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A B S T R A C T   

Behavioral self-regulation develops rapidly during childhood and struggles in this area can have lifelong negative 
outcomes. Challenges with self-regulation are common to several neurodevelopmental conditions, including 
Autism Spectrum Disorder (ASD). Little is known about the neural expression of behavioral regulation in children 
with and without neurodevelopmental conditions. 

We examined whole-brain brain functional correlations (FC) and behavioral regulation through connectome 
predictive modelling (CPM). CPM is a data-driven protocol for developing predictive models of brain–behavior 
relationships and assessing their potential as ‘neuromarkers’ using cross-validation. The data stems from the 
ABIDE II and comprises 276 children with and without ASD (8–13 years). 

We identified networks whose FC predicted individual differences in behavioral regulation. These network 
models predicted novel individuals’ inhibition and shifting from FC data in both a leave-one-out, and split halves, 
cross-validation. We observed commonalities and differences, with inhibition relying on more posterior net-
works, shifting relying on more anterior networks, and both involving regions of the DMN. 

Our findings substantially add to our knowledge on the neural expressions of inhibition and shifting across 
children with and without a neurodevelopmental condition. Given the numerous behavioral issues that can be 
quantified dimensionally, refinement of whole-brain neuromarker techniques may prove useful in the future.   

1. Introduction 

Childhood is a period when critical skills such as behavioral self- 
regulation are acquired and continually refined (Dajani and Uddin, 
2015). Behavioral regulation skills allow children to succeed at school as 
well as socially (Diamond, 2013; Faja and Nelson Darling, 2018; Blair 
and Raver, 2015). At school, these skills enable children to follow 
teacher instructions despite distractions and to modulate arousal in a 
novel and demanding environment, which both contribute directly to 
their academic performance (Graziano et al., 2007; Blair, 2002). So-
cially, a child who has better self-regulation will have less frequent and 
less intense shifts in behavior, leading to more positive relationships 
with teachers and peers (Blair and Raver, 2015; Graziano and Hart, 
2016). Relatively weaker behavioral self-regulation on the other hand 

associates with greater daily-life challenges and an increased risk for 
psychiatric diagnoses (Faja and Nelson Darling, 2018; Leung et al., 
2016; de Vries and Geurts, 2015). 

Children with neurodevelopmental conditions (NDCs) are known to 
struggle with behavioral self-regulation and exhibit problems with ex-
ecutive functions more generally (Schmitz et al., 2006; Schmitt et al., 
2018; Ting and Weiss, 2017; Shaw et al., 2014). Executive function 
difficulties have been both theoretically and experimentally linked to 
the diagnostic symptoms of NDCs, such as most strikingly in Autism 
Spectrum Disorder (ASD): difficulty with normed social interactions and 
communication; circumscribed interests and repetitive behaviors; and 
both internal (anxiety, depression) and external (aggression, hyperac-
tivity) emotional struggles (Faja and Nelson Darling, 2018; Leung et al., 
2016; Ting and Weiss, 2017; Turner, 1999; Mosconi et al., 2009; de Vries 
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and Geurts, 2012; Lopez et al., 2005; Yerys et al., 2009; D’Cruz et al., 
2013; Miller et al., 2015; Lieb and Bohnert, 2017). Yet, little is known 
about the brain correlates of behavioral regulation across typically 
developing children and children with NDCs. 

Behavioral regulation skills begin to develop in early childhood, 
rapidly increase during elementary school years and continue to 
improve through adolescence and adulthood (Anderson, 2002; Dick, 
2014; Cepeda et al., 2001). Children may have trouble in multiple as-
pects of behavioral regulation subdomains, including inhibitory control 
processes, cognitive flexibility, and emotional control processes (Dia-
mond, 2013; Faja and Nelson Darling, 2018; Chan et al., 2008; Gioia 
et al., 2000). Inhibitory control is the ability to suppress interfering 
distractions and prepotent motor responses (Diamond, 2013; Faja and 
Nelson Darling, 2018; Nigg, 2000). Cognitive flexibility, which is typi-
cally measured using set-shifting, refers to the readiness with which one 
can switch from one task or mindset to another (Diamond, 2013; Miyake 
et al., 2000; Armbruster et al., 2012). Finally, emotional control, also 
termed ‘cognitive control of emotion’ or emotion regulation, is the 
processes by which we influence which emotions we have, when we 
have them, and how we experience and express them (Ochsner et al., 
2012; Gross, 2002). Studies indicate that reduced inhibition (Faja and 
Nelson Darling, 2018; Schmitt et al., 2018; Geurts et al., 2014; Voorhies 
et al., 2018), reduced cognitive flexibility (Van Eylen et al., 2015; Geurts 
et al., 2009) and reduced emotion control (Ting and Weiss, 2017; Richey 
et al., 2015; Berkovits et al., 2017) may all be issues for children with 
ASD. 

The brain networks implicated in these three subdomains of behav-
ioral regulation are heavily intertwined. Common pathways - largely 
identified through task-based fMRI studies - most prominently revolve 
around areas in the prefrontal cortex (PFC), such as the ventrolateral 
PFC (vlPFC), the dorsolateral PFC (dlPFC), ventromedial and dorsome-
dial PFC (vmPFC/dmPFC), as well as the anterior cingulate cortex 
(ACC). For example, data suggests that the vlPFC supports reflexive 
reorienting, motor inhibition, and action updating (Levy and Wagner, 
2011), the selection of the most efficacious response set when con-
fronted with a task requiring various possible responses (Badre and 
Wagner, 2006; Dippel and Beste, 2015), and deliberately increasing or 
decreasing negative affect (Ochsner et al., 2004). Enhanced dlPFC ac-
tivity and also enhanced activity in medial prefrontal structures is often 
observed in conflict paradigms, which require inhibitory control of 
prepotent but incorrect responses and set-shifting to reframe the prob-
lem (Oldrati et al., 2016); such paradigms include emotional conflict 
paradigms where the preprotent responses that need to be controlled are 
emotional (Rohr et al., 2016; Etkin et al., 2010; Egner et al., 2008). In 
addition, areas in the parietal and temporal lobes, such as the inferior 
parietal lobule (IPL), the superior temporal gyrus (STS) and the temporal 
pole, as well as limbic structures, most notably the insula and amygdala, 
are known to play important roles in cognitive flexibility (Niendam 
et al., 2012) and emotion control (Rohr et al., 2016; Zaki et al., 2012; 
Rohr et al., 2015; Ferri et al., 2016). 

