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ABSTRACT

Transmembrane serine protease 2 (TMPRSS2) has been established as one of the host proteins that
facilitate entry of coronaviruses into host cells. One of the approaches often employed towards pre-
venting the entry and proliferation of viruses is computer-aided inhibition studies to identify potent
compounds that can inhibit activity of viral targets in the host through binding at the active site. In
this study, we developed a pharmacophore model of reportedly potent drugs against severe acute
respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and -2). The model was used to screen the
ZINC database for commercially available compounds having similar features with the experimentally
tested drugs. The top 3000 compounds retrieved were docked into the active sites of a homology-
modelled TMPRSS2. Docking scores of the top binders were validated and the top-ranked compounds
were subjected to ADME, Lipinski's and medicinal Chemistry property predictions for druglikeness
analyses. Two lead compounds, ZINC64606047 and ZINC05296775, were identified having binding
affinities higher than those of the reference inhibitors, favorable interactions with TMPRSS2 active site
residues and good ADME and medicinal chemistry properties. Molecular dynamics simulation was
used to assess the stability and dynamics of the interactions of these compounds with TMPRSS2.
Binding free energy and contribution energy evaluations were determined using MMPBSA method.
Analyses of the trajectory dynamics collectively established further that the lead compounds bound
and interacted stably with active site residues of TMPRSS2. Nonetheless, experimental studies are
needed to further assess the potentials of these compounds as possible therapeutics against
coronaviruses.
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1. Introduction order to further curb the spread, minimize death rate and
salvage global economy.

Coronavirus disease 2019 (COVID-19), caused by the severe Efforts to develop antiviral drugs against SAR-CoV-2 have

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has
become a pandemic of extreme global concern and medical
emergency, gaining utmost focus in the current time all
around the world. The SAR-CoV-2, which broke out in
Wuhan, China, in December 2019 (Wang et al, 2020; Zhou
et al,, 2020; Zhu et al,, 2020), has since been spreading rap-
idly with over 3.5 million cases of infection and at least
243,400 deaths reported in 215 countries and territories as of
May 5, 2020 (WHO, 2020b). Over the previous one month,
the number of recorded cases of infection and deaths had
increased by 3-fold and nearly 4-fold, respectively as 1.1 mil-
lion cases and 62,700 deaths were recorded as of April 5,
2020 (WHO, 2020a). This indicates that the pandemic still
continues to ravage the world as efforts to curtail it grow.
Hence, there is a strong need for quick development of
more easily accessible and reliable treatment options in

resorted to the targeting of several candidates including cor-
onavirus main protease—3CLP"°/MP™® (Jin et al, 2020),
papain-like protease — PLP™ (Elfiky & Ibrahim, 2020; Li & De
Clercq, 2020), RNA-dependent RNA polymerase —
RdRp (Sheahan et al,, 2020), angiotensin-converting enzyme
2 — ACE2 (Han & Kral, 2020), viral spike glycoprotein S — S
protein (Robson, 2020), and transmembrane serine protease
2 — TMPRSS2 (Hoffmann et al,, 2020; Li & De Clercq, 2020).
As several institutions and pharmaceutical companies across
the globe are expediting unprecedented efforts towards the
development of novel antiviral drugs and vaccines, repurpos-
ing of existing drugs and compounds provides the fastest
and easiest response to combat the pandemic via the identi-
fied targets. The latter had led to the identification and
repurposing of many drugs with varying ability to inhibit the
targets (Elfiky & Ibrahim, 2020; Hoffmann et al,, 2020; Li & De
Clercq, 2020). Yet, there are fears that repurposing
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therapeutics originally designed to tackle other diseases
could result in undesired pharmacological reactions and
adverse effects as well as issues regarding relative appropri-
ateness of dosages, etc. (Gns et al.,, 2019; Oprea et al., 2011;
Vedani et al., 2015).

Recent studies have shown that ACE2 and TMPRSS2 are
essential for SARS-CoV-2 attachment to and entry into host
cells (Hoffmann et al., 2020; Zhou et al., 2020), similar to the
requirement of the previous SARS-CoV-1 entry into cells
(Glowacka et al.,, 2011; Li et al.,, 2003; Matsuyama et al., 2010;
Shulla et al., 2011). The virus gains entry into the host cell
via its spike protein S using the S1 unit to recognize and
attach to ACE2 as a receptor on the host cell surface.
TMPRSS2 primes S protein by cleaving it at the S1/S2 and
S2' sites facilitating the fusion of viral and host cell mem-
branes as well as proliferation and subsequent spreading
(Hoffmann et al.,, 2020). In another independent mechanism,
TMPRSS2, in addition to human airway trypsin-like protease
(HAT), also cleaves ACE2 leading to an increased coronavirus
entry into host cells (Heurich et al., 2014).

TMPRSS2 has been established as a host protein that is
instrumental in the spread of a number of viral infections
caused by coronaviruses and influenza A viruses (Gierer
et al., 2013; Glowacka et al., 2011; Heurich et al., 2014; lwata-
Yoshikawa et al.,, 2019; Matsuyama et al., 2010). However, it
has also been described as less essential for host’'s homeosta-
sis and developmental processes, a knockout of which did
not result in any adverse effects in mice, thus its functionality
could be dispensable (Hoffmann et al, 2020; Kim et al,
2006). This makes it a plausible and pursuable target for
inhibition towards the development of drugs against SARS-
CoV-2 (Hoffmann et al., 2020). A promising approach to pre-
venting viral entry and proliferation is computer-aided active
site-directed inhibition of targets as shown by previous stud-
ies including those on inhibitors against coronaviruses’ pro-
teases (Kaeppler et al., 2005; Niu et al., 2008; Verschueren
et al.,, 2008; Zhu et al., 2011).

