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Harnessing the landscape of microbial culture
media to predict new organism-media pairings
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Culturing microorganisms is a critical step in understanding and utilizing microbial life.
Here we map the landscape of existing culture media by extracting natural-language media
recipes into a Known Media Database (KOMODO), which includes >18,000 strain-media
combinations, >3300 media variants and compound concentrations (the entire collection of
the Leibniz Institute DSMZ repository). Using KOMODO, we show that although media
are usually tuned for individual strains using biologically common salts, trace metals and
vitamins/cofactors are the most differentiating components between defined media of strains
within a genus. We leverage KOMODO to predict new organism-media pairings using a
transitivity property (74% growth in new in vitro experiments) and a phylogeny-based
collaborative filtering tool (83% growth in new in vitro experiments and stronger growth on
predicted well-scored versus poorly scored media). These resources are integrated into a
web-based platform that predicts media given an organism’s 16S rDNA sequence, facilitating
future cultivation efforts.
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ulturing microorganisms is a classic microbiology chal-

lenge that is critical for tapping the biotechnological

potential of microbial life. For example, a recent break-
through in culturing of soil microbes enabled extraction of a new
antibiotic compound that did not incur detectable resistance
among tested pathogens, thus serving a critical need in human
health". Despite the very large time and effort spent in culturing
organisms over the last century and a half, much of the process of
developing of culture media is still strikingly similar to what it
looked before the (gen)omics era (compare, for example, refs 2-6,
from 1936, 1979, 2001, 2003 and 2012, respectively), and most
microorganisms in nature still have not been cultured (~ 99%, by
classical estimates’). Best practices for culturing new organisms
have been developed, and are embedded in guides such as
Bergey’s Manual of Systematic Bacteriology®. However, even with
these best practices, the typical procedure for culturing a new
microorganism still requires a great deal of experience and trial
and error.

In recent years, some culturing efforts, particularly for
difficult-to-culture organisms, have begun to include genome
and pathway analysis”'%, as well as high-throughput technologies
for determining microbial nutrient needs'!. Instrumental in this
work is pathway-based metabolic modelling, which encompasses
many powerful tools for interrogating the metabolic capabilities
of organisms'?>"!*,  Metagenomic sequencing technology,
meanwhile, is now enabling the amassment of huge quantities
of data about currently uncultured organisms. This confluence of
technological, computational and theoretical advances marks a
turning point and a challenge in ecological microbiology, as our
data collection abilities now far surpass our ability to culture
microbes. Integrating all of these areas will require fresh
approaches to rapidly bring new organisms into culture. A
logical starting point for this is to first catalogue the large current
set of lab media that have been painstakingly and manually
developed to date, and then to explore what insight these known
media can give into predicting successful organism-media
pairings.

Fortunately, a large collection of proven culture media exists in
the Leibniz Institute DSMZ, a German non-profit centre that
stores and disseminates microbes. The DSMZ repository (https://
www.dsmz.de/?id=441) contains around 1,300 media (as well as
many individualized variations) for around 23,000 microbial
strains, encompassing the majority of culturing media in general
use today. However, the DSMZ media are listed as recipes in non-
standardized portable document format (PDF) files from which
final compound concentrations can only be obtained via careful
reading, cross-referencing, rearrangement and integration of
strain-specific instructions. Codifying the exact nutritional
compositions of these media is an undertaking of fundamental
importance for microbiologists and systems biologists, but doing
this requires collating and standardizing the component lists in
these files, which is very tedious and a highly non-trivial task in
itself.

In this work, we have integrated and codified these media
documents into a relational database (KOMODO) that can be
accessed computationally using Structured Query Language,
enabling an analysis of broad features and trends in proven lab
media. Notably, the database we have built is an order of
magnitude larger than a previous effort to build a known media
database!®: our database contains 18,049 species, 3,335 media and
20,824 organism-media pairings, whereas the previous database
included 208 species, 461 media and 765 organism-media
pairings. Our compilation has enabled the systematic study of
the majority of growth media for the first time, revealing patterns
and principles determining whether organisms tend to grow on
media. We mine this database in the context of microbial
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phylogeny to explore which nutrients are most commonly used in
media across the tree of life, and which ones are most
differentiating between close species. Next, we develop a
phylogeny-based predictor of new organism-media pairings,
which enables successful prediction of new organism-media
pairings among cultured organisms. We provide this resource in
an online searchable database and a tool that predicts media for
any bacteria or archaea, given a 16S rDNA sequence or National
Center for Biotechnology Information (NCBI) taxon ID (the
tool can be found at: http://delta-tomcat-vm.cs.tau.ac.i:40678/
komodo/default.htm).

Results

An overview of KOMODO, the known-media database. A large
collection of media for bacteria and archaea is publically available
through the collection of strains and media at the DSMZ (https://
www.dsmz.de/?id=441), but these media are listed in non-stan-
dardized PDF files that cannot be computationally accessed.
Putting these media into a usable database form required exten-
sive and non-trivial work, parsing, merging and organizing, as
well as handling cross-references between media and submedia
compound mixtures such as ‘trace element solutions, which
could be detailed and referenced from any DSMZ medium. This
was achieved by extensive manual curation followed by an
automated pipeline to import the data, and finally several vali-
dation checks against ‘gold-standard’ data sets that were curated
semi-manually. This pipeline is depicted in the flowchart in
Supplementary Fig. 1, and is thoroughly described in the
Methods.

The result of the work is the Known Media Database
(KOMODO), a database of microbial culture media that
encompasses almost the entire DSMZ collection. The database
includes 3,335 media variants (expanded from an initial ~ 1,300
because of special instructions and substitutions), 1,324 unique
metabolic component names composing the media, 18,049
microbial strains and 20,824 media-strain pairings. The basic
structure of KOMODO is shown in Fig. 1. Components in
KOMODO were decomposed when possible into chemical names
from Model SEED, a large, consistent systems biology and
genome annotation database!®. This was done to eliminate
degeneracies in component names, as a service to the
bioinformatics and metagenomics communities that use SEED,
and especially to enable integration and comparison of
KOMODO media with genome-scale metabolic modelling
efforts in the future (along the lines of ref. 17). KOMODO has
been made available for browsing by users at: http://delta-tomcat-
vim.cs.tau.ac.il:40678/komodo/defaulthtm. It has also been
leveraged to create an online tool that enables users to input a
bacterial or archaeal 16S rDNA sequence or an NCBI taxon ID
and in turn get predicted media that the organism can grow on
(this tool is based on GROWREC, as described below, and is
provided on the same website).

KOMODO reveals global patterns of media and compound usage.
Typical patterns of media usage and composition in KOMODO
can reveal fundamental trends in microbial nutrition, as well as
gaps and investigator biases. To gain an overview of these relation-
ships, we built histograms of component, media and organism
distributions across the database (Fig. 2a-d). We observed that
component usage across media, and media usage across organisms
both follow power-laws, which suggests a ‘rich gets richer’ structure
to the assignment of phenotypes and component usages (Fig. 2a,b).
This structure might reflect converging nutrient requirements
among organisms, the preferential way in which ‘successful’ media
are selected for organisms by human investigators, or both.
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Figure 1| Schematic of KOMODO, the Known Media Database. The contents of KOMODO are shown. (@) A map of the structure of the database,
showing how major tables and information points connect. (b-d) Numbers of organisms, media and nutritional components present in the database. SEED
refers to the Model SEED database'®; see KOMODO website and Methods for more details.