Despite a dominant focus on prefrontal brain regions in the behav-
ioral regulation literature, distributed regions and their interactions 
have also been implicated. For example, changes in inter-regional syn-
chrony, i.e. functional connectivity or correlation (FC), during 
emotional control processes have been observed between IPL and 
vmPFC, and STS and dmPFC (Rohr et al., 2016), as well as between 
parietal structures and the amygdala (Ferri et al., 2016). Meta-analytic 
evidence (Niendam et al., 2012) lends further support to the involve-
ment of a distributed network including parietal and temporal areas and 
the importance of FC. Importantly, FC can be measured both during 
behavioral regulation tasks, as in the literature noted above, as well as at 
rest, where it is thought to reflect intrinsic functional brain organization 
that is reflective of an individual’s attributes, including cognitive and 
behavioral traits (Rohr et al., 2015; Raichle, 2015; Rohr et al., 2013). FC 
work on this topic in NDCs in sparse; in ASD, distributed network pat-
terns have been associated with social symptoms (Lake et al., 2019), but 

less is known about distributed FC in relation to behavioral regulation. 
It should be noted that while the neural substrates of executive 

functioning and behavioral regulation have been extensively studied in 
neurotypical adults (Rohr et al., 2016, 2015) and adolescents/young 
adults with affective or developmental disorders (Etkin et al., 2010; 
Kana et al., 2007; Solomon et al., 2009), less is known generally about 
the neural expression of behavioral regulation in children and children 
with NDCs such as ASD (Dajani and Uddin, 2015; Yerys et al., 2009): 
previous work was conducted in relatively small samples (total N 
range ¼ 24–38) and with varying success (Ambrosino et al., 2014; 
Shafritz et al., 2015; Lee et al., 2009). The neural signatures of many 
NDCs, and in particular ASD, have been elusive due to heterogeneity in 
these conditions, so taking a dimensional approach to look at specific 
features may be more promising (Lake et al., 2019; Ameis et al., 2016; 
Uddin et al., 2017). In particular, whole-brain FC signatures that asso-
ciate with aspects of behavioral regulation are not well studied. This is 
despite the widespread repercussions of suboptimal behavioral regula-
tion that persist into adulthood, and the enormous potential of 
whole-brain FC profiles as ‘neuromarkers’ for diagnosis and individually 
tailored treatment. 

Here we use connectome predictive modelling (CPM), a data-driven 
protocol for developing predictive models of brain–behavior relation-
ships from FC data using cross-validation (Shen et al., 2017), to examine 
whole-brain linear associations of behavioral regulation and their utility 
as ‘neuromarkers’. Using data from children with and without ASD, who 
together show a range of behavioral regulation skills, we hypothesize (a) 
that FC models of behavioral regulation can be built across an aggregate 
sample including data from children with and without an NDC, (b) that 
frontoparietal, limbic and default mode networks underlie behavioral 
regulation, and (c) that neuromarkers built in a subset of the sample can 
then be used to predict behavioral regulation scores in another, unseen 
subset of children. 

2. Methods 

2.1. Participants 

For this study we used two datasets from the Autism Brain Imaging 
Data Exchange II (ABIDE-II) database (Di Martino et al., 2017). These 
sites were chosen because they included Behavior Rating Inventory of 
Executive Function (BRIEF (Gioia et al., 2000)) behavioral regulation 
scores and resting state fMRI data from children aged 8–13 years with 
and without ASD. Specifically, we analyzed the datasets collected at 
Georgetown University (GU) and the Kennedy Krieger Institute (KK), 
which are publicly available under fcon_1000.projects.nitrc.org/in-
di/abide/abide_II.html. At both sites, children were introduced to an 
MRI simulator first and given the opportunity to familiarize themselves 
with the experience of undergoing an MRI scan with their eyes open. 
Potential participants were excluded if they had a history of neurological 
or psychiatric disorders (the latter only in the typically developing (TD) 
group), contraindications for MRI, or if they had other medical problems 
that prevented participation. Nine participants did not have behavioral 
data on file and were excluded from the analysis. Participants’ data were 
further evaluated for outliers in behavioral measures, high inconsistency 
scores on the BRIEF or excessive motion on the fMRI scans. For the 
behavioral measures, outliers were defined as > 3 SD from the mean. 
One participant was excluded due to this criterion in the subdomain of 
emotion control and shifting, and 6 in the subdomain of inhibition. An 
additional participant was excluded due to this criterion in analyses that 
involved the social responsiveness scale (SRS). Five participants were 
excluded because of inconsistency scores >7. Twenty-six participants 
had excessive head motion on their fMRI scan (>4 mm maximum ab-
solute displacement). The final samples and participant characteristics 
are given in Table 1. 
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2.2. Cognitive and behavioral assessment 

The cognitive and behavioral data used for analysis included IQ, 
handedness, ASD symptoms and behavioral regulation scores. IQ was 
measured using the Wechsler Intelligence Scale for Children – Fourth or 
Fifth Edition (WISC IV (Wechsler, 2003); WISC-V (Wechsler, 2014)) 
across the KK site, while in the GU site it was assessed using the WISC-IV 
or the Wechsler Abbreviated Scale of Intelligence (WASI (Wechsler, 
1999)). Handedness was determined with the Edinburgh Handedness 
Inventory (Oldfield, 1971) in the KK site; in the GU site handedness was 
obtained by self- and parent-report. As an estimate of ASD symptoms, 
social responsiveness was measured using the Social Responsiveness 
Scale (SRS), Edition 1, version 1 (Constantino and Gruber, 2007) in the 
GU site and either in Edition 1, version 1 or Edition 2, version 1 (Con-
stantino and Gruber, 2012) in the KK site. Behavioral regulation in the 
datasets was assessed with the BRIEF (Gioia et al., 2000), a parent 
assessment of executive function behaviors for children aged 5–18 years. 
BRIEF subscales provide measures of three domains of behavioral 
regulation, which are labelled “inhibit”, “shift”, and “emotional con-
trol”. The “inhibit” subscale assesses the ability to resist impulses and to 
stop one’s own behavior” (sample item: “acts wilder or sillier than others 
in groups (birthday parties, recess)”). The “shift” subscale assesses the 
ability to move freely from one situation, activity, or problem to 
another; to tolerate change, and to switch or alternate attention (sample 
item: “resists or has trouble accepting a different way to solve a problem 
with schoolwork, friends, chores, etc.”). Finally, the “emotional control” 
subscale assesses the ability to regulate emotional responses appropri-
ately (sample item: “overreacts to small problems”). T-scores for both 
the SRS and the BRIEF were used for analysis. 