In this study, due to the unavailability of TMPRSS2 crystal
structure, we built its homology model using the closely
related Serine Protease Hepsin as template followed by steps
of refinement in order to improve the quality of the model.
We then developed a ligand-based pharmacophore model of
druggable compounds against TMPRSS2 using as templates
six of the drugs, including camostat mesylate and nafamostat
mesylate (Hoffmann et al., 2020; Yamamoto et al,, 2016), that
have been identified as promising therapeutics against SARS-
CoV-2 and are being tested for repurposing. The pharmaco-
phore model was used in a structure-based virtual screening
approach to screen a database of over 750 million commer-
cially available compounds in an attempt to identify novel
drug-like compounds with similar pharmacophore features as
those of the model that could be explored for antiviral leads.
A total of top 3000 compounds were retrieved and computa-
tionally docked into the active site regions of the TMPRSS2
model. The docking scores of the top binders were re-vali-
dated and the topmost-ranked compounds were screened
for ADME and druglikeness properties. The ligand-receptor
complexes of the best ligands were subjected to molecular

dynamics simulation using GROMACS so as to comprehen-
sively assess the stability and structural flexibility of the com-
plexes, and to understand the protein-ligand interactions
therein. Further, using MMPBSA method the binding energies
in each case were also calculated, and various analyses of
the simulation results were carried out.

2. Materials and methods
2.1. Pharmacophore model identification

The pharmacophoric features of our experimental inhibitor
drugs were modeled through the PharmaGist web server
which can elucidate three-dimensional (3D) pharmacophores
from known drug-like compounds that can bind to a target
receptor (Schneidman-Duhovny et al., 2008). This method-
ology efficiently looks for pharmacophore patterns that are
possible, and report only the ones with the highest score
(Inbar et al., 2007). Detection of candidate pharmacophores
was through multiple flexible alignment of the ligands that
was input into the system and the ligands flexibility is expli-
citly treated in the process of alignment. PharmaGist charac-
teristic tolerance to outliers and other modes of binding is as
a result of its ability to detect pharmacophores that are com-
mon to a subset of input ligands. This serves as a compara-
tive advantage for the methodology that is made up of four
major stages (the preparation of ligands, pairwise alignment,
multiple alignment and solution clustering), before
the output.

In the ligand preparation stage, each of the ligands was
separately processed. Rotatable bonds in each ligand were
detected through this method and divided accordingly into
rigid groups. The ligands in addition were individually
assigned with a set of physiochemical features such as
anions, cations, hydrogen bond acceptors, hydrogen bond
donors, hydrophobic groups and aromatic rings. This process
was followed by the second stage which involves the com-
putation of pairwise alignment on the basis of a given pivot
and a target ligand. The pivot and ligand were treated as
rigid and flexible entities, respectively. The second stage out-
put is a large number of pairwise alignments with high
scores between each ligand and the pivot.

A selected pivot is also involved in the third stage of the
pharmacophore modeling method, where the pairwise align-
ments that were formed between each ligand and the pivot
were combined to form multiple alignments, with the aim of
detecting significant pivot features subsets that matches the
possible maximum number of pairwise alignment for each
ligand. This method therefore produced multiple alignment
for each subset size of the input ligands through the enu-
meration of all possible pivot features subset and the selec-
tion of only those that could be aligned by as many ligands
as possible. Candidate pharmacophores that were reported
are subsets of pivot features with significant scores.
Candidate pharmacophores that were obtained from various
pivot iterations were clustered in the last stage and only the
non-redundant ones with the highest scores for each mol-
ecule was reported.



2.2. Pharmacophore search in chemical library

Having successfully detected the consensus pharmacophore
features between our experimental compounds, we ran a
search through the ZINCPharmer database in search of pos-
sible ligands with similar features. ZINCPharmer (Koes &
Camacho, 2012) is a pharmacophore-based search engine for
chemicals that can be purchased and it provides a mechan-
ism for the derivation of an initial hypothesis for pharmaco-
phores, directly for protein data bank (PDB) structures.
ZINCPharmer also supports the importation of defined phar-
macophores that were developed with the aid of advanced
computational approaches and having their implementation
in third party tools. Recore (Maass et al.,, 2007) and Pharmer
(Koes & Camacho, 2011) which are newer approaches imple-
mented by the ZINCPharmer use indexing methods to scale
search times with the breadth and complexity of the query
but not the library size.

The Pharmer open-source software is used by the
ZINCPharmer to facilitate the interactive search of millions of
available conformations within few minutes. ZINC itself is a
collection of biologically relevant and likewise commercially
available compounds that are suitable for virtual screening.
The produced conformers undergo conversion into an effi-
cient format for database search using the Pharmer open-
source software. Pharmer uses the SMARTS matching Open
Babel toolkit (O’'Boyle et al., 2011) functionality for the identi-
fication of aromatic rings, positive or negative ions, hydrogen
bond acceptor and hydrogen bond donor, all of which are
possible pharmacophore features.

2.3. Homology modeling and evaluation of
model quality

Owing to the unavailability of TMPRSS2 crystal structure, we
built its homology model using the SWISS-MODEL server
(https://swissmodel.expasy.org/). SWISS-MODEL is an online
server that relies on ProMod3, a modeling tool based on the
OpenStructure computational framework for the generation
of protein models using homology (Biasini et al., 2014). The
protein sequence of TMPRSS2 isoform 1 (equivalent of
TMPRSS2 isoform 2 on NCBI database) was fetched onto the
SWISS-MODEL server by inputting its UniProtKB accession
code (015393-1). Suitable template structures for the model-
ing were searched using the SWISS-MODEL template library
(SMTL), a huge database of experimentally solved protein
structures built on PDB entries. SWISS-MODEL executes this
task by first running a sequence similarity search using the
BLAST (Camacho et al, 2009) and HHblits (Remmert et al.,
2011) databases simultaneously, and only homologues with
known PDB structures are returned as hits and ranked based
on QMEAN scoring function (Waterhouse et al, 2018). The
top-ranked structures were selected and used as templates
to build TMPRSS2 models.

Refinement of the best model was done using 3DRefine ser-
ver (http://sysbio.rnet.missouri.edu/3Drefine/) (Bhattacharya
et al., 2016) and GalaxyRefine (Heo et al., 2013) tool available on
GalaxyWEB server (http://galaxy.seoklab.org/). The qualities of
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the refined models were then analyzed using ERRAT (Colovos &
Yeates, 1993), ProSA (Wiederstein & Sippl, 2007) and by gener-
ating Ramachandran plots on PROCHECK (Laskowski
etal,, 1993).