In contrast, the distribution of the number of media an
organism is listed to grow on does not follow a power law,
but rather follows an exponentially decaying distribution with
the largest number of established media per organism in DSMZ
being 4 (Fig. 2c). This pairing of organisms with media is
from the internal databank of DSMZ, and clearly reflects heavy
under-sampling because of an investigator bias, as researchers
would typically seek only one or a few media per organism,
rather than exhaustively seeking all media that an organism
might grow on. Indeed, only 0.04% of potential organism-media
pairings are listed in the database (and only positive growth
phenotypes are listed); it is highly likely that many more
pairings could enable growth, as supported by the in vitro success
of our novel growth predictions (see section below). We also
examined how many components both defined and non-defined
media contain (with each complex category present in a
medium considered to be one ‘component’—see Fig. 2d). There
is a large range of media sizes (that is, the number of distinct
components making up a medium) even among fully defined
media, reflecting the variable inclusion of trace element
and vitamin mixtures aside from likely differences in biological
needs of bacteria. Few truly minimal media, that is, those
containing the smallest number of distinct nutrients possible
while still enabling a microorganism to grow, exist in the DSMZ

database (or are listed as such), reflecting the typical goal of
culturing efforts to get microorganisms into culture quickly and
easily, rather than to determine their minimal nutritional
requirements.

The pH values of media range from 0.8 to 10.1, with 76% of
media having a pH between 6 and 8, 15% below 6 and only 9%
above 8 (Fig. 2e). It is notable that alkaline media are fewer and
closer to neutral pH than the acidic media. This is despite the
large diversity of high pH-tolerating organisms in, for example,
soda lakes, which have pHs of up to around 12 and are among the
photosynthetically most productive environments on the Earth!®.
High pH-tolerant organisms might represent a gap in the ranges
of investigated organisms. However, the distribution of media
also may reflect neutralizing/acidifying effects of CO, on natural
macro-environments, whereby environments without a
replenishing source of alkalinity tend to drift down the pH
scale, and thus are indeed less common than more neutral or
acidic environments!8, In addition to pH, we examined salt usage
across media. Principle component analysis of the media-by-
component concentration matrix revealed that Na®™ and Cl—
ions are the most dominant components separating all media, as
they are frequently used and are often present at high
concentration values (see Supplementary Figs 2 and 3 and
Supplementary Note 2 for details).
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Figure 2 | Large-scale properties of known media. (a) Distributions of components in media. This includes both defined and complex/undefined
components, where undefined components are grouped into their complex categories and each category present in a medium is counted as one
component. (b) Distributions of media by the number of organisms that grow on them. (¢) Distributions of the number of media that organisms grow on.
(d) Distribution of media by the number of components within them. (e) Distribution of pH values of known media. Red squares in a and b denote the bins
used for the power law fit. (f) The 40 most frequently used media components across genera. lons listed here were typically added to media as salts, which
we assume completely dissociate in solution (for example, MgCl, becomes Mg2+ and Cl~). Components are broken into four groups: biologically
common ions/compounds, trace metals/metalloids, vitamins/coenzymes and other. Within each group, components are listed in order of their frequency
of usage across genera, from most to least. Left of the bar graphs is a list of average concentrations of each component in media across KOMODO, listed in
units of log10(molar concentration). A component is ‘differential’ in a genus if it appears in media for some strains in that genus but not others.

To gain a more complete picture of component usage across followed by trace metal elements and vitamins (which are
the tree of life, we examined which components are used in the present in 0.1-10 pM and 1-1,000 nM ranges, respectively; see
media of the most genera (Fig. 2f, left bar graph). We observed concentrations bar on the left of Fig. 2f). Also frequent across
that the most frequent components are biologically common genera are some complex media components (peptone and meat
ions/salts that are usually present as macronutrients (1-100 mM), extract) and the carbon sources (glucose and starch). Some of

4 NATURE COMMUNICATIONS | 6:8493 | DOI: 10.1038/ncomms9493 | www.nature.com/naturecommunications
© 2015 Macmillan Publishers Limited. All rights reserved.


http://www.nature.com/naturecommunications

ARTICLE

these components might be added to many media but are not
selective between related organisms. To better understand which
components are actually differentiating between similar species,
we checked the number of genera in which a component is
present in media for some species/strains but not for others. We
did this first taking into account all media, and then only
considering fully defined media (Fig. 2f, middle two bar graphs).
Strikingly, when considering only fully defined media, the
components that are differential across the most genera are trace
metals and vitamins/coenzymes, despite their being less com-
monly used across genera than the common ions/salts. This
signal was likely hidden when also including non-defined media
as complex components such as meat extract provide many of
these trace components at once. Supporting this observation, the
‘complex-meat’ category is a highly differentiating component
across genera when considering all media—see second bar graph
in Fig. 2f.

This analysis points to trace compounds such as metal ions and
cofactors as key ingredients to consider when trying to grow new
species from within cultured genera, a principle that has been
noted recently in trying to culture as-yet-uncultured genera as
well>1°. For comparison, we also extracted from KOMODO all
instances where a nutritional ingredient is specifically added,
removed or has its concentration changed from a base medium in
order to grow a given strain, and assessed the number of genera in
which each component is altered this way (Fig. 2f, right bar
graph). The most frequently altered compounds in this way are
the biologically common ions/salts, followed by trace metals and
vitamins. This lends further evidence that these trace components
play key roles in differentiating growth between close species, and
thus should be considered in future media design.

Beyond these analyses, we examine broad trends in compound
usage across phyla at different taxonomic levels. Heat maps of
enrichment of different taxonomic groups for media components
can be found in Supplementary Figs 4-8 and Supplementary Note 3.

Media usage follows phylogenetic and ecological trends. An
implicit assumption that investigators make when trying to cul-
tivate new microorganisms is that the best medium to start with is
one from a phylogenetic or ecological neighbour. Despite its
apparent logic, this assumption has not, to our knowledge, been
rigorously tested and validated. To do this, we mapped organisms
in DSMZ to operational taxonomic units in Greengenes ecolo-
gical data as clustered into environments (see Methods for details;
clustering in ref. 20), and also to taxonomic classifications from
the Interactive Tree of Life project (Itol2)). We find that, indeed,
the likelihood that two organisms share at least one lab medium
strongly correlates with both their ecological and phylogenetic
similarity (see Fig. 3; p=0.76, P=2.3e—13, and p=0.92,
P=13e—3, respectively, for ecological and phylogenetic
similarities, as determined by cohabitation Jaccard index
(ecological) or inverse subtree count in the iTOL taxonomic
tree (phylogenetic); see Methods for details). This indicates that
phylogenetic and ecological closeness are good heuristics for
determining the likelihood that two organisms have successfully
been grown in the same lab medium. Indeed, we show later that
this is not just descriptive of what has been done in the past, but
that it holds a signal that can be used predictively for deriving
new successful organism-media pairings. Importantly, the
fractions of organism pairs sharing lab media listed in Fig. 3
are likely underestimates, as the organism-by-media matrix in
KOMODO is highly underpopulated (see previous section). This
observation is indeed upheld when we perform new growth
experiments, as most of our predictions (which were not listed
previously in KOMODO) yield growth.
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Figure 3 | Media usage is correlated with ecological and phylogenetic
similarity. The (a) ecological and (b) phylogenetic distances between pairs
of species are plotted versus the fraction of species pairs within each
ecological or phylogenetic distance bin that share at least one DSMZ
medium. Bubble areas are scaled to the number of organism pairs in each
bin. The fraction of random organism pairs of any ecological/phylogenetic
distance sharing a lab medium is shown by the horizontal blue line, for
reference. Distances are determined by a Jaccard metric of ecological co-
growth in Greengenes database (ecological) or by subtree distance
(phylogenetic; Methods).