2.3. Analysis of cognitive and behavioral measures 

To assess differences in characteristics (demographics, cognitive 
abilities and outcomes of interest) between children with and without 
ASD, as well as between groups within and across the two sites, t-tests 
were computed. Further, to assess the relationship between behavioral 
regulation scores, ASD symptom scores and IQ, Pearson’s correlations 
were computed. One-way ANOVAs were used to assess potential dif-
ferences in behavioral regulation scores, ASD symptom scores and IQ in 
relation to handedness. Behavioral analyses were carried out using SPSS 
22 (Chicago, IL). 

2.4. MRI data acquisition parameters 

Data were acquired on a 3 T Siemens Magnetom TrioTim at the GU 
site, and on a 3 T Philips Achieva at the KK site. Children were instructed 
to keep their eyes open at both sites. Functional images were acquired 
using a gradient-echo EPI sequence in 43 axial slices (154 volumes, 
TR ¼ 2000 ms, TE ¼ 30 ms, FA ¼ 90, matrix size 64 � 64, voxel size 
3 � 3 � 3 mm3; duration: 5.14 min) at the GU site, and in 47 axial slices 
(128 volumes, TR ¼ 2500 ms, TE ¼ 30 ms, FA ¼ 75, matrix size 96 � 96, 
voxel size 2.67 � 2.67 � 3 mm3; duration: 5.3 min) at the KK site. 
Anatomical scans were acquired using a T1-weighted MPRAGE sequence 
(GU: TR ¼ 2530 ms, TE ¼ 3.5 ms, FA ¼ 7, voxel size 1 � 1 � 1 mm3; KK: 
TR ¼ 8.2 ms, TE ¼ 3.7 ms, FA ¼ 8, voxel size 1 � 1 � 1 mm3). 

2.5. MRI data preprocessing 

Data preprocessing was done using functions from FSL (Smith et al., 
2004) and AFNI (Cox, 1996); the specific functions are denoted in 
brackets. Anatomical data was deobliqued (3drefit), oriented into FSL 
space (RPI) (3dresample) and skull-stripped (3dSkullStrip and 3dcalc). 
Functional data was also first deobliqued (3drefit) and oriented into FSL 
space (RPI) (3dresample). The pipeline further consisted of motion 
correction (MCFLIRT), skull-stripping (3dAutomask and 3dcalc), spatial 
smoothing (6 mm Gaussian kernel full-width at half-maximum) 
(fslmaths), grand-mean scaling (fslmaths), registration to the partici-
pant’s anatomical scan (FLIRT), and normalization to the McConnell 
Brain Imaging Center NIHPD asymmetrical (natural) pediatric template 
optimized for ages 7.5–13.5 years (Fonov et al., 2011) (FLIRT), followed 
by normalization to 2 � 2 � 2 mm MNI152 standard space (FLIRT). 

2.6. Head-motion and physiological confound mitigation procedure 

We used a four-step process to address motion and physiological 
confounds in the data. First, we used motion estimates derived from the 
preprocessing in order to exclude participants with excessive head mo-
tion; scans were excluded if they exhibited > 4 mm maximum absolute 
displacement. Second, on the participants who were retained for anal-
ysis, we used AROMA, an ICA-based cleaning method (Pruim et al., 
2015), which has recently been shown to be most effective in mitigating 
the impact of head motion (Parkes et al., 2018), and allows for the 
retention of the remaining ‘true’ neural signal within an affected volume 
(Kaufmann et al., 2017). AROMA is an automated procedure that uses a 
small but robust set of theoretically motivated temporal and spatial 

Table 1 
Participant characteristics in the GU site, the KK site and the combined sample. Means and standard deviations (in brackets) are given for the total samples comprised of 
both TD and ASD participants, which were used to build the models, as well as for TD and ASD participants separately. Motion (mm) refers to the absolute maximum 
displacement at any timepoint in the resting-state fMRI scan prior to motion mitigation and denoising procedures. n ¼ number of participants; m ¼male; f ¼ female; 
L ¼ left-handed; A ¼ ambidextrous; R ¼ right-handed; IQ ¼ Intelligence Quotient; FIQ ¼ full scale IQ; VIQ ¼ verbal IQ; PIQ ¼ performance IQ; SRS ¼ Social Respon-
siveness Scale (total score). SRS, inhibition, shifting and emotion control are given as T scores. * denotes deviating numbers in the Inhibition models, for which an 
additional six outliers (>3 SD in score; all ASD participants) were removed. ** SRS scores were not available for some participants in the KK site (140 out of 145 TD and 
47 out of 49 ASD); 1 participant with ASD from the GU site was removed as an outlier in SRS scores. y denotes a significant difference between TD and ASD children (see 
Supplementary Table S1 for p-values).   