2.4. Preparation of ligand library for docking

Molecular docking was carried out using PyRx 0.8 (Dallakyan
& Olson, 2015). The top 3000 compounds obtained using the
pharmacophore-based screening were retrieved from the
Zinc database and saved as a single SDF file. The compounds
were loaded onto PyRx using the Open Babel tool available
in the software. The energies of the ligands were minimized
using the uff geometry optimization force field, with the
optimization algorithm set to conjugate gradients at 200
total steps. The energy-minimized ligands were then con-
verted to the ready-to-dock PDBQT format.

2.5. Active site identification and preparation of
TMPRSS2 for docking

By running a conserved domain (CD)-search using the NCBI's
conserved domain database (CDD/SPARCLE), TMPRSS2 was
analyzed and its active site residues were predicted. We then
used COACH-D server (Wu et al., 2018), an improved version
of COACH server (Yang et al., 2013b), to further predict
TMPRSS2 putative ligand-binding sites. The active site resi-
dues of the 5CE1.A template were equally predicted in order
to carry out a model-template active site comparative ana-
lysis. We also used the original COACH server as a way of
validating the predicted binding sites. The CDD algorithm
searches a sequence of protein for footprints of conserved
domains and annotates the sequence with locations of the
domain families and subfamilies, characteristic amino acids
as well as functional sites deduced from identified footprints
(Marchler-Bauer et al., 2017).

The COACH-D algorithm employs methods that identify
ligand-binding templates from the BioLiP database of bio-
logically important ligand—protein interactions (Yang et al.,
2013a) using comparisons of binding-specific substructure
and sequence profile. The consensus predictions from the
different computational methods are then generated in order
to produce the final ligand binding site predictions. The top
five are results are selected as output and ranked according
to such parameters as prediction confidence score (C-score)
and docking energy for the complex built with ligands from
the PDB templates (Yang et al, 2013b). We manually exam-
ined the top five predicted binding sites and finally chose
and proceeded with the top two based on two criteria: (1)
prediction C-score and docking binding energy of the pre-
dicted ligand-binding site complex; (2) the presence of the
CDD-predicted active site residues in the binding site. The
TMPRSS2 model in its PDB format was loaded onto PyRx and
converted to PDBQT format while simultaneously setting it
as the target macromolecular ready for docking.
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2.6. Molecular docking

Docking was carried out on PyRx using the AutoDock Vina
option ran at an ‘exhaustiveness’ of 8. In order to define the
Vina search space, the grid box was centered at X=12.1477,
Y = -3.5864, Z=18.4151, with a grid dimension of
45.0279 A x 68.7439 A x 56.9456 A, thereby enclosing the
active site residues (including the catalytic triad and the sub-
strate binding site), the two predicted binding sites as well
as the neighboring regions surrounding them. Following a
series of ligand-receptor docking runs, Vina evaluates the
results, calculates the binding affinities of the ligands and
clusters the resulting poses based on their conformational
overlaps. The best pose from each cluster is chosen and the
ligands are then ranked according to their binding affinities
(Trott & Olson, 2010). The docking results of the top ligands
were first validated by re-docking them into the same
defined regions of the receptor using AutoDock Vina.

Re-validation of the binding scores and protein-ligand
interactions was then done by BINDSURF (Sanchez-Linares
et al, 2012). A blind docking of the ligands to the TMPRSS2
model was carried out using the BINDSURF Achilles blind
docking server (http://bio-hpc.eu/software/blind-docking-ser-
ver/) which carries out an exhaustive series of docking simu-
lations and calculations of the ligand to the entire protein
surface so as to identify sites with the best binding affinities.
The tool then uses a pose clustering algorithm to generate
clusters of the results, and the pose with the best binding
affinity in each cluster is chosen as the representative. The
BINDSURF tool analyses the docking results for protein-ligand
interactions by employing Protein-Ligand Interaction Profiler
(PLIP) algorithm (Salentin et al, 2015). We manually
inspected the representative clusters, and the best post hav-
ing the ligand bound at the predicted pocket was identified
and chosen for each compound. The protein-ligand interac-
tions of the AutoDock Vina-generated results were analyzed
using LigPlot (Laskowski & Swindells, 2011) and visualization
of binding pose of the complexes was done using PyMOL
(DeLano, 2002).

2.7. ADME and druglikeness analysis

The ADME (absorption, distribution, metabolism, excretion),
druglikeness and medicinal Chemistry parameters of selected
ligands were predicted using the SwissADME (Daina et al.,
2017) web tool (http://www.swissadme.ch/).

2.8. Molecular dynamics simulations and
structural analyses

The TMPRSS2-ligand complexes of the top two ligands as
obtained from the molecular docking step were subjected to
molecular dynamics simulation to understand the effect of
their binding on the structural stability and conformational
flexibility of TMPRSS2 and the complexes. The simulation
(MDS) was done using GROMACS 2018 (Lemkul, 2019) with
the GROMOS96 43A1 force field and in a size 1.0nm cubic
box under periodic boundary conditions, solvated with SPCE

water and neutralized by adding seven chloride ions. The
topology files of the ligands were generated using the
PRODRG2 server (Schuttelkopf & Van Aalten, 2004). The
steepest descent algorithm was deployed for the energy
minimization at 1000 steps with position restraint applied on
the TMPRSS2-ligands. The minimized system was subjected
to a two-phase equilibrium step. Temperature equilibration
at 300K was done on the system followed by pressure equili-
bration at 1bar for 50,000 ps. A 50ns production MDS run
was performed, maintaining the temperature at 300K and
the pressure at 1bar. Structural analysis was conducted on
the systems via its trajectory using the root mean square
deviation (RMSD), root mean square fluctuation (RMSF),
radius of gyration (Rg), analysis of hydrogen bonding and
solvent accessible surface area (SASA) to understand the dif-
ferences that could have occurred during the simulation
time. Xmgrace (Turner, 2005) was used for graph plotting
and Visual Molecular Dynamics (VMD) (Humphrey et al.,
1996) was used for visualization.