In addition to exact media matches as just described, we tested
whether these associations would also hold for partial matches
between lab media. We considered two organisms to have a
partial medium match if a comparison of the best matching
media of the two organisms (or of the sets formed from the
unions of components from all of their listed media) exceeded a
specified similarity threshold (see Methods for details). Indeed,
over a range of thresholds and with all combinations of these
metrics, the correlations between media similarity and ecological
or phylogenetic relatedness are maintained (see Supplementary
Fig. 13). These associations not only indicate that ecological or
phylogenetic data may be helpful in guiding culturing of
organisms on known lab media, but, importantly, that these data
may be usable for determining likely subsets of media to include
for a given organism when developing novel media formulations.

Predicting new organism-media pairings via transitivity. A
fundamental property in logic and math is the potential
transitivity of a given relation R; that is, if R is transitive, then
(ARB and BRC) implies that (ARC). To better understand the
known patterns of microbial growth in KOMODO, we asked
whether the property ‘organism sharing of media’ is transitive.
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To test this, we searched the KOMODO data for growth media
patterns involving three organisms A, B and C, in which it is
given that A and B grow together on a certain medium (ml1), B
and C grow together on another medium (m2) and C grows on a
third medium (m3; see Fig. 4a). Given this pattern and assuming
transitivity, we predicted that organism A would be more likely
than a randomly chosen organism to grow on m3 (see Methods
for details). Out of 1,000 such tests, we identified 694 positive
(that is, documented growth) instances of transitivity versus only
1 positive case among the 1,000 randomly selected organisms.
This result strongly indicates that media preferences are indeed
transitive (binomial P<1le — 186).

The significant under-sampling of bacterial growth media per
organism that is manifested in KOMODO means that a large
number of potential organism-media pairings may be viable, but
have simply never been tested in vitro. We therefore used the
transitivity identified above to predict a total of 15,147 new
organism-media pairings that may be viable which, if true, would
nearly double the number of organism-media pairings in the
database (from an initial 20,840). Interestingly, when including all
of the new transitive-predicted phenotypes in the database, we
observed that the distribution of organisms on media now does
follow a power-law, as opposed to the exponential distribution
seen originally (compare Supplementary Fig. 14c and Fig. 2c).

a Transitive prediction b Expert curator assessments

schema . .
Will organism grow on
transitive-predicted medium?
Media
Species 1 2 3
Org A |Yes 7wl 481
OrgB |Yes |Yes
OrgC Yes [Yes (
If transitive,
then ‘Yes’
(67% ‘Yes’ or ‘maybe’)
m Yes W Maybe =/ No
c New experimental validation of predictions

Growth of organisms on
transitive-predicted media

Growth of organisms on
their listed DSMZ media

9

(81% Strong/mid) (74% Strong/mid)

m| Strong = Mid Low M None

Figure 4 | Transitive media predictions. Organism-media pairings are
predicted based on an observed transitivity heuristic following a schema
shown in (a). Organisms orgA and orgB share a medium (M1), organisms
orgB and orgC grow on M2 and the third organism orgC grows on medium
3; we then predict, based on transitivity, that orgA will grow on medium 3.
(b) Distribution of expert DSMZ curator opinions on whether organisms
will grow in transitive-predicted media (full opinion descriptions are
provided in Supplementary Data 1). (¢) Pie charts that represent the
number of growth phenotypes observed for organisms grown in vitro on
their listed lab media (left) and for the same organisms grown on newly
predicted media (right). Numbers in the pie charts show the number of
organism-medium pairs tested.
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Using this expanded database to re-evaluate how phylogenetic or
ecological distance affects the chance for two organisms to share a
lab medium (analogous to Fig. 3) yielded a significant correlation
versus ecological distance but only borderline-significance against
phylogenetic distance, indicating the limits of this method (see
Supplementary Fig. 9 and Supplementary Note 4). We addition-
ally tested how often non-defined or ‘rich’ media (see later
sections for ‘richness’ definition) participate in transitive associa-
tions. We found that the most common and accurate transitive
predictions are for organisms known to grow on rich media, but
that these predictions can be based on transitive associations
linking through media of any richness (see Supplementary Note 5
for details).

Experimental validation of transitivity predictions. To test
whether organism-medium pairings predicted via transitivity are
valid, we performed the following two-step process. First, we
asked expert curators at DSMZ to assess the reasonableness of a
large set of more than 1,000 predictions. Four experts participated
in this test. Given lists of organism-medium pair predictions,
they were asked to label the reasonableness of the predictions, and
to give comments if they had particular insights. We classified
their responses into three categories: yes, no and maybe/inde-
terminate. In all, they confirmed 64% of predictions they assessed
(that is, they said ‘yes’ for 873 out of 1,354 predictions, with 109
‘maybes’—see Fig. 4b).

Next, we chose a subset of 43 predictions to test experimentally
in lab. For this, we chose organism-media pairings with varying
curator confidences (24 predicted to yield growth, and 19 unsure
or predicted not to). We found that a remarkable 74% of
predicted pairings yielded strong or medium growth, with
positive growth phenotypes found among all of the curator-
predicted classes (strong or medium growth was found in: 20 of
24 predicted to grow; 3 of 6 predicted not to grow; 3 of 7 listed as
‘maybes’ and 6 of 6 not previously assessed by the curators). This
success rate may be further appreciated by noting that the
percentage of mid-to-high growth of the same organisms when
grown on their standard listed DSMZ media is only slightly
higher, reaching a level of 81%, albeit with a higher percentage of
‘strong’ versus ‘mid’ growth (Fig. 4c). These experiments
demonstrate our ability to harness growth media transitivity to
predict many new organism-media pairings that are almost as
good as existing ones.

Predicting media usage via collaborative filtering. The asso-
ciations we observed between phylogenetic (or ecological) dis-
tance and likelihood of two organisms sharing a lab medium, as
well as the observation of transitivity of growth on lab media,
suggest a new way to predict new organism-medium pairings. To
leverage these observed relationships towards this goal, we
developed a collaborative filtering medium recommendation
system, which proceeds in two steps. Given an input ‘test’
organism for which we aim to predict growth media, we first
select a set of organisms from within KOMODO that are phy-
logenetically (or ecologically) close to the ‘test’ organism (which is
not required to be in KOMODO). Next, we integrate the known
medium preferences of those organisms into a ‘collaborative
score’ (or ‘collab score’) that indicates which media the test
organism is likely to grow on (see Fig. 5a and Methods for
details). The phylogeny-based predictor was used in all following
analyses, unless specifically stated otherwise; the ‘closeness’
threshold was set at a phylogenetic subtree distance of 0.04, as
this yielded the most accurate results (see Supplementary Note 6
for a sensitivity analysis of this threshold).
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a GROWREC collaborative filtering predictor
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Figure 5 | Collaborative filtering predicts media usage. (a) The concept of collaborative filtering. In brief, the media preferences for a new organism
(org3) are predicted based on known preferences of phylogenetically similar organisms (here, org2). (b) Circles represent bins per collaborative score, with
diameters proportional to the number of organism-media pairs per bin. Collaborative scores correlate with the true positive fraction (that is, the number of
organism-media pairings known in the actual DSMZ database). (¢) The partial correlation of collaborative (= collab) score versus true positive fraction,
corrected for media usage frequency. (d) The true positive percentages of collaborative filtering predictions from GROWREC are presented with the base
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In all, our phylogenetic-based collaborative filtering predictor
(hereafter called GROWREC) recommended 47,060 organism-
medium pairings. (A higher threshold could yield a score for any
organism-medium pairing, but lower specificity (for example, see
Supplementary Fig. 12c-e for details).) Of these predictions, 1,768
(4%) were ‘true positive’ organism-medium pairings (that is,
those already present in the DSMZ database), a percent extremely
unlikely by chance (P=5.4e —49 in empirical permutation test
when compared with a ‘null’ predictor based solely on the relative
abundance of media and organisms in KOMODO—see Methods
for details). It is important to note that GROWREC predictions
take into account the media preferences of phylogenetic
neighbours of an organism, but do not take into account any
known media associations of the organism itself. Therefore, true
positive media pairings predicted for an organism are not
circular, but rather represent the success of a leave-one-out test.
Remarkably, the collaborative score correlates extremely strongly
with the rate of such ‘true positive’ organism-medium pairings
(Fig. 5b; p=0.76, P=2.7e — 4 in Spearman test, where fractions
of true positives are plotted per bin of collaborative scores). The
collaborative score also strongly correlates with medium usage
frequency from the database (Supplementary Fig. 15a; tho =0.87,
P<3e—5 also binning by collaborative score). Therefore, we
used partial correlations as controls and found that the frequency
of true positives correlates with the collaborative score even when