GU Site KK Site Combined Sample  

Total TD ASD Total TD ASD Total TD ASD 

n 82 46 36 194 145 49 276 191 85 
Age 10.8 (1.6)y 10.5 (1.7) 11.2 (1.4) 10.3 (1.3) 10.3 (1.2) 10.3 (1.5) 10.5 (1.4) 10.4 (1.3) 10.7 (1.5) 
Sex (m/f) 54/28y 23/23 31/5 128/66 93/52 35/14 182/94y 116/75 66/19 
Handedness (L/A/R) 9/0/73 3/0/43 6/0/30 12/16/166 10/10/125 2/6/41 21/16/239 12/10/168 8/6/71 
Motion 1.1 (0.7) 1.1 (0.7) 1 (0.7) 1.4 (0.9) 1.2 (0.8) 1.8 (0.9) 1.3 (0.9)y 1.2 (0.8) 1.5 (0.9) 
FIQ 120.2 (14.2) 121.7 (14.2) 118.3 (14.3) 111.9 (12.7)y 114.6 (10.4) 103.7 (15.5) 114.3 (13.7)y 116.3 (11.8) 109.8 (16.6) 
VIQ 121.8 (14.9) 121.8 (15.5) 121.7 (14.4) 116 (13.7)y 118.2 (11.8) 109.4 (16.9) 117.7 (14.3)y 119.1 (12.8) 114.6 (16.8) 
PIQ 115.9 (13.7) 116.9 (13.4) 114.1 (14.4) 109.4 (12.8)y 110.8 (12.1) 105.4 (14.3) 111.1 (13.4)y 112.2 (12.6) 108.4 (14.8) 
SRS** 56.3 (17.2)y 43.9 (6.4) 72.6 (12.5) 51.5 (16.1)y 43.2 (5.3) 76.4 (10.7) 53 (16.5)y 43.4 (5.6) 74.8 (11.5) 
Inhibition* 50.1 (9.8)y 44.9 (6.3) 56.8 (9.5) 47.9 (10)y 43.8 (6.1) 61.7 (8.4) 48.6 (10)y 44.1 (6.1) 59.4 (9.2) 
Shifting 53.8 (14.6)y 44.6 (6.8) 65.5 (13.5) 49.7 (13.9)y 43.4 (7.1) 68.5 (12) 50.9 (14.2)y 43.7 (7) 67.2 (12.7) 
Emotion Control 51.5 (11.7)y 45.2 (7.7) 59.6 (11.1) 47.5 (11)y 43. 5 (7.1) 59.4 (11.8) 48.7 (11.3)y 43.9 (7.3) 59.5 (11.5)  
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features (timeseries and power spectrum) to distinguish between ‘real’ 
neural signals and motion artifacts. We chose a conservative threshold 
(‘aggressive’) in order to decrease the chance of false positives. In other 
words, more components are removed as this threshold is more con-
servative about what is retained. Noise components identified by 
AROMA were removed from the data. Third, images were de-noised by 
regressing out the six motion parameters, as well as signal from white 
matter, cerebral spinal fluid and the global signal, as well as their 
first-order derivatives (Parkes et al., 2018). While there is currently no 
gold standard (Murphy and Fox, 2017) regarding the removal of the 
global signal, we chose to remove it based on recent evidence that it 
relates strongly to respiratory and other motion-induced signals, which 
persist through common denoising approaches including ICA and 
models that attempt to approximate respiratory variance (Power et al., 
2018). Motion (defined as each participant’s absolute maximum 
displacement) was substantially reduced following this procedure 
(before: 1.28 mm � 0.85 mm; after: 0.05 mm � 0.07 mm). As a final 
step, as described in more detail below, head motion was incorporated 
into models by removing connections that remained significantly 
(p < 0.05) associated with z-scored motion before cleaning in a Pear-
son’s correlation (Rosenberg et al., 2018). 

2.7. Connectome-predictive modelling 

To elucidate how behavioral regulation skills are reflected in chil-
dren’s whole-brain FC profiles (or ‘connectomes’), and how they vary 
across children with and without ASD, we utilized a protocol termed 
Connectome Predictive Modelling (CPM). CPM is an algorithm for 
building predictive models based on participants’ FC matrices, and for 
testing these models using cross-validation of novel data. Scripts are 
written in MATLAB and are freely available at www.nitrc.org/project 
s/bioimagesuite. The CPM protocol is described in detail in Shen 
et al., 2017 and has previously been applied to pediatric data sets 
including data from the ABIDE sample (Lake et al., 2019; Rosenberg 
et al., 2018, 2016; Finn et al., 2015). We followed the CPM protocol 
(Shen et al., 2017), as well as recent recommendations for predictive 
modelling (Scheinost et al., 2019), in calculating each participant’s FC 
profile, building models of behavioral regulation, and in running the 
following analyses: (1) a leave-one-out cross-validation to evaluate the 
potential of models to predict an unseen participant’s score, where N-1 
participants are used to build the predictive model and the model is 
subsequently tested on the left-out participant; (2) a split halves pre-
diction where all available data was randomly split and models built in 
the first half were used to predict individuals in the second half and vice 
versa; (3) a site-to-site prediction where models built in the GU site were 
used to predict individuals in KK site and vice versa. We describe how we 
calculated FC matrices, built the models and ran these analyses in the 
following sections. 

2.7.1. Calculation of FC profiles 
A functionally defined atlas, consisting of 268 cortical and subcor-

tical regions-of-interest (‘nodes’) that cover the whole brain (Shen et al., 
2013), was used. For each child, we extracted the timecourse of each 
node by taking the mean across voxels and a 268 � 268 connectivity 
matrix was calculated between timecourses of node pairs using Pear-
son’s correlation followed by Fisher’s Z transformation. Thus, each 
connection (or ‘edge’) in the matrix represents the strength of FC be-
tween two nodes, and the matrix as a whole represents a child’s FC 
profile or functional connectome. 

2.7.2. Building FC models of behavioral regulation 
Models were built relating z-scored behavioral regulation subscales 

(emotional control, shift, inhibit) to FC matrices across participants with 
and without ASD from both sites. Prior to modeling, effects of motion 
and site were eliminated from participants’ FC profiles by masking out 
connections that were significantly (p < 0.05) associated with motion in 

a Pearson correlation or different between sites in a t-test. 6915 out of a 
possible 35,778 ( ¼ 268 � 267, adjusted for the diagonal, divided by 2, 
because matrices are symmetric) nodes were eliminated at this step due 
to motion, leaving 28,863 valid nodes in the matrix; accounting for site 
brought this number down to 23100. For model building, each edge in 
the matrix was correlated with the behavioral regulation measures 
(again in a Pearson’s correlation), and only significantly correlated 
edges (p < 0.01) were selected and retained. These selected edges were 
first separated into positively and negatively associated edges based on 
the direction of the correlation, as they may be interpreted differently in 
terms of their functional roles, and then summed for each participant, 
yielding a single summary FC value per participant for each of the 
positive and negative edge models. In other words, each participant FC 
had two summary FC values, one for a network that positively associated 
with behavioral regulation and one for a network that negatively asso-
ciated with behavioral regulation. Finally, a predictive model was built 
that fits a linear regression between each participants’ summary FC 
value and the behavioral regulation variable of interest (Shen et al., 
2017). 

2.7.3. Cross-validation: leave-one-out prediction 
To evaluate the potential of models to predict an unseen participant’s 

score, one participant was removed from the dataset and the remaining 
participants (N-1) were used to build the predictive model. The left-out- 
participant’s score was predicted based on the N-1 sample’s fit of the 
linear regression model, and this step was repeated in an iterative 
manner with a different participant left out in each iteration. Spear-
man’s rs was used to evaluate model performance i.e. comparing actual 
to predicted scores because it is less sensitive to the effect of outliers than 
Pearson’s r and because CPM predictions are best considered relative 
rather than absolute (Rosenberg et al., 2018, 2016). Only models that 
showed a significant correlation at p < 0.05 between observed and 
predicted scores at this step were subjected to follow-up testing. 