2.9. Calculation of binding and contribution energies
using MMPBSA

The binding energies of the complexes were calculated using
the Molecular Mechanics-Poisson Boltzmann Surface Area
(MMPBSA) protocols implemented in g_mmpbsa package
(Kumari et al., 2014) over the last 10ns of the 50-ns protein-
ligand trajectories. Origin 2018 (OriginLab, 2018) was used to
plot the MMPBSA calculations. The binding energies com-
pose the van der Waal and electrostatic interactions, the
solvation energy. The solvation energy comprises of the
polar and non-polar energy.

3. Results and discussion
3.1. Pharmacophore model identification

The input as earlier described is a compressed file containing
a set of six drug like compounds, four of which are serine
protease inhibitors (camostat mesylate, nafamostat, pefabloc
SC and phenylmethylsulfonyl fluoride) and the remaining
two being Janus-associated kinase inhibitors (baricitinib and
ruxolitinib). The output was a 3D depiction of candidate
pharmacophore features (Figure 1). This is a 3D pattern of
the shared physiochemical features between the input
ligands. The output in addition, also produced a 3D super-
position conformation of the input compounds for each can-
didate pharmacophore (Figure 2(A-F)). The algorithm
generally suggests the task solving through multiple flexible
druglike compounds alignment, but due to the enormity of
this task, provision was made for a heuristic solution in prac-
tice. The algorithm in addition is also based on the assump-
tion that one of the input ligands is in a conformation that is
very similar to the bound state, thereby acting as the pivot
where the remaining ligands will be aligned, although the
algorithm by default selects iteratively the input compound
that will act as the pivot.
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Figure 1. Three-dimensional depiction of the resulting candidate pharmacophore features. The output produced two common hydrogen bond acceptors (ACC)

and a single aromatic ring (AR) at varying distances.

Figure 2. Three-dimensional superposition of camostat mesylate (A), nafamostat (B), Pefabloc SC (C), phenylmethylsulfonyl fluoride (D), Baricitinib (E), and

Ruxolitinib (F) on each candidate pharmacophore.

3.2. Pharmacophore search in chemical library

The ZINCPharmer server output displays the distinct pharma-
cophore features within the aligned input ligands using a
Jmol-based molecular viewer. The aligned input ligands were
displayed in the form of sticks while the aromatic ring and
hydrogen bond acceptor pharmacophore features were pre-
sented in pink and purple mesh, respectively (Figure 3). The
result browser which links directly and the information about
the purchase of any selected compound display the zinc

identity of the top hits. For the purpose of this study, the
returned search hits were filtered down to the top 3000
compounds which were screened based on individual root
mean square deviation (RMSD) at a given conformation to
the query.

The spatial arrangement of enabling features of a com-
pound for interaction with a receptor target in a particular
binding mode is regarded as a pharmacophore. A pharmaco-
phore once identified can be used as a versatile application
model for rational drug design, such as lead optimization, de
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novo design, ADMET studies and virtual screening (Glner,
2000). With a given set of compounds with drug-like proper-
ties, our aim of carrying out this pharmacophore modeling
protocol is to locate the largest or highest scoring features
that is responsible for their binding to a specific receptor tar-
get in a 3D pattern. These features must be common to
most or preferably all the input compounds as projected in
Figure 1. This process is a challenging task based on the flex-
ible nature of the drug-like compounds and in most cases,
the number of input ligands, because the alignment of drug-
like compounds in the case of three rigid compounds has
been shown to be quite challenging, and more challenging
has been the case of two compounds where one is flexible
and the other is rigid (Akutsu & Halldérsson, 2000; Shatsky
et al., 2006).

The existing indirect method as used in this study for the
detection of the common pharmacophore features between
our compounds of interest greatly differs in its approach of
sorting the flexibility of drug-like compounds, as such a

Figure 3. Three-dimensional structural alignment display of experimental com-
pounds, showing the three points with consensus pharmacophore features.
Regions of consensus hydrogen bond acceptors are shown in pink mesh while
the region of the consensus aromatic ring is shown in purple mesh.
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compound may exhibit a wide range of potentially feasible
conformations due to its possession of several rotatable
bonds. For this reason, all possible feasible conformations
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3.3. Homology modeling and evaluation of
model quality

The SWISS-MODEL sequence alignment and template
search identified five crystal structures of Serine Protease
Hepsin as the top-ranked most related structures. Based on
its Global Model Quality Estimate (GMQE) score (which is
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using a particular template) being 0.53, sequence coverage
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ity of 51% with the template (Figure 4), Serine Protease
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build TMPRSS2 model. A template sharing a similarity of
more than 30% with the sequence of interest is generally
considered suitable and a model obtained therewith will
be expected to be reliable and plausible (Zhexin, 2006).
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Figure 4. Model-template sequence alignment of TMPRSS2 and Serine Protease Hepsin chain A (5CE1.A). Conserved catalytic triad residues are enclosed in

blue boxes.



Table 1. Summary of quality check and validation scores of TMPRSS2 hom-
ology model.

Server/tool Parameter Score
SWISS-MODEL QMEAN -1.43
ProSA-web Z-score -8.74
PROCHECK (Ramachandran plot) Most favored regions 87.3%
Additional allowed regions 12.4%
Disallowed regions 0.3%
G-factor -0.47
ERRAT plot Overall quality factor 94.97%
PyMOL (Model-Template alignment) RMSD 0.157 A

The QMEAN Z-score of the model generated was -1.43
(Table 1). The QMEAN score gives an estimate of the
degree of nativelikeness of the model, and scores close to
0 and not lower than -4.0 indicate models having satisfac-
tory agreement with experimental structures of similar size
(Benkert et al., 2011).