Among the most important factors determining microbial
growth on a medium is the salt content (as revealed via principle
component analysis; see Supplementary Fig. 2) and the presence
or absence of oxygen. To further refine GROWREC, we classified
organisms into salt and oxygen usage groups (for example, high
salt, low salt and so on) based on observed patterns of growth on
DSMZ media, and imposed filters on GROWREC predictions to
eliminate pairings of high-salt organisms with low-salt media,
and so on (see Methods and Supplementary Note 7 for full details
of the analysis). This significantly increased the accuracy and
quality of our predictions (for example, total true positives
increased from 3.8 to 6.8%, with 20,357 (44%) predictions
eliminated without losing true positives). To display this
improvement, we show a plot of GROWREC accuracy
versus the percent of results considered (starting from those
with the best scores), pre- and post-filtering (Fig. 5d). It can
be seen from the plot that filtering allows consideration of
nearly twice the number of results, while keeping the same
expected accuracy.

GROWREC predicts levels of key nutritional factors in media.
Aside from predicting full media (as just reported), we were
interested in using GROWREC to predict strain preferences for
key nutritional features, as such a method could then be used in

correcting for media usage frequency (Fig. 5¢; p =0.51, principle to design novel media. We tested this concept on the
P=2.9e—2 in a partial Spearman test). feature of media ‘richness,” which should be matched with strain
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richness preference in order to obtain optimal growth. We define
‘richness’ as a weighted sum of complex components and carbon
compounds that captures the total amount of nutritional carbon
available for consumption; see Supplementary Table 1 and
Supplementary Data 4 for lists of rich components. Namely, we
predicted each organism’s richness preference by taking a sum of
the richnesses of media predicted for it by GROWREC, weighted
by the respective collaborative scores (see Methods for details).
This predictor attained high accuracies of 66.4 and 79.6% against
manually curated richness preferences and a gold-standard
richness preference data set from KOMODO (see Methods and
Supplementary Note 8 for details). Predicted richness preferences
were strongly consistent with the richness of media that the
organisms are known to grow on, indicating the marked useful-
ness of our classifier (see Fig. 6). Importantly, the predictions for
a given organism did not take into account its own known
richness preferences, so testing against these known preferences is
not circular. This also means that the richness predictor may be
applied to organisms not already listed in KOMODO (in the
same manner that GROWREC can—see Methods for details).

This methodology can be used in principle to predict or
optimize key media components for difficult-to-culture organ-
isms, or ones that have never been cultured before. To assess this
task, we identified a set of 70 bacteria that were cultivated from
soil in a 2002 study using minimal agar medium with xylan, a
polysaccharide containing repeats of xylose, as the sole sub-
strate?2. None of the bacteria had been cultured before, and none
are currently in the DSMZ collection. Based on 16S rDNA
sequences provided in the source paper, we used GROWREC to
predict the most likely media for these organisms to grow on. We
then examined the predicted media for 17 different major
component categories (the categories were previously defined—
see Supplementary Data 4 for details). We found that among
these component categories, which include, for example, sugars,
amino acids, co-enzymes and salts/ions, the category that showed
up most often in high versus low scored media was
polysaccharide (P=2.0e —11 in ranksum test of GROWREC
scores for media containing versus not containing any
polysaccharides). The category ‘sugar’ (which includes mono-
and di-saccharides, and some sugar alcohols) showed the reverse
trend, that is, that media not containing sugar had the highest
GROWREC scores (P=1.9e—4 in ranksum test for sugars).
Thus, GROWREC selectively identified the key component class
needed to extract these organisms in otherwise minimal media,
based only on 16S rDNA data. In future growth experiments,
GROWREC might be used in a similar way to determine the
critical component classes needed for growing new organisms,
assuming that like these organisms, they have simple (that is,
non-exotic) but specific nutrient requirements.

Experimental validation of GROWREC. As before, we employed
a two-step testing process to evaluate the collaborative filtering
predictions. First, we asked expert curators at DSMZ to assess the
reasonableness of predictions from GROWREC after we had
removed results that did not pass our salt and oxygen filters (see
Fig. 5d). Each curator commented on a subset of organism-
medium pairings from our predictions, starting from those with
the highest collab scores. Six curators in all gave assessments, over
a total of 681 new organism-medium pair predictions. We next
assigned a ‘yes’, ‘no’ or ‘maybe/unsure’ to each assessment, as we
had done in the analysis of transitive predictions. We found that
positive curator assessments tended to have higher collaborative
scores than negative ones (P=19e—47 or P=25e—11 in
ranksum tests for collaborative scores being higher in high or mid/
high versus mid/low or low curator assessments, respectively).
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Of the 681 newly predicted organism-media pairings that the
curators were able to assess, they marked 93% with either ‘yes’ or
‘maybe.” This is remarkable, considering that most of these
GROWREC predictions had collaborative scores corresponding
with much lower expected success rates (overall, we expected only
4% success, based on extrapolations from our true positive rates
versus collab scores curve shown in Fig. 5b). The distribution of
collaborative scores assessed, and the breakdown into ‘yes’, ‘no’
and ‘maybe’ categories, also brings up an unexpected observation
that even many of the low-scored predictions had much higher
than expected accuracy. For example, the curators deemed 9.6%
of predictions within the lowest third of collaborative scores that
they assessed to be ‘yes’, as opposed to an expected rate of 1.2%
(that is, based on Fig. 5b—see the histogram in Fig. 7a). This
suggests that our ability to predict viable media is much higher
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than that suggested from our previous analysis of true positive
percentages, and that the successes may also range to much lower
than expected collaborative scores.