2.7.4. Evaluation of the predictive model 
The predictive potential was assessed by comparison of the predicted 

and observed scores in the full model, and statistical significance was 
assessed using permutation testing (5000 iterations). Permutation (i.e., 
randomization) testing was used to assess significance because the 
assumption underlying the standard r-to-p conversion employed in the 
leave-one-out cross-validation (see above) is violated: folds are not in-
dependent and thus the number of DOF is over-estimated (Rosenberg 
et al., 2018, 2016; Scheinost et al., 2019). To perform permutation 
testing, we randomly shuffled participants’ behavioral scores 5000 
times and ran these shuffled values through our prediction pipeline to 
generate null distributions. P-values associated with each model were 
based on the corresponding null distribution with the formula p ¼ (1 þ
the number of permutation rs values greater than or equal to the 
observed rs value)/5001 (Rosenberg et al., 2018). In other words, the 
p-value of the permutation test is the proportion of sampled permuta-
tions that are greater than the true prediction correlation (Shen et al., 
2017). 

2.7.5. Cross-validation: split halves prediction 
As a further test of the models, data from both sites were randomly 

split while retaining the same number of TD and ASD participants and 
the same number of participants from each site. Models were built in the 
first half and used to predict individuals in the second half and vice 
versa. Participant characteristics for the two split halves are given in 
Table 2. 

2.7.6. Cross-validation: from site 1 to site 2 prediction 
To evaluate the potential of models built in one site to predict an 

unseen participant’s score from the other site, models were built in the 
GU site and used to predict individuals in the KK site and vice versa. 
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2.7.7. Model specificity to behavioral regulation 
To evaluate whether our models capture behavioral regulation 

dimensionally or are driven by the categorical difference in scores due to 
ASD diagnoses, we examined the relationship between predicted and 
observed scores for TD children and children with ASD separately. We 
further examined (a) whether our models could be driven by motion or 
IQ, (b) how they relate to the core symptoms of ASD, and (c) whether 
models built for one domain of behavioral regulation were specific to 
that domain by computing cross-correlations between (i) predicted 
scores, motion and IQ, (ii) predicted scores and SRS scores, and (iii) 
predicted and observed scores of different behavioral regulation 
domains. 

2.7.8. Age relationships 
The ABIDE dataset only provides T-scores for the BRIEF scales, which 

are age-normed. For this reason, correlations between age, behavioral 
regulation and FC models of behavioral regulation were assessed on an 
exploratory basis, to provide a developmental context. 

3. Results 

3.1. Sample characteristics 

Characteristics for all samples (GU site, KK site, combined sites; split 
half 1, split half 2) are given in Tables 1 and 2. Scores for all three 
subscales of behavioral regulation were significantly higher in children 
with ASD than for TD children in all analyzed samples, reflecting greater 

challenges with inhibition, shifting, and emotional control (Supple-
mentary Table S1). We further observed significantly higher scores on 
social responsiveness, reflective of greater ASD symptoms, and several 
significant differences within and across some of the samples in age, IQ, 
sex and head motion (Table 2). As expected, the three subscales of 
behavioral regulation exhibited correlations with each other as well as 
to social responsiveness and, to a lesser degree, IQ and head motion 
(Table 3). There were no significant differences in handedness between 
TD children and children with ASD in any of the samples. 

3.2. FC models of behavioral regulation 

Significant models were built using negative edges for inhibition 
(rs ¼ .23, p ¼ 0.0001) and shifting (rs ¼ .19, p ¼ 0.001), using leave-one- 
out prediction (N-1 at every iteration). Positive edge models were not 
significant for these measures and neither positive nor negative edge 
models were significant for emotion control (rs<.05, p > 0.4). The FC 
model of inhibition was significant by permutation testing (rs ¼ .23, 
p ¼ 0.037), while the FC model of shifting fell just shy of significance 
(rs ¼ .19, p ¼ 0.067). As seen in Fig. 1, inhibition revolved around edges 
in the somato-motor, visual and cerebellar networks and was more 
posterior, while shifting appeared more focused on edges around the 
frontoparietal and dorsal attention networks and was more anterior. 
Both inhibition and shifting included a number of edges connecting with 
DMN regions as well as the temporal lobe. Note that in the leftmost 
panels higher rank refers to a lower score, i.e. lower symptoms. In 
negative edge models, lower FC associates with higher ranked scores. 

3.3. Cross-validation: split halves prediction 

Significant models were built for inhibition and shifting using the 
negative edges in a leave-one-out prediction (N-1 at every iteration) in 
both split half 1 (inhibition: rs ¼ .26, p ¼ 0.002 and shifting: rs ¼ .32, 
p ¼ 0.0001) and split half 2 (inhibition: rs ¼ .17, p ¼ 0.049 and shifting: 
rs ¼ .34, p ¼ 0.00005). The models built in split half 1 further signifi-
cantly predicted scores in the unseen second half (inhibition: rs ¼ .39, 
p < 0.000001 and shifting: rs ¼ .19, p ¼ 0.03), and the models built in 
split half 2 significantly predicted scores in the unseen first half (inhi-
bition (rs ¼ .48, p < 0.000001 and shifting (rs ¼ .19, p ¼ 0.02). 

3.4. Cross-validation: from site 1 to site 2 prediction 

Models could not be built for shifting or inhibition using the negative 
edges in a leave-one-out prediction (N-1 at every iteration) in the GU site 
(inhibition: rs ¼ .15, p ¼ 0.17 and shifting: rs ¼ .09, p ¼ 0.4) or in the KK 
site (inhibition: rs ¼ .02, p ¼ 0.8 and shifting: rs ¼ .03, p ¼ 0.71). 
Therefore, no cross-prediction from GU to KK and vice versa was 
attempted. 

3.5. Model specificity to behavioral regulation 

In the combined model, Spearman rank correlations between 
observed and predicted score ranks for TD children (n ¼ 191) and chil-
dren with ASD (n ¼ 85) separately were insignificant for the smaller ASD 
group in both inhibition (rs ¼ .14, p ¼ 0.22) and shifting (rs ¼ .10, 
p ¼ 0.36), but near significant in the TD group in inhibition (rs ¼ .14, 
p ¼ 0.053) and significant in shifting (rs ¼ .22, p ¼ 0.002) (Fig. 2). 
Spearman correlations between predicted shifting or inhibition and IQ 
or motion, before cleaning or after, were insignificant (rs<.11). Pre-
dicted shifting scores associated significantly with total SRS scores 
(rs ¼ .23, p < 0.001); this association fell below significance in a partial 
correlation when controlling for diagnosis (rs ¼ .12, p < 0.051). In 
addition, predicted shifting scores did not significantly associate with 
observed emotional control (rs ¼ .14, p ¼ 0.018) after correcting for 
multiple comparisons or inhibition scores (rs ¼ .06, p ¼ 0.33). Similarly, 
predicted inhibition scores did not associate with observed shifting 