The TMPRSS2 model was refined using 3DRefine and
GalaxyRefine. Analysis of the refined models with Protein
Sequence Analysis tool (ProSA) and PROCHECK suggested
that the 3DRefined-model had higher improvement in qual-
ity and was hence selected for subsequent steps. The
ProSA tool calculates the overall quality score as a measure
of its Z-score in relation to the Z-scores of PBD experimen-
tally determined native structures (Wiederstein & Sippl,
2007). The Z-score of our model when validated with
ProSA-web was -8.74 (Figure 5(A); Table 1), which falls
within the range of those of the PDB native structures. In
addition, the amino acids local energy profile plot showed
that all the residues across the sequence have negative
values (Figure 5(B)) indicating favorable amino acid energy
profile, high accuracy and reliability of the model.
Ramachandran phi/psi torsion angles plot was generated
using PROCHECK (Laskowski et al, 1993). Based on the
plot, 99.7% of the residues in the modelled TMPRSS2 struc-
ture are in the allowed regions with 87.3% in the most
favored regions, 12.4% in additional allowed regions and
only 0.3% in disallowed regions (Figure 5(C); Table 1). This
indicate that the model has good stereochemical quality
and energetically favored geometry.

The ERRAT plot analysis of the model gave an overall
quality factor (OQF) of 94.97% which is very much above
the generally accepted score of >50%. ERRAT error plot is
a statistical analysis of the non-bonded atomic interaction
of protein structures with the quality level calculated as
OQF, and higher OQF scores implying higher model quality.
The TMPRSS2 model ERRAT plot (Figure 5(E)) showed that
most of the residues are properly folded with very low
error rate, hence the high OQF. The refined TMPRSS2 model
was structurally aligned and superimposed with the 5CE1
template PDB structure using PyMOL software (Delano,
2002). The structural alignment showed an RMSD of 0.157 A
(Figure 5(D); Table 1) indicating that the model had a very
high structural similarity with the template and thus reliable
and suitable for the study. In addition, a comparative
model-template active site analysis showed that identical
active site residues predicted by COACH-D for both the
model and the template were structurally conserved in the
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model as shown with stick representation (magenta) in
Figure 5(D). However, some of the binding site residues
that were predicted for only the template were not identi-
cal to the corresponding ones on the model when aligned
structurally, but the positions were rather occupied by
chemically similar amino acids. This shows that important
active site residues of TMPRSS2 were appropriately mod-
elled and the model is thus reliable.

3.4. Active site identification

Based on the CD-search, residues 256-487 of TMPRSS2 form
a domain characteristic of Trypsin-like serine proteases. The
CDD algorithm also identified a total of six amino acid resi-
dues that are especially important in the active site make-up
of TMPRSS2. They include three residues (His**®, Asp>**,
Ser**") found at the catalytic site (catalytic triad), and three
residues (Asp*®°, Ser*®, Gly*®?) found at the substrate bind-
ing site. The top two binding sites predicted by COACH-D
server are shown in Table 1. The best prediction had a confi-
dence score of 0.99, which indicates a very high reliability,
and -7.0kcal/mol docking energy of representative ligand
and template complex showing that potential ligands would
high a preference and affinity for the site (Wu et al., 2018).
The predicted binding site ranked second had a C-score of
0.11 which is higher than the other lower rank binding sites.
In addition, the binding residues of the top two predictions
included five of the six CDD-predicted active site residues
including the catalytic triad (Table 2). However, the lower
rank predictions included none of the CDD-predicted resi-
dues and they are also located farther from them. The top
two predicted binding sites were also validated by the
COACH server and thus were defined as the Vina search
space in the molecular docking step.

3.5. Molecular docking, ADME and drug-
likeness analysis

Virtual screening methods used in the identification of poten-
tial lead compounds against a target include ligand-based and
structural-based (receptor-based) methods (Cereto-Massagué
et al,, 2015; Clark, 2008; Kumar & Zhang, 2015). In this study,
107 out of the 3000 compounds that were docked with
TMPRSS2 gave higher binding scores than Nafamostat (the ref-
erence drug with the highest score of -8.20kcal/mol). The
binding scores of these ligands were validated by re-docking
them with TMPRSS2 and there were no much deviations when
compared with the first docking results. This shows that the
pharmacophore model obtained in this study was able to iden-
tify ligands with good binding affinity for the target.

A cut-off score of -8.70kcal/mol (well above the binding
affinity of the best reference drug) was set and 33 from the
107 compounds passed with binding scores above this set
threshold. The binding scores of these top-ranked com-
pounds as well as the reference drugs were further re-vali-
dated by BINDSURF Blind Docking Server. The binding
energies were remarkably similar to and consistent with
AutoDock Vina-generated scores. Overall, most of the top
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ligands including the reference drugs had a deviation of no
more that +0.40 kcal/mol. However, two lead compounds
(ZINC64606047 and ZINC05296775 also referred to as
LIGAND1 AND LIGAND2, respectively) from the top-ranked
ligands screened passed the various rules of leadlikeness and
druglikeness which included Lipinski's (Lipinski, 2002),
Ghose’s (Ghose et al, 2012), Veber's (Pollastri, 2010), and
Varma’s (Varma et al, 2004), Egan’s (Egan, 2010), Muegge’s
(Muegge, 2002), PAIN (Pan assay interference compounds)
(Baell et al, 2013) and Brenk alerts (Brenk et al., 2008),

indicating that they possess good druglike, leadlike and
medicinal chemistry properties.

ZINC64606047 (LIGAND1, IUPAC: 3-[[5-(3-fluorophenyl)pyri-
midin-2-yllamino~(N)-(4-methyl phenyl)benzamide]) showed
the highest binding affinity of -9.30kcal/mol, forming two
hydrogen bonds and four hydrophobic interactions with
TMPRSS2 as calculated by Autodock Vina (Table 3, Figure 6).
BINDSURF validated the binding energy as well as the bind-
ing interactions, with ZINC64606047 giving a binding energy
of -9.00 kcal/mol and two more hydrogen bonds with Val*®°
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Table 2. Active site residues and top two putative binding sites as predicted by COACH-D.

Docking energy of representative

Predicted binding site C-score ligand-template complex Predicted binding residues®

CD-Search_ active site - - His?%¢, Asp>*®, Asp*®°, Ser**", ser*®, Gly*¢2

COACH-D_ binding site 1 0.99 -7.0 His?%, Lys>*?, Asp®®, Ser*®S, Cys®, Asn*®, Gly*?, Ser**!, Thr*?,
Ser46°, Trp46], G|y462, Ser463, G|y4(’4, Cys465, G|y472

COACH-D_ binding site 2 0.11 -1.0 His?®, Val®®, Cys®®', His?%, Leu®®, Lys>*, Thr*®, Asp*®®, Ser3,

Cys437, Asn®3, G|y439, Asp44°, Ser*1 ser0, Trp461' G|y462’
G|y464’ G|y472

@Common residues with CD-predicted active site are in bold characters.