In a second testing step, we chose 61 predicted organism-
media pairs to study further. These pairings were taken from the
top range of our predictions (see the histogram in Fig. 7b for the
range of collab scores, and see Methods for a detailed explanation
of how pairs were selected for testing), and fell into the likely (18)
or uncertain (43) curator opinion categories. We were able to
verify 26 of these predictions by literature search or in-house
DSMZ data that had not been included in KOMODO. For the 35
predictions remaining, we conducted new in vitro growth
experiments, from which we obtained growth in 29 cases (11 of
which had been classed by curators as ‘maybe’). Taken in full,
90% of these 61 organism-medium pairings either yielded strong
or medium growth in new experiments, or were shown in
previous reports to be viable (Fig. 7b). The projected accuracy of
the assessed predictions based on their collaborative scores (using
the collab-score-to-TP-ratio mapping from Fig. 5b, as before) is
5%, again significantly lower than the 90% accuracy obtained.
These results indicate that GROWREC predictions even with
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It was possible that the high percentage of positive growth
phenotypes we observed was due to a general ability of organisms,
particularly aerobic heterotrophs, to grow on any of the common
lab media. It was important, therefore, to test growth of
organisms on the predicted media as compared with a baseline
of poorly predicted media, and to assess the difference. We
therefore chose a set of 40 ‘good’ organism-medium pairs and
also a set of 40 ‘bad’ organism-medium pairs as predicted by
GROWREC (the ‘bad’ pairs were predicted using a permissive
phylogeny cutoff—see Methods for details). Importantly, we
chose the ‘good’ and ‘bad’ pairings using the same exact set of
organisms and media, but merely swapping them around to form
optimal good or bad combinations. To avoid trivial obstacles to
growth, we did not include any organisms or media that grow in
high salt or in anaerobic environments. The analysis included 36
bacterial strains each belonging to a different Genus (all of which
were used in the ‘good’ set and 30 of which were used in the ‘bad’
set) and 13 media (all of which were used in both the ‘good’” and
the ‘bad’ picks), for 80 growth assays total (actually 76, after
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Figure 7 | Curator assessments and experimental validation of GROWREC predictions. (a) Expert curator opinions on the goodness of GROWREC
predictions. (b) Results from our in vitro growth experiments or found in literature verifying top GROWREC predictions. Histograms in a and b represent the
distributions of collab scores for the org-medium pairs assessed, and are coloured the same way as the pie charts. Numbers in the pie charts denote how

many org-medium pairs were tested for growth.
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Organisms are coloured based on whether they grow better on their ‘good’ versus their ‘bad’ media (see legend).

removing contaminated samples—see Supplementary Data 5 for
details).

This assay showed a striking difference in the strength of
growth between the ‘good’ and ‘bad’ sets ( Fig. 8). The good group
outgrew the bad group significantly as a whole (P=1.6e—3 in
ranksum test based on quantized strength of growth assessments,
as per Fig. 8a) and on an organism-specific basis (P=2.5¢ — 3 in
paired signrank test, as per Fig. 8b). This last finding indicates
strongly the practical usefulness of GROWREC, as it enabled the
choice of a better medium than a random selection might have
yielded in over half of the organisms tested. It also reinforces that
the relationship between organisms being close phylogenetically
and their sharing lab media (that is, that shown in Fig. 3) is not
merely descriptive, but can be used predictively to determine new
organism-media pairs.

Discussion

A large effort among microbiologists for over a century has been
the development of suitable lab media for growing microorgan-
isms. This has led to a broad range of artificial medium
conditions of varying complexities that have been used to
cultivate microbial life. Here, we map this culture media
landscape by developing a database to incorporate the specific
compositions of thousands of media, to link organisms with
media and with the latter’s respective components, and to link all
of these elements out to other relevant growth-related features
and/or databases. The resulting resource enables extensive
integration of growth media information with existing tools such
as genomic and metagenomic data and large-scale metabolic
models, to facilitate predictive metabolic research. Such a
resource has never before been produced at this scale. We make
this resource publically available in the form of a web server that
predicts media for bacteria and archaea given an input of 16S
rRNA gene sequence, running on a GROWREC engine. We also
provide in Supplementary Data 2 a large set of new organism-
media predictions from our method, and in Supplementary Note
3 and associated Supplementary Figs 4-8, a range of analyses of
how growth conditions differ among microbial phyla. Taken as a

10

whole, this work represents a first ever large-scale analysis of the
conditions implicit in growth media among the cultivated
universe, as well as a platform for making new predictions of
organism-media pairings within this space.

We see this work as a first step towards the goal of a more
predictive science of microbial nutrition, in which information
embedded in guides such as Bergey’s Manual of Systematic
Bacteriology can be mined for their insight and used alongside
large and ever-growing regositories of metagenomic data and
genome-scale modelling!”?" to rapidly develop cultivation media
for any organism. Thus, part of our aim is to uncover principles
for growing microorganisms that may be universal across life, and
thus useful for culturing as-yet uncultivated organisms as well. To
this end, we reveal that although most strain-specific media
instructions relate to common salts, it is rarer metal ions and
vitamins and cofactors that are the largest differentiators among
defined growth conditions for strains within a given genus. This
complements recent observations that many previously
uncultivated microorganisms require specific cofactors or rare
compounds in order to grow, and thus that emphasis on these
types of trace nutrients in developing new media is warranted"1°.
Importantly, the common approach of providing a standard trace
elements mixture may not work for difficult to grow species, and
a more nuanced or combinatorial approach might be necessary.
For example, media for most strains of the nitrogen-fixing genus
Azotobacter contain ~ 20 pM molybdenum (which is used by the
nitrogenase enzyme in these species), which is two orders of
magnitude higher than the concentration in most molybdenum-
containing media. The emerging importance of trace elements
also raises the question of what other kinds of trace compounds
might be important for developing culture media. Recent
evidence shows that growth factors such as quorum sensing
molecules and siderophores provided in bacterial co-cultures can
enable growth of otherwise unculturable organisms®3. These are
important nutrients to explore in future culturing efforts.

We do not go so far as to cultivate uncultivated species in this
study. However, we do show proof-of-principle that our
GROWREC-based predictions can aid efforts to culture new
organisms through two analyses: (i) by predicting media richness
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preferences of bacterial strains with high accuracy (Fig. 6) and
(ii) by correctly predicting that xylan-consuming bacteria require
polysaccharide nutrient sources, based solely on their 16S rDNA.
Notably, using GROWREC in the manner we did for these
analyses enables prediction of specific nutrients (here, media
richness and polysaccharides), which can be done in principle for
any nutrient deemed important, and for any organism regardless
of whether it has previously been cultured. These analyses thus
lay groundwork for future extensions that aim to design new
media for as-yet-uncultured organisms, using observed and
consistent principles that have been derived from the tree of
cultivated life.

A major limitation of the work presented here is its reliance on
a highly under-sampled organism-by-media growth matrix by
which to train our predictors and derive insights. Namely, no
organisms are listed as not growing on a given medium, and
many organism-media pairings that could support growth are not
listed in the DSMZ repositories (upon which KOMODO is based).
This reflects the fact that researchers are usually interested in
finding one or two good media for growing a particular strain,
rather than in building consistent databases that can be mined
for universal insights into microbial metabolism. The degree of
accuracy we achieve in our new organism-media predictions
despite these limitations attests to the enormous and largely
yet-untapped potential of these approaches. Future work should
focus on better populating subsets of the organism-media
matrix deemed most critical for uncovering key growth principles,
which can be done by performing many new growth experiments
where a large set of organisms is tested on a large set of media
in an all-grown-on-all fashion. The extent of such work will
strongly dictate the depth of insight that can be derived and then
aimed towards ‘unculturables’. In addition, many of the media
that are in common use contain complex ingredients (for example,
beef extract or peptone). In developing GROWREC, such
undefined media are an asset, as they greatly expand our training
set for making predictions. However, improvements should
also focus on determining defined replacements for complex
components, as these components obscure the signal of which
nutrients are truly important for growing organisms in different
phylogenetic groups.

Methods

Building KOMODO, the known media database. Overview. A large collection of
media recipes for microbial strains is available through the German Leibniz
Institute DSMZ strain and media collection (accessible here: https://www.dsmz.de/
?id=441). These recipes are publicly available, but they are contained as instruc-
tions in PDF files that must be searched on an organism-by-organism basis. Putting
these recipes into a usable database form required extensive and non-trivial work
parsing, merging and organizing, as well as handling cross-references between
media and submedia compound mixtures such as ‘trace element solutions,” which
could be detailed and referenced from any DSMZ medium.