Table 2 
Participant characteristics in the two split halves samples. Means and standard 
deviations (in brackets) are given for the total samples comprised of both TD and 
ASD participants, which were used to build the models, as well as for TD and 
ASD participants separately. Motion (mm) refers to the absolute maximum 
displacement at any timepoint in the resting-state fMRI scan prior to motion 
mitigation and denoising procedures. n ¼ number of participants; m ¼male; 
f ¼ female; L ¼ left-handed; A ¼ ambidextrous; R ¼ right-handed; IQ ¼ Intelli-
gence Quotient; FIQ ¼ full scale IQ; VIQ ¼ verbal IQ; PIQ ¼ performance IQ; 
SRS ¼ Social Responsiveness Scale. SRS, inhibition, shifting and emotion control 
are given as T scores. *denotes deviating numbers in the Inhibition models, for 
which an additional six outliers (>3 SD in score; all ASD participants) were 
removed. **SRS scores were not available for seven participants in Split Half 1; 1 
participant with ASD was removed as an outlier from Split Half 1. y denotes a 
significant difference between TD and ASD (see Supplementary Table S1 for p- 
values).   

Split Half 1 Split Half 2  

Total TD ASD Total TD ASD 

n 138 
(135*) 

95 42 
(39*) 

138 
(135*) 

96 49 
(43*) 

Age 10.6 
(1.4) 

10.5 
(1.4) 

10.6 
(1.5) 

10.3 
(1.3) 

10.2 
(1.2) 

10.3 
(1.5) 

Sex (m/f) 84/54 53/42 35/7 98/40y 63/33 35/14 
Handedness 

(L/A/R) 
8/7/ 
123 

5/5/85 3/2/38 13/9/ 
116 

8/5/83 5/4/33 

Motion 1.2 
(0.8) 

1.1 
(0.8) 

1.6 
(0.9) 

1.3 
(0.9)y

1.2 
(0.8) 

1.8 
(0.9) 

FIQ 113.6 
(12.6) 

114.7 
(11.3) 

108.7 
(18.1) 

115.1 
(14.7)y

117.8 
(12.1) 

103.7 
(15.5) 

VIQ 117.6 
(14.2) 

117.8 
(12.9) 

112.1 
(16.7) 

117.8 
(14.4)y

120.3 
(12.5) 

109.4 
(16.9) 

PIQ 110.4 
(12.4) 

111 
(12.3) 

107.7 
(16.9) 

111.9 
(14.3)y

113.5 
(12.9) 

105.4 
(14.3) 

SRS** 52.9 
(17.6)y

42.7 
(5.8) 

76.5 
(12.1) 

53 
(15.4)y

44.1 
(5.4) 

73.1 
(10.9) 

Inhibition* 48.3 
(9.9)y

43.5 
(5.4) 

59.2 
(9.7) 

48.9 
(10.1)y

44.7 
(6.8) 

61.7 
(8.4) 

Shifting 50.4 
(14.3)y

43.1 
(6.9) 

67.8 
(12.4) 

51.5 
(14.1)y

44.3 
(7.1) 

68.5 
(12) 

Emotion 
Control 

48.6 
(11.4)y

43.1 
(6.1) 

58.3 
(11.99) 

48.9 
(11.4)y

44.7 
(8.3) 

59.4 
(11.8)  
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(rs ¼ .12, p ¼ 0.04) after correcting for multiple comparisons, or 
emotional control scores (rs ¼ .1, p ¼ 0.09). Associations reported in this 
section are corrected for the number of comparisons performed (seven 
per inhibition and shifting, respectively; p < 0.007). 

3.6. Age relationships 

Correlations between age and behavioral regulation scores across the 
combined sample were insignificant (r <.11), as expected, due to T 
standardization. The FC model for shifting still weakly predicted age 
(rs¼-.12, p ¼ 0.043). 

4. Discussion 

Behavioral self-regulation is continually refined across childhood, 
but many children – especially those with NDCs such as ASD - struggle to 
regulate their behaviors. In a fully cross-validated, data-driven analysis 
in a large sample of typically developing children and children with ASD 
that was compiled across two data collection sites, we identified 
distributed patterns of FC whose strength predicted individual differ-
ences in two behavioral regulation subdomains. These whole-brain 
network models predicted novel individuals’ inhibition and shifting, 
but not emotional control scores from resting-state FC data both in a 

Table 3 
Correlations between the three subscales of behavioral regulation, age, sex, motion, IQ and SRS. Results are given for the combined sample and as r-values of bivariate 
correlations. Motion (in mm) refers to the absolute maximum displacement at any timepoint in the resting-state fMRI scan prior to motion mitigation and denoising 
procedures. IQ ¼ Intelligence Quotient; FIQ ¼ full scale IQ; VIQ ¼ verbal IQ; PIQ ¼ performance IQ; SRS ¼ Social Responsiveness Scale (total score). *denotes sig-
nificance at p < 0.05 uncorrected; ** denotes p < 0.0011 (p < 0.05 Bonferroni corrected for 45 comparisons).   

Age Sex Motion FIQ VIQ PIQ SRS Inhibition Shifting Emotion Control 

Age  � 0.19* � 0.17* 0.05 0.04 0.03 0.03 0.11 0.05 0.01 
Sex � 0.19*  � 0.07 0.02 � 0.05 � 0.05 � 0.07 � 0.01 � 0.09 � 0.05 
Motion � 0.17* � 0.07  � 0.18* � 0.10 � 0.17* 0.17* 0.14* 0.10 0.11 
FIQ 0.05 0.02 � 0.18*  0.80** 0.77** � 0.23** � 0.21** � 0.20** � 0.07 
VIQ 0.04 � 0.05 � 0.10 0.80*  0.44** � 0.18* � 0.13* � 0.11 � 0.01 
PIQ 0.03 � 0.05 � 0.17* 0.77** 0.44**  � 0.18* � 0.14* � 0.16* � 0.05 
SRS 0.03 � 0.07 0.17* � 0.23** � 0.18* � 0.18*  0.77** 0.83** 0.69** 
Inhibition 0.11 � 0.01 0.14* � 0.21** � 0.13* � 0.14* 0.77**  0.70** 0.61** 
Shifting 0.05 � 0.09 0.10 � 0.20** � 0.11 � 0.16* 0.83** 0.70**  0.79** 
Emotion Control 0.01 � 0.05 0.11 � 0.07 � 0.01 � 0.05 0.69** 0.61** 0.79**   