Table 3. Protein-ligand binding energy and interactions generated from docking with AutoDock Vina.

Residues involved in protein-ligand interactions

Binding energy

Ligands (kcal/mol) Hydrogen bonds (bond distance in A) Hydrophobic interactions (bond distance in R
ZINC64606047 (Ligand1) -9.30 Ser**'(3.52), His**%(2.87) Trp*®"(3.59), Gly*®%(3.93), GIn**3(3.77), Val**°(3.23)
ZINC05296775 (Ligand2) -9.20 His??%(3.40), Gly**(2.78), Ser**'(2.75) Val®(3.79), Val?*°(3.22), Leu®%(3.56), Leu®®%(3.20),
Pro?'(3.54), Glu®*°(2.87), Cys**’(3.64)

Nafamostat -8.20 Gly***(2.90), Asp*>(2.87), Trp*®"(3.19), His**%(3.31), Thr**°(3.90)

Val*®°(3.21), His*’°(2.93)
Camostat -7.20 Ser*"(2.38), GIn**3(2.31), Ser**%(2.89), His**(3.26) GIn**%(3.78)
Baricitinib -6.90 Ser*®°(3.36), Ser**'(2.98), Gly***(3.11), GIn**¥(3.29) Val?®°(3.91)
Ruxolitinib -6.70 Ser*'(3.06), Ser*®°(3.33), Gly***(3.05) Gly*%2(3.85), His?*®(3.50), Trp*®'(4.06), GIn**3(3.74)
Pefabloc -5.60 His>?%(3.10), Gly**(3.37), Ser*®(3.04), GIn**8(3.71)

Ser*(3.02), Asp*>(3.11)
Phenylmethyl sulfonylfluoride -5.00 His>?6(2.92), Gly**(3.34), Ser**'(3.41) Thr**°(3.48)

Trpd61

VALZBUT™S .
Gly462

\,
\

; : : His296

G .-l::%

ZINC64606047 (LIGAND1)
Figure 6. Hydrogen bonding and hydrophobic interactions of ZINC64606047 with TMPRSS2. 2D (A) and 3D (B) representations of its interactions and binding pose

within TMPRSS2 binding site.

(Table 4) in addition to those calculated by AutoDock Vina
(Table 3). Docking with Autodock Vina showed that
ZINC05296775 (LIGAND2, IUPAC: 3-(1,2-dihydroacenapthylen-
5-y)-(N)-[(-(E))-1-(4-methyl phenyl)ethylideneamino]-1-(H)-pyr-
azole-5-carboxamide) bound to TMPRSS2 with an energy of
-9.20 kcal/mol, forming three hydrogen bonds and seven
hydrophobic interactions (Table 3, Figure 7). Similarly, it gave
a binding energy of -9.40 kcal/mol with BINDSURF, albeit the
highest ranked (Table 4), forming three hydrogens bonds
with Gly**®, Ser**", and His**° and seven hydrophobic bonds
with the same residues as observed with AutoDock Vina. The
TMPRSS2 amino acid residues involved in ligand interactions
with LIGAND1 and LIGAND2 as indicated in Figures 6 and
7 are part of the residues that make up the binding pockets

1 and 2 (Table 2), as predicted by COACH-D, and even more
interestingly, residues of the catalytic triad were also inter-
acted with. This shows that LIGAND1 and LIGAND2 have the
potential of disrupting the binding of substrates to the
TMPRSS2 binding pockets as well as preventing catalysis by
the triad.

With AutoDock Vina, Nafamostat, Camostat, Baricitinib,
Ruxolotinib, Pefabloa, and Phenylmethylsulfonyl fluoride on
the other hand gave binding energies of -8.20, -7.20, -6.90,
-6.70, -5.60 and -5.00kcal/mol, respectively, as shown in
Figures 8-13, which were all lower than those of LIGAND1
and LIGAND2. The scores of the reference drugs were
adequately validated by the results of blind docking done
using BINDSURF with binding energies of -8.30, -7.50, -7.00,
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Table 4. Validation of docking scores and protein-ligand interactions by BINDSURF.

Residues involved in protein-ligand interactions

Binding energy

Ligands (kcal/mol) H-bonding (bond distance in R) Hydrophobic interaction (bond distance in 1y
ZINC05296775 (Ligand2) -9.40 Gly**(2.15), Ser**"(2.15), His?**°(2.61) Pro®"'(3.47), Val*®°(3.48), Leu*°%(3.51), Glu**(3.70),
Val?®°(3.80), Leu®°%(3.80), Thr**°(3.87)

ZINC64606047 (Ligand1) -9.00 Val?®°(2.95), Ser**'(2.88), Gly**(3.25), Val**°(3.52) Val?®°(3.39), Thr**°(3.63), GIn**(3.75), Val*’%(3.92)
Nafamostat -8.30 Gly*5*(1.95), Asp*®*(3.02), Ser**(3.13), Val*’3(3.29) Thr**°(3.75), GIn?%°(3.97)
Camostat -7.50 Ser*36(2.35), GIn**%(2.48) Ser**®(3.02), Ser**%(3.45), GIn*8(3.71)
Ruxolitinib -7.10 Gly*5*(2.06), Ser**"(2.13), His**%(3.04), Ser**'(3.06), Val?®°(3.62)

GIn**%(3.26), Gly***(3.49), Gly***(3.61)
Baricitinib -7.00 Gly*54(2.03), Ser**'(2.16), GIn**3(2.69), Val?®°(3.74)

His>?%(2.90), Gly***(3.34)
Pefabloc -5.50 Ser*3%(2.17), Ser**°(3.68) GIn**8(3.75)
Phenylmethyl sulfonyl fluoride -4.70 - Thr**°(3.47)

A :ﬂ%

G 1\43‘)

Gh;:%
Ser441

GLY464

gﬁi“_
Glyd64
cmv

GLY462(A)

ZINC05296775 (LIGAND?2)
Figure 7. Hydrogen bonding and hydrophobic interactions of ZINC05296775 with TMPRSS2. 2D (A) and 3D (B) representations of its interactions and binding pose

within TMPRSS2 binding site.

