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Abstract: Cervical cancer develops through persistent infection with high-risk human papilloma
virus (hrHPV) and is a leading cause of death among women worldwide and in the United States.
Periodic surveillance through hrHPV and Pap smear-based testing has remarkably reduced cervical
cancer incidence worldwide and in the USA. However, considerable discordance in the occurrence
and outcome of cervical cancer in various populations exists. Lack of adequate health insurance
appears to act as a major socioeconomic burden for obtaining cervical cancer preventive screening in a
timely manner, which results in disparate cervical cancer incidence. On the other hand, cervical cancer
is aggressive and often detected in advanced stages, including African American and Hispanic/Latina
women. In this context, our knowledge of the underlying molecular mechanism and genetic basis
behind the disparate cervical cancer outcome is limited. In this review, we shed light on our current
understanding and knowledge of racially disparate outcomes in cervical cancer.
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1. Introduction

1.1. Cervical Cancer Epidemiology and Risk Factors

Cervical cancer (CC) is one of the leading causes of death among women worldwide, with
approximately 530,000 new cases and 275,000 deaths annually [1–3]. In the United States, it was
estimated that 13,240 new cases of CC would be diagnosed in 2018 with an estimated death of
4170 women [4]. The major risk factors associated with CC development include high-risk human
papilloma virus (hrHPV) infection, age, smoking, childbirth, use of oral contraception, and diet [1,3,5–8].
Among these various risk factors, persistent infection with hrHPV appears to be the major driver of
CC development [2,3,5,8]. In the early stages, hrHPV-associated CC development is asymptomatic.
The hrHPV may remain undetected if not screened in a timely manner and manifest oncogenic
transformation leading to CC development [8,9].

1.2. Cervical Cancer Health Disparities

Although overall CC rates have decreased in the USA, significant racial health disparities exist,
thus posing a challenge towards disease management [10–13]. The frequency of CC incidence remains
higher among African American women compared to Caucasian American women [10,12,14–16].
Compared to Caucasian American women, African American women have a 60% higher incidence of
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CC, with increased risk of late stage diagnosis [16]. Between the years 2006 and 2010, the CC incidence
in African American women was 9 per 100,000 compared to 7.2 per 100,000 in Caucasian American
women [17]. The mortality rate from CC in African American women is twice that in Caucasian
American women [16].

The Hispanic/Latina population is a very rapidly growing minority population in the USA, and it
is estimated that by 2050, 30% of the US population will be Hispanic/Latina [17,18]. Hispanic/Latina
women have the highest rate of CC, with the worst progression and a high mortality rate compared
to other populations. The Hispanic/Latina women are often diagnosed with advanced stage CC and
experience high mortality rates (9.5/100,000) compared to non-Hispanic/Latina women (7.5/100,000),
with mortality rates that are also a little higher compared to African American women [17]. Notably,
the disparate outcome in CC among African American and Hispanic/Latina women compared to
the Caucasian American is unlikely to be due to the differences in screening considering the similar
compliance rate in the various groups [17]. Thus, understanding the molecular biological basis of the
disparate outcome in various populations is necessary.