Fig. 1. CPM models for inhibition (panel A) and shifting (panel B). Models are evaluated using a leave-one-out approach, with a different participant left out in each 
iteration. The predictive potential is assessed by comparison of the predicted and actual score ranks (left column; inhibition: r ¼ .23; shifting: r ¼ .19) using 
Spearman’s rank correlation, and statistical significance for the correlation between predicted and observed values is assessed using permutation testing (right 
column; inhibition: p ¼ 0.037; shifting: p ¼ 0.068). The inhibition model revolved around edges in the somato-motor, visual and cerebellar networks (upper middle 
column) and was more posterior/inferior, while shifting appeared more focused on edges around the frontoparietal and dorsal attention networks (lower middle 
column) and was more anterior. Both inhibition and shifting included a number of edges in the default mode network (DMN) and the temporal lobe. The size of the 
nodes reflects the number of connections the node has to other nodes, with larger nodes being more connected than smaller nodes. 
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leave-one-out, as well as in a split halves cross-validation, providing 
evidence that meaningful correlates of behavioral regulation in intrinsic 
brain patterns exist. Indicating the limitations of this approach, whole- 
brain network models could, however, not be built within the smaller 
and less balanced samples collected at the respective sites. We further 
found that although models captured within-group variation, the model 
built on shifting also predicted ASD symptoms more generally, although 
this relationship was no longer significant after taking diagnosis into 
account. Indicative of the pronounced maturation in FC occurring in 
relation to behavioral regulation in this age range, the model for shifting 
also weakly associated with age despite being built on age-normed 
scores. Overall our results, showing that complex brain network 
models predict different measures of behavioral regulation across a 
sample of children with and without ASD, demonstrate that whole-brain 
FC data can serve as a holistic neural index of inhibition and shifting. 

Our findings present a substantial addition to our knowledge on the 
neural expressions of inhibition and shifting across the spectrum of 
children with and without ASD. The majority of neuroimaging research 
on inhibition and shifting has been done in neurotypical adults (Ochsner 
et al., 2012; Rohr et al., 2016, 2015; Ferri et al., 2016) and ado-
lescents/young adults (Etkin et al., 2010; Kana et al., 2007; Solomon 
et al., 2009), and little is known about neural alterations underlying 
shifting and inhibition for children with ASD (Dajani and Uddin, 2015; 
Yerys et al., 2009) due to varying success of previous research conducted 
in small sample sizes (Ambrosino et al., 2014; Shafritz et al., 2015; Lee 
et al., 2009). Encouragingly, our findings are broadly in line with 
existing literature on shifting and inhibition mechanisms in common 
ASD comorbidities such as Attention Deficit Hyperactivity Disorder 
(ADHD), Major Depressive Disorder (MDD) and Obsessive Compulsive 
Disorder (OCD). This may signify commonalities across these disorders 

in how inhibition and shifting abilities are reflected in the brain, which 
bears the implication that if these commonalities were treated in a tar-
geted fashion, inhibition and shifting abilities could be improved across 
a range of disorders. Both alterations in inhibition and shifting have 
previously been associated with changes in the DMN - which has hubs in 
anterior cingulate and ventromedial PFC - in a number of disorders. For 
instance, activity in regions of the DMN has been shown to be altered in 
relation to inhibition in ADHD (in a stop signal paradigm (van Rooij 
et al., 2015)), OCD (during a reward paradigm (Koch et al., 2018)), and 
MDD (in a cognitive control paradigm (Vanderhasselt et al., 2014)). 
Similarly, the DMN has been shown to be altered in relation to shifting in 
Schizophrenia (during reinforcement learning (Waltz et al., 2013)), OCD 
(Gu et al., 2008) and ADHD (Mulas et al., 2006). In ASD, alterations in 
FC involving DMN regions have been linked to inhibition (Voorhies 
et al., 2018) and SRS scores (Jann et al., 2015), which correlate with 
both inhibition and shifting in our sample. 

The divergent neural underpinnings of inhibition and shifting shed 
further light into children’s functional brain mechanisms. The cere-
bellum is heavily implicated in ASD (Stoodley, 2016; Becker and 
Stoodley, 2013; D’Mello et al., 2015) and our group has previously 
observed that cerebellar FC related to hyperactivity scores in typically 
developing young children aged 4–7 years old (Rohr et al., 2019), which 
provide an index of inhibition (Overtoom et al., 2002; Van der Meere 
et al., 2005). Likewise, somatosensory sensitivities in ASD – like repet-
itive motor or tactile behaviors – are known to correlate with neural 
alterations in somato-motor areas (Cascio et al., 2015), and the ability to 
control repetitive behaviors is linked to inhibition (Schmitt et al., 2018). 
Individuals with ASD also manifest anomalies in their visual selection 
and have greater difficulty than neurotypical populations when ignoring 
specific visual inputs, which relate to alterations in the visual stream 

Fig. 2. Spearman rank-correlations between observed and predicted score ranks of inhibition (panel A) and shifting (panel B) for TD children and children with ASD 
separately, to evaluate whether our models capture behavioral regulation dimensionally or are driven by the categorical difference in scores due to ASD diagnoses. 
Results were insignificant for the smaller ASD group in both inhibition and shifting, but near significant in the TD group in inhibition and significant in shifting. 
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(Ronconi et al., 2018). During set-shifting tasks, increased activation in 
parietal lobes has been reported in individuals with ASD (Schmitz et al., 
2006), and our group has previously observed that FC in the dorsal 
attention network related to attention switching scores in young chil-
dren (Rohr et al., 2019). 

Our work further evidences two major challenges that remain to-
wards achieving one of the primary goals of human neuroimaging - to 
identify generalizable neuromarkers of clinical utility. First, whole-brain 
network models could not be built successfully within the smaller and 
less balanced samples collected at the respective sites. It is a known 
problem in ASD research that there have been challenges in consistency 
across the ABIDE sites as differences in demographics and scanner ef-
fects in MRI data appear to influence generalizability (King et al., 2019; 
Chen et al., 2014), meaning that it may be unlikely to build generaliz-
able predictive markers using data from a single site (Scheinost et al., 
2019; Nowell et al., 2015). Second, the model built on shifting scores 
also predicted ASD symptoms generally. While this is to be expected 
given the known association between ASD core social symptoms and 
behavioral regulation, it is worthwhile to note that since the relationship 
between observed and predicted shifting scores remained significant 
when assessed only within the TD population, they are unlikely to be 
driven by diagnostic category but rather indicating that the predictions 
have some specificity to the constructs under investigation. Nonetheless, 
the correlation between social and behavioral regulation traits makes it 
more difficult to tease apart the unique and shared features between 
these constructs. 