-7.10, 5.50 and 4.70 kcal/mol, respectively. The interacted res-
idues were equally similar in both docking exercises (Tables
3 and 4). Although the reference drugs also made hydrogen
bonds with TMPRSS2, but unlike LIGAND1 and LIGAND?2,
they generally made far lesser hydrophobic interaction with
residues of TMPRSS2 binding pocket. In addition to their
strong hydrogen bonding engagements with TMPRSS2, the
additional interactions of the lead compounds could account
for their higher binding affinities as shown by the dock-
ing results.

3.6. Molecular dynamics simulations and
structural analyses

The structural stability of the complexes was assessed using
the RMSD of the backbone atoms relative to the protein. The
RMSD describes the measure of the changes in the conform-
ation of a given structure over time. The complexes under-
went conformational fluctuation at different RMSD levels
before 25ns, but they equilibrated afterward with the
TMPRSS2 (apo protein). Both complexes of LIGAND1 and
LIGAND2, after equilibration at 25ns, maintained an overall

similar pattern of trajectory until the end of the simulation
time (Figure 14(A)).

The dynamic behavior of TMPRSS2-LIGAND1 showed a
minimum, maximum, and average RMSD of 0.098nm,
0.568 nm, and 0.452+0.068 nm, respectively. The trajectory
of TMPRSS2-LIGAND1 attained stability at 37 ns and remained
stable till the end of the simulation time with nearly no
structural deviations from the unbound TMPRSS2 as shown
in Figure 14(A). Likewise, the trajectory pattern of TMPRSS2-
LIGAND2 gave a minimum, maximum, and average RMSD of
0.112nm, 0.727 nm and 0.5277 £0.088 nm, respectively. The
maximum deviation was before equilibration at 25ns. It
became stable before 40 ns, and maintained the stability for
the last 12ns of the simulation time with a slight conform-
ational deviation of 0.05nm from the apo TMPRSS2, albeit
with similar trajectory pattern with TMPRSS2-LIGAND1. This
shows that the ligand maintained stable binding with the
receptor before the end of the simulation time.

3.6.1. Root mean square fluctuation analysis
RMSF analysis of the complexes in relation to apo TMPRSS2
was done in order to compare the dynamics of the individual
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Figure 9. Hydrogen bonding and hydrophobic interactions of camostat with TMPRSS2. Two-dimensional (2D) (A) and 3D (B) representations of its interactions and

binding pose within TMPRSS2 binding site.

residues of the protein backbone. Regions of the protein
with great flexibility had high RMSF. The loop regions being
the most flexible part of the protein had the greatest fluctua-
tions. The other regions that had less fluctuation are the con-
strained residues regions, where the ligands bound. The
minimum, maximum, and average RMSF fluctuation of the
TMPRSS2-LIGAND1 were 0.06, 0.562, and 0.187 +0.097 nm,
respectively and that of TMPRSS2-LIGAND2 were 0.078, 0.680
and 0.206 £0.107 nm, respectively, showing appreciably low
residual fluctuations.

TMPRSS2-LIGAND2 had overall higher fluctuations than
TMPRSS2-LIGAND1. RMS fluctuations of TMPRSS2-LIGAND1 at

the active site residue positions 296, 345 and 441 as well as
the substrate binding sites 435, 460 and 462 were lower
(with very low RMSF values of <0.10nm) than that of the
unbound TMPRSS2. Similarly, for TMPRSS2-LIGAND2 complex,
RMSF values at these positions (<0.15 nm) were either lower
than or equal to those of apo TMPRSS2. These show that the
binding of the ligands to TMPRSS2 at the active site con-
ferred structural stability on the complex. However, the rela-
tively higher residual fluctuation was observed at the N-
terminal, while the fluctuation decreased towards the C-ter-
minal region of the protein (Figure 14(B)) where the catalytic
and active sites residues are located (Table 2).
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and binding pose within TMPRSS2 binding site.

3.6.2. Radius of gyration

The stability of a protein in a biological system can also be
evaluated using analysis of the radius of gyration (Rg), which
describes the compactness of the protein. The complexes
demonstrated higher Rg deviations than apo TMPRSS2 at the
beginning of the simulation up to about 25 ns. However, the
radii of gyration of TMPRSS2-LIGAND1 and TMPRSS2-
LIGAND2 complexes became lower and more stable (at 2.03
and 2.05nm, respectively) than that of the unbound
TMPRSS2 after 25ns till the end of the simulation time,
whereas that of the unbound TMPRSS2 continued to fluctu-
ate increasingly up to 2.10nm (Figure 15(A)). The minimum,
maximum, and average Rg were 2.000, 2.154 and
2.063£0.03 nm, respectively for TMPRSS2-LIGAND1, and for

TMPRSS2-LIGAND2,  they  were 1.992, 2.115 and
2.032+0.150nm, respectively. This further shows that the
protein gained more stability upon the binding of
the ligands.

3.6.3. Solvent-accessible surface area

The solvent-accessible surface area (SASA) was evaluated to
characterize the regions of TMPRSS2 that are accessible to
solvent molecules. The apo TMPRSS2 and its ligand-bound
complexes maintained comparable SASA patterns through-
out the simulation time (Figure 15(B)). TMPRSS2-LIGAND1
maintained 145.651, 184.292, and 155+11.974nm? as the
minimum, maximum and the average SASA, respectively. The
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Figure 13. Hydrogen bonding and hydrophobic interactions of phenylmethylsulfonyl fluoride with TMPRSS2. Two-dimensional (2D) (A) and 3D (B) representations
of its interactions and binding pose within TMPRSS2 binding site.

minimum, maximum and average SASA for TMPRSS2- 3.6.4. Hydrogen bond analysis

LIGAND2 were 142.984, 183.877 and 154.596+6.213nm?  The stability of the TMPRSS2 complexes is maintained by
respectively. The patterns of SASA changes over the 50-ns several interactions which include electrostatic, hydrogen
simulation time for the complexes were similar to that of the bonds, hydrophobic interactions, etc. Analyses showed that
apo TMPRSS2. hydrogen bonds had a significant impact on the binding of
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LIGAND1 and LIGAND2 to TMPRSS2. The average number of
hydrogen bonds observed for TMPRSS2-LIGAND1 and
TMPRSS2-LIGAND2 were evaluated. Three hydrogen bonds
were predominantly formed in the TMPRSS2-LIGAND1
throughout the simulation. The hydrogen bonds of
TMPRSS2-LIGAND2 complex reduced from 5 to 3 towards the
end of the simulation (Figure 16).