Dealing with such cross-references involves handling multiplication of volumes,
masses and concentrations, even in cases when the same media component is
included both in a submedium mixture and in the main medium description, often
with non-matching names and/or units (for example, once in gram per litre and
once in moles per litre). Medium and submedium volumes also are often not listed
in media, but are assumed by microbiologists to be 11 per the number of grams (or
moles, or millilitres) of compounds listed for inclusion. However, there is no
general rule for this, as some media do list specific volumes, some of which do not
sum up to 11. Often, the volumes are left to be deciphered through common sense.

We tackled these challenges with a pipeline that is part manual and part
automated. We used this pipeline to read in more than 1,500 PDF media
descriptions and to create the KOMODO database, containing media compositions
with standardized units. The pipeline is depicted as a 15-step process in
Supplementary Fig. 1. Each step is explained in detail below:

Steps 1-3: Manual standardization of media descriptions. First, PDFs of all the
media in the DSMZ database were copied verbatim into a text file. Next, the
resulting ~ 27,000 lines of text were manually reformatted in a way that could be
machine read, using tags such as /ph/ (set the pH tag of the medium), /replace/
(replace one compound with another), /conc/ (change the concentration of a
compound) and /rm/ (remove a compound from the medium) to denote media

features and instructions. These tags were embedded in a specialized syntax that
was similar to natural language media instructions, and thus required minimal
alterations from the instructions listed in the original PDFs, but that followed a
defined syntactical structure that could be interpreted by a computer programme.
We were able to extract and reformat the majority of media from the DSMZ
database in this way.

We noticed that a large number of organisms had specialized growth
instructions listed either within the media descriptions or in the organism-medium
mapping file provided to us by DSMZ. We considered these instructions critical to
building an accurate database. To incorporate them, we copied the components of
the base media and then implemented the stated changes to create medium
definitions for each media variant. In all, this process resulted in nearly a doubling
of the number of media in the database, from 1,946 to 3,672. In the DSMZ listing
(http://www.dsmz.de/?id=441), each medium is referenced by an ID number. We
generated unique new media IDs for these media variants by following the base
media IDs with a period (.) or an underscore (_), and then a unique numerical or
text string.

In addition, many media included in their compositions submedia, which were
to be mixed independently and then combined. To ease the formation of the
database, we treated each submedium as an independent medium with a new
medium ID of 2,000 or above. This then allowed us to calculate cross-references
between media and submedia using a standardized methodology.

Steps 4-5: Manual standardization of compound names. Media components as
listed in the literature are highly redundant and degenerate. For example, the
compound sodium sulfide is listed in the database in at least nine different ways
(sodium sulfide, sodium sulphide, Na,S x 9 H,0, Na,S x 9H,O and so on). To
convert the database to the most versatile form, we manually mapped compound
names to ‘semi-unique names’ as an intermediate layer, and then finally to ‘unique
names’ that contained only the precise metabolites contributed to a medium by a
metabolite. For example, the ‘semi-unique’ name mapped to all original forms of
sodium sulfide (including hydrated forms) from media descriptions is ‘sodium sulfide’,
and the ‘unique name’ is ‘SEED-cpd00239#cpd00971#,” which precisely depicts the
two SEED compounds (cpd00239 = sulfide ion and ¢pd00971 = sodium ion).

We defined three classes of unique names:

(1) SEED compounds, which are denoted with a ‘SEED-’ tag and then up to three
SEED metabolites contained within them (for example, ‘SEED-
cpd00239#cpd00971#).

(2) Complex components, which are denoted with a ‘rich-” tag (for example, ‘rich-
peptone’). (Note, this ‘richness’ is not to be confused with media richness;
rather, it denotes complexity (media richness is treated differently in the work).
In the main text, complex components are presented with a complex- tag
instead of a rich- tag. The two are interchangeable, and both denote
complexity, not media richness.)

(3) Other compounds, which are chemically defined but are not in SEED. These
are simply written out in full (for example, ‘1,4-Naphthaquinone’).

Steps 6-7: Determining media volumes and unit multipliers. A rule of thumb in
microbiology media recipes is that the quantities of compounds listed are those
needed to produce 11 of final medium. Because of this, media volumes are often
omitted (and assumed to be 11) or are explicitly accounted for by mixing of media
compounds with 11 of water. However, there are many exceptions to this rule, such
as media or submedia compositions that include some volume of water that is not
11 or that contain very small volumes of liquid (from, for example, addition of
some volume of ethanol), which should not be considered the ‘final volume’ of the
medium by any means. It was critical to determine the exact volume of media in
order to properly convert compound units into concentrations (see Steps 9-11 for
details).

To deal with this, we classed media and submedia into categories called ‘fill” and
‘scale.” The ‘fill’ tag means that whatever volume a medium has should be ‘filled’ to
11, that is, that the volume listed should simply be ignored; the ‘scale’ tag means
that the concentrations of compounds listed in a medium description should be
scaled up with the listed volume until that volume comes out to 1liter. Media were
classed as ‘fill’ and ‘scale’ using general rules, which were overridden in ambiguous
cases by manual curation (filling and scaling pseudocode is listed below). Finally,
we adjusted final volumes of ‘fill' media and then determined a multiplier for each
‘scale’ medium and submedium composition in order to convert compound units
from moles to moles per litre (see Steps 9-11 for details).

Step 8: Unpacking cross-media references. Large proportions of DSMZ media
contain cross-references either to other media or to complex submedia (~60% and
>25%, respectively). Many of these references also contain references, so
sometimes multiple layers of references must be unpacked in order to build a given
medium. Faithfully unpacking these cross-references requires (i) determining the
molar concentrations of all compounds in the cross-referenced submedium/
medium, (ii) determining the volume of the submedium/medium per litre of final
medium, (iii) multiplying these two factors correctly to get the concentration of
each submedium compound and (iv) accounting for the volume of the cross-
referenced submedium/medium in determining the final medium volumes. This
process was fully automated.

Steps 9-11: Converting concentrations into moles per litre. A goal of this project
was to include every compound if possible with standardized units, as this would
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ease analyses between media and between compounds. Compounds in the original
media files were listed with over 30 distinct units. As a first step, we built a
mapping with multipliers to convert all of these units into five standard ones: gram
per liter, liter per liter, moles per liter, trace and ‘gas substrate’.

The next step was to convert all of these units (except for the ‘trace’ and ‘gas
substrate’ ones, which were treated separately) into Moles. To do this, we needed to
obtain the molecular weights of all defined media components, as well as the molar
ratios of each component forming each semi-unique compound name. When
available, molecular weights of SEED compounds were taken from the SEED
database. For SEED compounds without molecular weights listed, as well as for
compounds falling into the ‘Other’ category (that is, defined but not listed in
SEED), we curated molecular weights manually based on Internet searches. Finally,
we manually curated molar ratios of compounds in the original compound names,
as well as the number of waters linked to each compound. With all of this
information, we were able to calculate from, for example, the compound name
‘CoCl, x 6 H,0, the exact molar amounts of cobalt and chloride in a final medium
composition, even if the original compound was listed in grams and not moles.

For the subset of compounds listed with units of volume rather than grams or
moles, we universally assumed that the densities of the fluids were equal to the
density of water (1 gml ~1), in order to ease the conversion of units. This rule was
not used for volumes of submedia or media, but only for units of individual
compounds.