1.3. Cervical Cancer Biology and Progression with HPV

Cervical carcinoma arises from normal cervical epithelium through the progressive development
of low grade and high grade cervical intraepithelial lesions (CINs), where hrHPV infection plays a
major causative role (Figure 1). The hrHPV infection into the cervical epithelium results in host genome
alterations, leading to the silencing of various tumor-suppressor factors on one hand, and inducing
aberrant functioning of various tumor-promoting factors on the other. The imbalance and instability
caused by various hrHPV-derived oncogenic factors into the host genome of the cervical epithelial cells
drive neoplastic progression over the course of years. However, the severity of the outcomes towards
CC development depends on the specific subtypes of the HPV. To date, 216 subtypes of HPV have been
identified and categorized as low, medium, and high-risk types [19]. While the low and medium-risk
subtypes bear low potential towards malignant transformation, the high-risk subtypes, particularly type
16 and 18, are the major promoters of neoplastic transformation. The major oncoproteins E5, E6, and E7
encoded by the HPV genome are the major drivers of oncogenesis in the normal cervical epithelium [20]
and disrupt the normal functioning of the major histocompatibility complex I (MHC class I), p53 and Rb,
Notch1, Wnt, MAPK, mTOR, and STAT-associated pathways, which are central players controlling normal
cellular growth, differentiation, and immune function (Figure 2) [5,21]. Enhanced telomerase activity is
known to be associated with epithelial cell immortalization and tumorigenesis, and hrHPV-E6 is known to
activate telomerase activity in the cervical epithelium [5,21]. Thus, the oncogenic E6 and E7 components
of the HPV genome have the ability to reprogram the host genome, proteome, and intracellular signaling
network in the cervical epithelial niche in order to sustain and promote viral oncogenesis.
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Figure 1. Cervical cancer development, prevention, and treatment. Invasive cervical cancer development
from normal to progressive cervical intraepithelial neoplasia (CIN) through high-risk human papilloma
virus (hrHPV) oncogenesis and host genome alterations. Available interventions in preventing and treating
cervical cancer have also been shown. LEEP: loop electrosurgical excision procedure; RNR: ribonucleotide
reductase; PARP: Poly (adenosine diphosphate [ADP]-ribose) polymerase.
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Figure 2. Molecular pathogenesis of HPV-associated cervical cancer. Multiple nuclear and mitochondrial
genetic alteration pathways leading to cervical cancer progression and racial health disparities. E6, E7:
oncogenic HPV molecules. TSG: tumor suppressor gene; ONCG: oncogene.

1.4. Nuclear Genetic Alterations in Cervical Cancer and Racial Disparities: How Far are We?

To date, several molecular alterations have been documented in CC. Recent studies have identified
several oncogenic factors involved in promoting CC progression, including HMGA1, BAP31, KLF5,
Fibulin 3, mirRNA-196a, miR-146b-3p, and various long non-coding RNAs (Figure 3) [22–28].
On the other hand, the CC suppressor role of miR-27a, miR-424, mir140-5p, and mir-328 were
also demonstrated [29–32]. In parallel, high throughput genome sequencing of progressive CC
specimens from 120 women identified novel somatic mutations in FAT1, MLL3, MLL2, and FADD
(Figure 3) [32]. In addition, this study identified HPV integration breakpoints in 97.8% of CCs, 70.5%
of cervical intraepithelial neoplasias (CINs), and 42.8% of HPV+ normal cervical epithelium [32].
In another interesting study, exon sequencing of 409 cancer-related genes in radiation-sensitive
and radiation-refractory recurrent tumors identified activating PIK3CA and KRAS, inactivating
SMAD4 mutations in the primary tumors and mutations in KMT2A, TET1, and NLRP1 in the
radiotherapy-resistant tumors [33]. In addition to these molecular alterations, chromosomal
amplifications in chr.1q, 3q, 5p, 8q, and 3q26 were reported in CC (Figure 3) [6,34–36]. Of note,
the 3q26 locus is linked to the telomerase gene, which is more frequently found to be altered in CIN
lesions. A comprehensive analysis of the CC genome was also carried out through The Cancer genome
Atlas (TCGA) network [37], which revealed considerable mutations in APOBEC, SHKBP1, ERBB3,
CASP8, HLA-A, and TGFBR2. In addition, amplifications in closely located PD-L1 (9p24.1) and PD-L2
(9p24.1) molecules were also uncovered. Notably, the integration of high-risk HPV-18 and HPV-16 was
detected in 100% and 76% cases, respectively [37]. All of these studies identified various pathways
associated with CC progression. However, a connecting link between these alterations and aggressive
outcome in CC health disparities is yet to be established.
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Figure 3. Chromosomal and molecular aberrations driving human papilloma virus-associated cervical
cancer initiation, development, and progression. Frequent chromosomal copy number loss or gain
along with activation and inactivation of various genes through genetic mutation, methylation, or
miRNA/LNC-RNA action in cervical cancer. Chr.: Chromosome; miRNA: micro-RNA; LNC-RNA: long
non-coding RNA; mtDNA: mitochondrial DNA.