Hydrogen bonding occupancy was also calculated for the
complexes using their trajectories. Gly*?', His?*®, Ser’*,
Ser**" of TMPRSS2 were the key residues taking part in
hydrogen bonding interaction with LIGAND1 and possessed
individual occupancy of 6.5%, 8.4%, 12.6%, 81.4%, respect-
ively. The TMPRSS2-LIGAND?2 key residues forming the hydro-

gen bonding include His?®®, GIn*%, Gly**°, Lys3*, Ser*,
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Val?®® with occupancy of 2.96%, 3.8%, 6.4%, 10%, 24.9%,
27.8%, respectively. This is highly consistent with the pro-
tein-ligand analyses of both Vina- and BINDSURF-generated
docking results (Tables 3 and 4) as residues His**® and Ser**'
in particular were established to be involved in hydrogen
bonding with LIGAND1 (Figures 6); and residues His?%,
Gly**° and Ser**' in particular with LIGAND2 (Figure 7). In
addition, the higher percentage occupancy of Ser**' than
other residues observed for both ligands suggests that it is
the residue most involved in hydrogen bonding with the
ligands, and this is further corroborated by its hydrogen
bond distance being the shortest for both ligands as shown
in Tables 3 and 4. Importantly, Ser**" and His**® are part of
TMPRSS2 catalytic triad, and interaction of the ligands with
them is expected to abolish or at least disrupt catalysis.

3.6.5. Principal component analysis

The principal component analysis (PCA) was used to investi-
gate the significant motions during the binding of the
ligands to protein. In this study, the eigenvectors were
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LIGAND2 complexes.

calculated by diagonalization of the matrix. The decreasing
order of the eigenvalue against the corresponding eigen-
vector for both complexes is represented in Figure 17(A).
The eigenvalues represent the collective motion of particles,
where the values of the vectors show how often the corre-
sponding atom participated in the motion. The first 10 eigen-
vectors from the 50 eigenvectors selected for calculation
accounted for 96.20% and 98.55% for TMPRSS2-LIGAND1 and
TMPRSS2-LIGAND?2, respectively.

The dynamics of the system were also assessed using a
two-dimensional projection of PCA (PC1 and PC2) for the
prediction of motions in the complexes. PC1 is denoted as
the most significant and it accounts for the maximum vari-
ability in terms of internal motion of proteins while PC2
accounts for the remaining variability (Pandey et al, 2019).
From the 2D projection, a complex with stable cluster occu-
pying less phase space represents a stable complex, and the
complex that shows a non-stable cluster and occupies more
space represents a less stable complex. Both TMPRSS2-
LIGAND1 and TMPRSS2-LIGAND2 occupied small phase
spaces, but TMPRSS2-LIGAND2 occupied more space and has
a wide cluster as compared to the TMPRSS2-LIGAND1.

3.7. Calculation of binding and contribution energies
using MMPBSA

The binding energies of the complexes and their individual
components obtained from the MMPBSA calculations are
shown in Table 5. For each of the two complexes, negative
overall binding energies were obtained indicating spontan-
eity of their binding. The individual component of the two
complexes possessed negative energies except for the polar
solvation energies. The relative binding energies of the two
complexes showed there was a strong binding of the ligands
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Table 5. Summary of the energy component of the complexes in kJ/mol. VAW — Van der Waal Energy, ELECTROSTATIC —
Electrostatic Energy, PSE — Polar Solvation Energy, SASA — Solvent Accessible Surface Area Energy.

Complexes Vdw Electrostatic PSE SASA Binding energy
TMPRSS2-LIGAND1 -284.56 £10.57 -15.16+£7.36 130.11 £ 15.65 -21.14£1.04 -190.75+16.39
TMPRSS2-LIGAND2 -192.16 £12.25 -13.63£7.01 81.81+13.01 -16.19+£1.07 -140.16 £ 14.93

to TMPRSS2. Key residues contributing to the binding free
energies of LIGAND1 and LIGAND2 to TMPRSS2 were ana-
lyzed. The average contributing energies of the residues to
the binding energies of the two complexes are shown in
Figure 18. In TMPRSS2-LIGAND1, the main contributing ener-
gies were from Trp*®', His**S, GIn**8, Ser*s®, Asp**®, Lys**?,
Lys*° having -9.45, -8.03, -6.29, -5.24, -4.74, 18.82 and
7.71kJ/mol, respectively. While in TMPRSS2-LIGAND2, the
main energy-contributing residues included Cys*’, Cys**’,
GIn*8, val?®, Lys** and Lys**° having -11.69, -6.52, -5.88,
-5.49, 11.45 kJ/mol, respectively.

4. Conclusion

Computationally, we have identified two commercially avail-
able druglike compounds (ZINC64606047 and ZINC05296775)
against TMPRSS2 using a pharmacophore model of experi-
mentally tested drugs, a homology model and molecular
docking. The compounds were analyzed and predicted to
have satisfactory ADME, physicochemical and medicinal
Chemistry properties. Further studies using molecular dynam-
ics simulations and subsequent analyses showed that the
two compounds possess good stability and dynamics within
the TMPRSS2 active site. The results of this study showed
that the compounds demonstrated to be good leads with
potential of being inhibitor drugs against TMPRSS2 that
could be optimized for tests against SARS-CoV-2. However,
further experimental studies are required to better assess
these compounds.
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