Finally, we needed to convert the units for each compound from a molar
amount (moles, M) into a molar concentration (moles per litre). This was done by
multiplying the molar amount of each compound by the medium volume
multipliers as determined in steps 6-7.

Steps 12-14: Validating steps 6-11 versus gold standards. Many complicated
bookkeeping calculations are automated in steps 6-11 of this workflow, and there
are many potential sources for mistakes or errors. Therefore, it was important to
validate several key results as a sanity check in order to ensure that the database
was faithfully converted. To do this, we manually produced three ‘gold-standard’
files for validation:

i Manually calculated media volumes for 149 media and ‘fill’ or ‘scale’ statuses
for 138 media, to check against the results of step 6.
ii Manually calculated quantities (including units) of 973 compounds
referenced across media, to validate the results of steps 7-9.
iii Manually calculated molar concentrations of 965 SEED compounds in
media, to validate the results of steps 10-11.

These files were used for extensive troubleshooting and debugging of the
conversion code and of the syntax in the files for conversion, until there were no
mismatches left between the manual files and the automated results.

Step 15: Integrating media information into KOMODO. The work in steps 1-14
ultimately produces a high confidence matrix of media versus the concentrations of
compounds within them. This information was next integrated into a database
format, along with the information provided by DSMZ of which organisms grow
on which media, and linkages of DSMZ organism IDs to NCBI IDs and SEED
organism IDs, when available.

Pseudocode for automated portion of database build. Here we provide
pseudocode for steps 6-11 of the database building process, which are the
automated portions for reading in the initial database information:

(1) Determine volumes of each of the media.

a All submedia are considered to have volumes. Therefore, convert ones with
units of mass into units of volume with the 1ml=1g conversion (even
though it is not always precise).

b For metabolites added with parentheses, add the volume if it exists in one of
the parentheses. For example: in /notag/ NaCl @ (100ml)*(5gl~!), the
volume added is 100 ml.

(2) Adjust volumes based on the following formula:

a All rules about to be written are overridden by the tags put on specific media/
submedia for determining the fill or scale status. The tags are: ‘fill' and ‘scale’.
‘Fill’ means that the medium should have volume added to it so that the final
volume is 11, but without altering the amounts of compounds in the
medium. ‘Scale’ means that concentrations in the medium should scale up
along with the volume of the medium, until the volume is 11. For example:

i Fill: if there is 1 g HCl in 700 ml medium, and the tag is ‘fill’, then the final
volume is 11 and the final concentration of HCl is 1gl~ .

ii Scale: if there is 1 g HCI in 700 ml medium, and the tag is ‘scale’, then the
final volume is 11 and the final concentration of HCl is (1g per
07)=143gl~ L

b If a medium or submedium has a volume of 0, adjust the volume to 11 (that
is, the rule is ‘fill’).
¢ If a medium or submedium has a volume of 11, keep as it is.

12

d If a medium has a volume above 11, the rule is ‘scale’.
e All submedia with non-zero volumes should be ‘scaled’.

(3) Determine the amount of each compound in each medium. For this,
parenthesis are multiplied out (for example, (100ml)*(5gl~!) — 0.5g1~1),
with the general principle that all compounds are in units of mass or moles
(that is, gram per litre or moles per litre). A compound that has a volume
should be converted to grams using the formula: 1 ml =1 g (even though this is
not strictly accurate, it is a reasonable approximation for most compounds we
are dealing with). Also, submedia are treated like more embedded parentheses.
For example, if medium a contains 10 ml of medium b, medium b contains
15ml medium ¢ and medium c contains 5ml of metabolite X, then
medium a contains (10ml1~1)*(15ml1~1)*(5ml metabolite X)*(1 gml~!
conversion) = 0.00075 g metabolite X. Percentages are converted as shown in
the conversion sheet.

(4) For all SEED compounds, convert grams into moles. For this calculation, water
molecules that are attached to the compound molecules should be accounted
for. Water molecules that should be accounted for are always in the form
‘metabolite x N H,O’. For example, the metabolite: /notag/ CaCl, x 2 H,O @
10 mg would be converted as such:

a Molecular weight of CaCl, is 110.

b Molecular weight of H,O is 18.

¢ So 10 mg of CaCl, x 2 H,O = (10 mg)/((110 + 2*18) mg per mmol) = 0.0684
mmol of CaCl,.

Coupling with SEED. An ultimate goal of this work is to combine the knowledge
embedded in manually built media with modern sequencing and genomics
databases, in a form that may be used for large-scale metabolic analysis. A natural
choice for this linkage is the Model SEED, a project that utilizes the RAST genome
annotation server to automatically build and store genome-scale metabolic
models'®?%, To this end, we converted all compounds that had SEED equivalents
into SEED compound names and IDs, with each ingredient listed in a medium
converted into between one and three SEED compounds (see example in Fig. 1).
The quantities of these SEED compounds (as well as compounds without SEED
equivalents) were then combined in final media compositions and converted to
molar units.

Future work on KOMODO. Future work that can be done to improve
KOMODO is described in Supplementary Note 1.

Choosing organism-media pairs for experiments. We describe three sets of new
in vitro experiments in this study: (i) validating transitive predictions; (ii) validating
collaborative filtering predictions and (iii) determining whether highly ranked
collaborative filtering predictions grow better than low-ranked predictions. As we
had many predicted organism-media pairs to choose from for running each set of
experiments, we chose pairs to test based on the following criteria:

Experiments 1 and 2: Transitive and collaborative filtering. For these
experiments we chose organism-media pairs that were: (i) the highest ranked based
on our predictions (hence ‘top’); (ii) convenient for our collaborators at the DSMZ
to test (mainly, which involved media that are not difficult to produce and strains
that are both under the care of the curators involved in the study and that are not
known to be extremely difficult to grow) and (iii) contained some organism-media
pairs that the curators deemed likely to grow, and some that they were unsure or
negative about. Transitive pairs we validated were also chosen based on curator
preferences for working with certain organisms and media.

As just mentioned, we tried to choose an assortment of pairings that curators
had guessed would yield growth, and also of pairings that curators gave a ‘maybe’,
‘no’ or did not have an idea about. Of transitive predictions tested, 24 were
predicted beforehand by the curators to yield growth and 19 were either
indeterminate or were predicted to not yield growth. Of collaborative filtering
predictions tested (in the original experiments), 38 were predicted beforehand by
the curators to yield growth and 23 were indeterminate or no.

Experiment 3: Good versus bad predictions. For this experiment, we chose
organism-medium pairings by optimizing for four factors (with decreasing levels
of strictness): (i) using only a set of organisms and media that our experimental
collaborators at the DSMZ told us they preferred to work with; (ii) maximizing the
GROWREC scores of the ‘good’ group as selected from within these organisms and
media; (iii) minimizing the GROWREC scores of the ‘bad’ group and (iv)
maximizing the number of organisms from the ‘good’ group that were also used in
the ‘bad’ group. All media were used in both, but it was not possible to design
experiments where every organism would be included in both the ‘good” and the
‘bad’ group while still maintaining a large difference in the collab scores, given the
set of organisms and media we could work with; hence, we maximized the number
of organisms shared between the groups given the other constraints. No organisms
were included in the ‘bad’ group that were not included in the ‘good” group, but a
few were in the ‘good’ group and not the ‘bad’. The collaborative filtering scores for
the ‘bad’ group were determined after relaxing the phylogenetic distance cutoff
built into the GROWREC predictor, thus enabling it to be highly permissive and to
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determine scores for phylogenetically distant organisms. These scores were in
general very low; we selected the lowest for the ‘bad’ group, as just described.