1.5. Epigenetic Alterations in CC in Various Disparate Populations

Inactivation of tumor suppressor genes (TSGs), often achieved through promoter hypermethylation
(epigenetic changes), could initiate preneoplastic and neoplastic changes in cancers including CC
through progressive cervical intraepithelial neoplasia development. Epigenetic alterations are emerging
as the critical determinants of cell fate in CC [38,39]. Classically, an epigenetic change will result in an
addition of a methyl group on the 5-position of the cytosine (5mC) base in a CpG dinucleotide, which will
eventually be oxidized into 5-hydroxymethylcytosine (5-hmc), a more stable indicator of methylation
state [40]. Accumulation of these methylation signatures in CpG-rich regions around the transcriptional
start site (TSS) of various genes leads to chromatin organization, which alters transcriptional activity in
a locus-specific manner [40]. Considerable extents of promoter hypermethylation leading to reduced
function in candidate TSGs including P16, RASSF1, CADM1, MAL1, DLX4, and SIM1 were detected in
CC and CIN lesions [38,39,41–46] (Figure 3). Utilizing pyrosequencing and targeted next generation
bisulfite sequencing, a recent study of 167 liquid-based cytology specimens identified a three-gene
methylation signature including SOX1, DCC, and EPB41L3 in CC subjects [47] (Figure 3). Employing
unbiased genome-wide DNA methylation profiling and comprehensive stepwise verification and
validation studies using in vitro and patient-derived samples, another study identified three promising
methylation markers, GHSR, SST, and ZIC1, associated with a chromosome 3q gain for the detection of
cervical preneoplasia [48]. Other than epigenetic alterations, earlier studies have also demonstrated
frequent loss of chromosomal regions 2q, 3p, 4p, 5q, 6q, 11q, 13q, and 18q in CC (Figure 3) [6,34–36].
Thus, emerging studies have identified various molecular aberrations that could be associated with CC
development and progression and may potentially be useful in biomarker and therapeutic development.
However, validation of these molecules for early diagnostic/prognostic and therapeutic interventions
is necessary through comprehensive analyses in various laboratories using large cohorts of clinical
specimens. In addition, their utility in the context of CC health racial disparities should also be tested.
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1.6. Mitochondrial Genomic Alterations in CC

Reprogramming of mitochondrial (mt) dynamics and function are a hallmark of cancer, and
alterations in mtDNA and their functional role in promoting tumor growth and metastases have been
documented [49–51]. A limited number of studies have examined mtDNA alterations in CC. One
study had identified numerous novel mtDNA sequence variants encompassing the non-coding D-loop
as well as tRNA and rRNA genes in CC samples compared to the normal controls [52]. MtDNA
sequence variants were also detected in 59% of the coding regions, with increased distribution in
ND5 (respiratory complex I). A significant association between high mtDNA mutations and decreased
mtDNA copy number was evident in CC [52]. Another study identified 62 sequence variants in the
D-loop region of mtDNA in CC patients [53]. As opposed to the study described above, this group
observed an increased mtDNA copy number in progressive cervical cancer samples compared to
the corresponding normal controls [53]. In addition, an increase in reactive oxygen species (ROS)
generation in CC was also noted. Other than CC, the evaluation of preneoplasic cervical lesions
identified increasing mtDNA D-loop sequence variants in low grade squamous intraepithelial lesion
(LGSIL, 17%) and high grade squamous intraepithelial lesion (HGSIL, 29%), whereas no mutations
were detectable in the normal tissues and tissues with atypical squamous cells of undetermined
significance (ASCUS) cytology [54]. Further, D-loop mtDNA mutations were detected in 67% of the
CC samples [54]. This study demonstrated a progressive abundance of mtDNA alterations during CC
progression from preneoplastic to neoplastic progression.

