synergistically with Wnt11 to downregulate cellular β-
catenin levels. Wnts play a multifaceted role during the

(1) BIX01294
(2) WNT11

(a)

(1) TSA
(2) WNT11

(b)

(1) BIX01294+TSA
(2) WNT11
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(2) WNT3A

(d)
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(2) WNT3A
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Figure 8: Differential β-catenin immunoreactivity by MSCs cultured under various conditions. MSCs were fluorescently labeled with β-
catenin antibody (green) and DAPI nuclear stain (blue), after culturing cells for 2 days in the absence or presence of BIX01294 and/or
TSA and for an additional 2 days with or without Wnt11 or Wnt3a. (a) MSCs cultured in sequence with BIX01294 and Wnt11 were
deficient in cells that brightly stained for β-catenin. In contrast, (b) cultures treated sequentially with TSA and Wnt11 still displayed
numerous brightly stained β-catenin-positive cells. (c) However, MSCs pretreated with both BIX01294 and TSA, followed by Wnt11
exposure, no longer displayed cells with high-intensity β-catenin immunoreactivity. (d) MSCs treated with Wnt3a showed a marked
increase in β-catenin-positive cells. (e) Yet, this high-intensity β-catenin immunoreactivity disappeared when MSCs were first exposed to
BIX01294 prior to treatment with Wnt3a. Scale bar = 50 μm. (f) Tabulation of immunofluorescent cells under these various conditions
verified that BIX01294 pretreatments decreased the number of brightly stained β-catenin-positive cells that were derived from the
cultures. Statistical significance is indicated by ∗∗p < 0 01.
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development of the heart [21, 23, 27, 60, 61]. Wnt11 is a pri-
mary stimulus for heart development and whose expression
correlates with a corresponding inhibition of β-catenin sig-
naling in the early mesoderm. After the initial formation of

the primary heart tube, localized and temporal expression
of both canonical and noncanonical Wnts regulate the
remodeling and growth of the heart. A hallmark of canonical
Wnt signal transduction is that it promotes the stability and
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Figure 9: Model for BIX01294 and TSA mediated induction of MSC cardiocompetency. (a) G9a HMTase and HDAC activity in MSCs
maintains precardiac genes in a closed chromatin configuration and thus are transcriptionally silent. BIX01294 treatment inhibits G9a
HMTase methylation of histone H3 lysine residues H3K9 and H3K27 within genes associated with precardiac progenitors, such as Mesp1
and brachyury, thus allowing these genes to be expressed and conferring MSCs with a precardiac cell potential. (b) While inhibition of
HDACs by TSA is not sufficient to promote Mesp1 or brachyury expression from bone marrow MSCs, this drug acts synergistically
(asterisk) with BIX01294 in the transcriptional activation of precardiac gene expression and acquisition of a cardiac competent cell
phenotype. We hypothesize that this enhanced precardiac gene expression and cardiocompetency supported by the coaddition of these
two drugs is due to their cooperative enhancement of H3K27 acetylation (asterisks), which is a known epigenetic indicator of cardiac gene
expression in the early embryo.
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activity of β-catenin [22–26]. Noncanonical Wnts, such as
Wnt11, are thought to act in opposition to canonical Wnt
signaling, in part by preventing the intercellular accumula-
tion of β-catenin [62–64]. As described in this study, MSC
cultures contained large numbers of brightly stained β-
catenin-positive cells. This high-intensity staining for β-
catenin persisted in the cultures regardless of whether
BIX01294, TSA, or Wnt11 was present. Consistent with the
current understanding of Wnt signal transduction, the prev-
alence of brightly stained β-catenin-positive cells increased
further when MSCs cultures were treated with the canonical
Wnt protein Wnt3a. Surprisingly, there was a significant
reduction in the number of cells exhibiting high-intensity
β-catenin immunoreactivity when cultures were pretreated
with BIX01294 and then subsequently exposed to Wnts—re-
gardless of whether the stimulus was a canonical (Wnt3a) or
noncanonical (Wnt11) Wnt. Thus, an important signal
transduction outcome of Wnt signaling, in regard to β-
catenin stability, appears to be influenced by the activity of
a key epigenetic modulation enzyme G9a HMTase.

The important outcome of our studies is that pretreat-
ment of MSCs with BIX01294±TSA significantly enhanced
cardiac gene and protein expression. Although, there
appeared to be a correspondence between enhanced

cardiogenesis and decreased β-catenin, we are unable pres-
ently to determine whether the cells whose β-catenin
expression was downregulated in response to BIX01294
plus Wnt11 are the cells that become cardiac competent
in response to these treatments. However, what we can
say is that the coincidence of downregulated β-catenin
expression and increased cardiocompetence within the cul-
tures (summarized in Figure 10) corresponds to the occur-
rence of these events during cardiac specification in the
early embryo. Yet, the observation that BIX01294 pretreat-
ment caused a reduction in β-catenin immunoreactivity,
but not cardiac protein expression in response to Wnt3a,
suggests that there are additional transduction events initi-
ated by Wnt11 for stimulating cardiac differentiation.

In summary, we report that coaddition of the HDAC
inhibitor TSA synergistically enhances the ability of the
G9a HMTase inhibitor BIX01294 to promote bone marrow
MSC cardiocompetency. This observation was demonstrated
both by the elevated expression of the embryonic precardiac
markers Mesp1 and brachyury and increases in cardiac
gene and protein expression following subsequent stimula-
tion of the cultures with Wnt11. The cardiac protein-
positive cells described in this report suggest that MSCs
may have differentiated to an immature myocardial
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Figure 10: Model of epigenetic and Wnt regulation of cardiogenesis. Results presented in this study indicate that BIX01294 induces a
precardiac phenotype from MSCs and acts cooperatively with Wnt11 in promoting both cardiac differentiation and inhibiting the
intracellular accumulation of β-catenin. Inhibition of β-catenin accumulation by cells of the early mesoderm has been postulated to be a
key element in the initiation of heart formation. Thus, we hypothesize that the BIX01294 prerequisite for generating cardiac phenotypes
from MSCs is twofold: (1) to promote gene expression that is in accordance with a precardiac phenotype and (2) cooperatively allow
Wnt11 to reduce cellular β-catenin levels, thereby initiating cardiac differentiation of the treated MSCs.
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phenotype. Pretreatment with BIX01294 allowed for
Wnt11-mediated reduction of internal β-catenin expres-
sion and coaddition of TSA with BIX01294 synergistically
enhanced H3K27 acetylation—which are both known reg-
ulatory events associated with cardiac specification and
heart formation in the early embryo. Collectively, these
data provide supportive evidence that pharmacological
regulation of stem cell phenotype and differentiation
potential has utility as an experimental approach for gen-
erating cellular tools for the use in cardiac repair.
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