Calculating partial media matches. To compare phylogenetic or ecological
similarity to partial matches between the known lab media that two organisms can
grow on, we considered the (i) union or (ii) best matching of media each organism
grows on in KOMODO. Within each ecological/phylogenetic distance bin, we took
the fraction of organism pairs whose media were similar above some (iii) Jaccard
threshold or (iv) count of components. All combinations of these four methods
were tried (see Supplementary Fig. 13a—d for details). For analyses of the counts, it
was important to examine thresholds that were lower than the number of com-
ponents in any of the examined media (otherwise, even two organisms that exactly
share a lab medium would not be considered to ‘match’). Therefore, for this
analysis, we examined only media of 15 or more components, and we only con-
sidered thresholds up to 15 (see Supplementary Fig. 13b,d for details).

Determining ecological or phylogenetic similarity. Ecological similarity between
pairs of organisms was determined using a Jaccard metric of co-growth in the
Greengenes database; that is, the number of environments that both organisms
grow in, divided by the total number of environments that either organism grows
in (this was done in the same manner as in ref. 17). Phylogenetic similarity was
determined as (1 — normalized phylogenetic distance), where phylogenetic distance
is the number of organisms from the NCBI taxonomic tree beneath the lowest
common ancestor of two organisms (that is, subtree distance) divided by the total
number organisms in the tree. Pairs of organisms were then binned by ecological
(or phylogenetic) distances, and the fraction of pairs in each bin sharing a lab
medium according to KOMODO was used as the final ‘medium distance’ for that
ecological distance bin (results plotted and Spearman correlations given in Fig. 3).

Testing transitivity of organism-media pairings. First, we excluded media that
have <3 or >100 organisms listed as growing on them. We define an XY]|,, event
as organisms X and Y each being listed in the KOMODO database for medium m.
We then identified 1,000 cases in which AB|,;, BC|y, and C|3, enforcing that
media m1, m2 and m3 are different and that organisms A, B and C are different.
Given the relations stated above, for each of the 1,000 cases we checked the number
of instances of CA|,3 (test case) versus the number of instances of CX|,,3 (random
control), where X was a randomly chosen organism from the database. Test cases
that were positive were counted as true transitive events and random control cases
were considered to be an estimate of noise.

Building GROWREC. To predict new potentially viable organism-media pairings,
we developed a collaborative filtering predictor as follows: first, phylogenetic or
ecological distances between pairs of organisms are determined. Phylogenetic
distance is determined by the count of organisms beneath the lowest common
ancestor in the ITOL taxonomic tree (subtree elements count), and ecological
distance is determined via a Jaccard metric of co-growth across environments listed
in Greengenes®, as clustered previously by Chaffron?®. Unless otherwise specified,
we used phylogenetic distance for analyses.

To determine a collaborative score for the likelihood of a ‘test’ organism
growing on a given medium, we count how many organisms phylogenetically
related to the test organism can grow on it. We chose a distance cutoff and a
weighting based on phylogenetic distance (cutoff was set at a normalized
phylogenetic subtree distance of 0.04; weighting of the collaborative score was
taken as cutoff/subtree distance; see Supplementary Note 6). The threshold for
ecological distance was a Jaccard distance of 0.15, with no distance weighting.
These cutoffs were chosen to bolster precision, using an analysis similar to those
shown in Supplementary Figs 10 and 11.

Collaborative filtering predictions were validated using a leave-one-out method,
in which media predictions made for organisms present in KOMODO were
compared against true pairings of those organisms with lab media from the
database. To predict media for a given organism, the organism was left out from
the database, and its phylogenetic relationships to other organisms in the database
were used as input to the collaborative filtering predictor.

As a validation of the collaborative filtering predictor, we developed another
‘null’ predictor that is based solely on media and organism popularity in the
database. This predictor pairs organisms with media randomly, with distributions
of both organisms and media weighted by their commonality in known pairings in
the DSMZ database. When predicting results to compare against the collaborative
filtering predictor (which are the results presented in the present paper), we only
considered organisms that are present in the phylogenetic data set.

Improving GROWREC with O, and salt filters. Filtering of collaborative filtering
results based on biological features proceeded in two steps:

i We determined the preference of an organism for that feature by looking at
instances in the known DSMZ organism-media database of the organism
being paired with media containing that feature. If, for example, an organism
always grows on a medium containing O,, then we label the organism as

‘aerobic’; if an organism always grows on an anaerobic medium, we label the
organism as ‘anaerobic’; if it sometimes grows with and sometimes without
O,, we label it ‘facultative’. For salt tolerance, a ‘salty’ medium was one with
>15g NaCl per 1, or containing the word ‘sea’.

Collaborative filtering results were then filtered based on mismatches
between the preference of the organism and the contents of the predicted
medium. For example, an ‘anaerobic’ organism growing on an ‘aerobic’
medium would be excluded by the filter, as would an ‘aerobic’ organism
growing on an ‘anaerobic’ medium.

i

=

Determining rich medium preferences. Media containing any complex com-
ponent (that is, 1 of the 11 categories shown in Fig. 1) were broken into ‘low’,
‘medium’ and ‘high’ richness groups based on a weighted sum of complex com-
ponents present in the medium, using the weights in Supplementary Table 1.
Cutoffs for the three richness groups were 5g per 1 and 15g per | of ‘rich’ com-
ponent (as determined through the weighted sum). The amounts of certain defined
components were also included in the richness determination—these components
are listed in Supplementary Data 1.

To determine the category that an organism falls into, we summed the
collaborative scores of all low, medium and high richness media that the organism
was predicted to grow on via GROWREC, after filtering results for oxygen and salt
(that is, eliminating pairing of a high-salt medium with a low-salt organism and so
on). The category with the highest combined score is the category chosen as the
‘preference’ of the organism.

Predicted organism richness preferences were compared with manually curated
preferences (from DSMZ curators) as well as a ‘gold-standard’ set of richness
preferences from KOMODO. These are known organism-medium pairings where
the organism is only found growing on media within a given (predicted) richness
category—low, medium or high. If an organism, for example, is known to grow
only on two ‘low’ richness media, then the gold-standard richness preference for
that organism is Tow’. The results of these comparisons are described in detail in
Supplementary Data 3.

Integrating GROWREC into an online platform. The GROWREC engine was
used to produce an online tool that predicts media from the DSMZ repository most
likely to enable growth of any organism. Users can input organisms in the form of a
16S rDNA sequence or an NCBI taxon ID. If a DNA sequence is inputted, the
algorithm will use BLAST to determine related organisms, and then will perform
collaborative filtering (in the manner of GROWREC) to predict viable media.
Predicted media are given with their collab scores, which denote the strength of the
prediction. The tool can be found at: http://delta-tomcat-vm.cs.tau.ac.il:40678/
komodo/default.htm.

Experimental methods. To test a given organism-medium pair, strains were
reactivated from freeze-dried ampoules as recommended in the DSMZ catalogue
(http://www.dsmz.de/catalogues/catalogue-microorganisms.html) and incubated
on the medium used as standard for this organism. After incubation at the tem-
perature recommended for the specific strains by the DSMZ, colony counts and
size were evaluated and subcultures were prepared in the predicted medium.
Growth was documented after 24 and 48 h of incubation. Strong and medium
growth were both considered positive growth phenotypes.

The strains used for experiments, and all of the results, are listed in the
following documents:

Supplementary Data 5—Transitive experiments.

Supplementary Data 6—First set of collaborative filtering experiments.

Supplementary Data 7—Good-bad collaborative filtering experiments.
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