1.7. Genetic Polymorphism and CC Risk

Genetic polymorphisms in various genes have been linked to the risk of development of various
cancers [55]. In recent studies, polymorphic variants of various human leukocyte antigen (HLA)
molecules have been linked to the development of CC [55]. Through a meta-analysis of existing data on
CC, a recent study demonstrated that MspI and Ile462Val polymorphisms in CYP1A1 gene are potential
risk factors for CC development [56]. Another study suggested a potential association between MBL2
gene exon1 polymorphisms and an increased risk of CC development [57]. Interestingly, studies of
various populations in African countries, including South Africa, Zimbabwe, Morocco, Sudan, Tunisia,
and Senegal, identified an association between CC risk and polymorphisms in TGFBT10C, TGFBc509T,
HLADRB1, CCR2V6L, IL-10-1082G/A, and FasR-1377G genes [20]. However, studies are warranted to
establish the connecting link between genetic polymorphisms and risk of CC in African American or
Hispanic/Latina women in the USA.

1.8. Early Cervical Cancer Detection, Prevention, and Treatment

1.8.1. Human Papilloma Virus Detection and Vaccination

The onset and development of CC is preventable through regular screening strategies using hrHPV,
Pap, and colposcopy alone or in combination [1,5,7,10,11,14,18,58–61]. These tests in combination can
simultaneously detect hrHPV integration and associated preneoplastic changes in the normal cervical
epithelium at the very early stages. For the hrHPV screening, the Food and Drug Administration (FDA)
approved cobas HPV testing [62], commonly used for women aged 25 and older. This test detects HPV
types 16, 18, and 26 and additional hrHPV types. Prophylactic HPV vaccinations appear to be best
choice to prevent the onset of CC. Two doses for routine HPV vaccination are now recommended for
females and males aged 9–14 [63,64]. These vaccines (for example, Cervarix) are used against hrHPV
subtypes 16 and 18 in the majority of cases [64]. The quadrivalent vaccine against HPV-6, 11, 16, and
18 is Gardasil; the novel nanovalent one is known as Gardasil 9, which targets HPV-6, 11, 16, 18, 31, 33,
45, 52, and 58 [64–66]. Of note, HPV vaccines do not offer protection for individuals with existing and
stable infections. Moreover, these vaccines cannot protect against all HPV subtypes. Thus, women
should be screened periodically for CC detection and follow specific and recommended guidelines.
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1.8.2. Pap Testing

Pap tests are liquid-based and utilize either ThinPrep or SurePath (BD Pharmingen, San Jose, CA,
USA) systems and are evaluated by relevant pathologists following the guidelines of the Bethesda
reporting system (BRS) [9]. Abnormalities in squamous and glandular cells are considered separately
in the BRS. Atypical squamous cells (ASCs) are the most common abnormal finding in Pap tests,
which is further divided into ASC-US and ASC-H [67]. The first category refers to atypical squamous
cells of undetermined significance (ASC-US). These squamous cells do not appear completely normal,
but there is uncertainty about the nature of the cellular changes, which could be related to hrHPV
infection or other factors. The second category refers to atypical squamous cells, with a possibility of
a high-grade squamous intraepithelial lesion (ASC-H). Like ASC-US, these cells also do not appear
normal but could be at higher risk of being preneoplastic compared with ASC-US lesions. On the other
hand, cells harboring mild dysplastic changes in the cervical epithelium caused due to HPV integration
are regarded as low-grade squamous intraepithelial lesions (LGSILs). The LGSILs are also known as
grade 1 cervical intraepithelial neoplasia (CIN1, Figure 1). The HPV-integrated cervical epithelial cells
with more pronounced changes compared to CINI are regarded as high-grade squamous intraepithelial
lesions (HGSILs) or CIN2, CIN2/3, or CIN3 depending on the degree of severity of the pathologic
changes. The HGSILs are more likely to progress to carcinoma in situ (CIS) or CC if left untreated.

1.8.3. Colposcopic Testing

Colposcopy is generally performed using illumination and magnification after applying 5%
acetic acid for women with abnormal pap/HPV outcomes [10]. In addition to cervical biopsies,
endocervical curettages are also performed in certain clinical situations, including an unsatisfactory
colposcopy following low-grade intraepithelial lesion, colposcopy evaluation of high-grade squamous
intraepithelial lesion, and evaluation of all subcategories of atypical glandular cell cytology. Women
positive for hrHPV-16 or hrHPV-18 should undergo colposcopy examination. On the contrary, women
negative for hrHPV-16 and hrHPV-18 but positive for one of the 12 other hrHPVs should undergo
a Pap test to determine whether a colposcopy is necessary. Women diagnosed with CIN-2 or more
advanced lesions would receive further treatment depending on age, pregnancy status, and fertility
situation. The treatment options include loop electrosurgical excision procedure (LEEP), cryotherapy
(low grade CINs), laser therapy, and conization (Figure 1) [9,10,17,58,68].

1.8.4. Treatment for Cervical Cancer and Therapeutic Vaccines

If not screened periodically followed by preventive treatment in the pre-cancer stages, cervical
cancer may develop eventually. In early stages of CC, surgery is the treatment choice. The standard of
care in most progressive CC involves systemic platinum-based chemotherapy and radiotherapy in
combination (Figure 1) [2,5,21,33,69]. Immunomodulatory vaccination is another choice for effectively
treating hrHPV-integrated CC subjects, which can be used alone or in combination with chemoradiation
therapy. Advaxis (ADXS11-011, Advaxis Inc., NJ, USA) is a unique immunotherapy vaccine. It is
generated in a gram-positive bacterium Listeria monocytogenes and engineered to express HPV-16-E7)
and has shown promising therapeutic efficacy [70] (Figure 1). GN-00101 is another therapeutic vaccine
harboring Mycobacterium bovis heat shock protein (Hsp65) covalently linked to an entire HPV16-E7
sequence [71,72]. This vaccine has elicited anti-tumor response and also demonstrated activity against
CIN lesions. In addition, promising outcomes from treatment of CC subjects with anti-PD1 antibodies,
ribonucleotide reductase (RNR), and Poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP)
inhibitors have been reported [73–75].
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1.9. The Road Ahead

1.9.1. Screening and Preventive Strategies to Reduce Disparate Outcome

The incidence of CC and associated mortality has been reduced appreciably with the
implementation of hrHPV and Pap test-based screening strategies. However, significant occurrence
of CC still remains a threat in certain populations, such as Hispanic/Latina and African American
women, particularly in rural communities [14,15,60,76,77]. This disproportionate burden of CC in
Hispanic/Latina and African American women may be partly attributable to a lack of adequate health
insurance, which prevents them from receiving the periodic CC preventive screening and follow
up [3,7,9,12–14,16–18,59,76,78,79]. This socioeconomic stress factor puts these women at higher risk
for CC development in their life time. Considering the high incidence, late diagnosis, and mortality
rate among the Hispanic/Latina women, a more rigorous CC screening approach should be employed.
Adequate measures and initiatives should be taken in a timely manner to screen these underserved
women to prevent CC onset.

1.9.2. The Molecular Biological Basis of CC Racial Health Disparities

Numerous studies as described above and depicted in Figures 2 and 3 have identified different
types of nuclear and mitochondrial genetic alterations in CC in general. However, the identification
and characterization of the molecular biological pathways distinctively driving aggressive outcomes
in racially disparate populations and leading to higher mortality have yet to be established. Future
studies in these directions are warranted to develop clinically applicable preventive and therapeutic
strategies for better CC management as are being developed for various other cancers in this era of
precision medicine [80–82]. With the advent of cutting-edge technologies including next-generation
deep sequencing, transcriptome, methylome, kinome, whole genome, proteome profiling, and genome
editing tools, the next decade will likely advance our knowledge in the field and lead to the development
of better management strategies to reduce the gap in CC racial health disparities.

2. Conclusions

Although decades of research have reduced overall CC incidence, not all sections of society have
equally benefitted. Indeed, certain ethnic and racial populations, particularly in rural communities,
continue to bear disproportionate burden of hrHPV infection and manifestation to CC and other
benign diseases. Multiple factors such as socioeconomic, environmental, and behavioral factors could
be associated with CC health disparities. However, emerging research suggests that molecular and
biological differences could also play a pivotal role in advanced CC outcomes in racially disparate
populations. Periodic screenings through cervical health checkups as well as Pap and HPV-based
testing, are necessary in various populations, particularly in rural communities, for CC prevention. At
the same time, genetic and epigenetic profiling and an understanding of the molecular genetic basis of
CC health in the racial disparity of outcomes is critical to ultimately eradicate CC development and
disease-associated burden worldwide and in the USA.
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