Individual differences in relation to behavioral regulation have been 
repeatedly found to be associated with individual features in FC (Rohr 
et al., 2016; Ferri et al., 2016; Fitzgerald et al., 2019). Taking individual 
differences into account can help expose the underlying neural sub-
strates of complex cognitive skills, emotions, social competencies and 
more, and has proven useful in the investigation of both neurotypical 
(Rohr et al., 2015, 2013; Goldfarb et al., 2016; Vossel et al., 2016) and 
clinical populations (van Dongen et al., 2015; Nebel et al., 2015; von 
Rhein et al., 2015). It has been argued that clinical cut-offs for diagnosis 
may be arbitrary (Uddin et al., 2017; van Dongen et al., 2015), as traits 
and abilities associated with NDCs such as ASD also exist in the neuro-
typical population, and fall onto a spectrum or continuum (van Dongen 
et al., 2015; Matthews et al., 2014). The use of dimensional approaches 
also allows for more statistical power in studies on neurodevelopmental 
disorders, which are chronically underpowered due to small sample 
sizes and challenged by heterogeneity in the populations studied (Uddin 
et al., 2017; Fair et al., 2012; Nigg, 2005; Sonuga-Barke et al., 2008). 
Current research suggests that neural patterns associated with abilities 
that are affected by NDCs are both categorical (i.e. unique to a diagnosis) 
as well as dimensional (i.e. also present in TD populations) (Elton et al., 
2014, 2016). Our findings point to distinct neural mechanisms in the 
brain subserving the different subtypes of behavioral regulation, which 
may aid in informing us about options for targeted interventions. They 
thus highlight possibilities for gleaning insight into how the brain’s 
functional organization may be associated with cognitive and behav-
ioral issues in children and may serve as a basis for future studies 
investigating behavioral regulation in neurodevelopmental and other 
disorders. 

5. Limitations 

The current study has several distinct strengths, which include the 
use of three measures of behavioral regulation in two relatively large, 
“matched” groups of children with and without an NDC, namely ASD, 
and novel preprocessing techniques. Both samples were acquired in 
close spatial and temporal proximity, that is, around the same time and 
around the same geographic location (Washington, D.C. and Baltimore). 
The assessment of behavioral regulation is well validated (Gioia et al., 
2000) and although parent- and self-reports are subjective, they capture 
a measure of behavior integrated over a longer time frame than can be 

observed in a laboratory visit and have better test-retest reliability 
(Enkavi et al., 2019). At both sites, children were introduced to an MRI 
simulator first and given the opportunity to familiarize themselves with 
the experience of undergoing an MRI scan with their eyes open. The 
denoising methods employed allow for the retention of the remaining 
‘true’ neural signal within an affected volume and are in accordance 
with the latest best practices for reducing motion artifacts (Parkes et al., 
2018), which is particularly relevant for a neurodevelopmental study 
(Pruim et al., 2015; Chen et al., 2015; Zuo and Xing, 2014). 

The study also has several weaknesses, including differences within 
and between the GU and KK sites. These are differences in (i) fMRI data 
acquisition procedures, (ii) in-/exclusion criteria, (iii) numbers of par-
ticipants, (iv) TD vs. ASD ratios, (v) sex ratios, (vi) IQs, (vii) BRIEF 
scores, (viii) comorbidities, and (ix) medications. All of these serve as a 
reminder of just how divergent ASD populations are, how difficult it is to 
assess whether a sample reflects the “true patient population” and to 
what extent research findings are truly generalizable. Considering that 
these two sites contain a notable number of participants also highlights 
how common datasets with unbalanced groups are – a known problem 
when performing cross-validation and assessing prediction performance 
(Scheinost et al., 2019). Another weakness potentially rests in the 
removal of motion-associated edges where motion correlates with the 
behavior that is investigated. While in the combined sample, motion did 
not significantly associate with the behavioral regulation measures after 
multiple comparison correction, there remains a possibility that edges 
that would have associated to, and strengthened, the behavioral regu-
lation models, were removed. The same holds true for site-specific as-
sociations. Finally, emotional control scores were not significantly 
predicted for novel individuals. It is perhaps unsurprising that emotional 
control results did not follow the same pattern as the other measures of 
behavioral regulation, as evidence suggests that definitions of emotional 
control abilities are broad, difficult to dissociate from emotion genera-
tion processes, and fairly hard to capture reliably (Gross, 2002; Gross 
et al., 2011; Mesquita and Frijda, 2011; Preece et al., 2019). Another 
possibility is that the neural mechanisms of emotional control are simply 
not reflected in whole-brain FC patterns consistently across individuals. 

It should be noted that like most methodological approaches, CPM 
has both advantages and challenges. One major advantage is that 
because CPM models are defined and validated with independent data, 
they promise to improve our ability to uncover generalizable brain- 
behavior associations (Scheinost et al., 2019; Dubois et al., 2018). A 
major challenge is that predictive models based on FC will only ever 
account for a fraction of the variance, because they are limited by how 
much information the signal can capture as well as the chosen pheno-
typic measure. However, recent research has highlighted that effect sizes 
in psychological research are often smaller than previously appreciated, 
and posited that effect-sizes around those we observe in this study are 
better understood to indicate “a medium effect that is of some explan-
atory and practical use even in the short run” (Funder and Ozer, 2019). 
Predictive models are also bound by linearity assumptions: Linear 
models built across TD children and children with ASD can capture 
dimensional associations, but may miss categorical differences which 
are distinct from dimensional associations (see Elton et al., 2014, 2016 
for a discussion on this). Finally, one may consider the current CPM 
framework as perhaps a bit simplistic in that it yields only one summary 
value for ‘positive’ and ‘negative’ networks, cannot capture flexible 
brain network dynamics, and has no ‘blueprint’ for how to tie together 
predictions on a multitude of behavioral measures. 

Future studies could benefit from using data that was obtained while 
participants perform a task or are under naturalistic viewing conditions 
such as movie watching. Data obtained while participants perform a 
task, which adequately captures differences in abilities or skills, has 
been shown to associate with differences in FC and to lead to better 
predictive models (Rosenberg et al., 2018; Finn et al., 2017). Showing 
videos increases young children’s ability to stay still during a scan 
(Raschle et al., 2009), and may be especially useful for studies in 
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children with NDCs, many of whom evidence attention difficulties in 
addition to challenges staying still for MRI acquisitions (Rosenberg 
et al., 2016; von Rhein et al., 2015; Bray et al., 2011a, b, 2013; Keehn 
et al., 2013; Atkinson and Braddick, 2011). It was further recently shown 
that individual differences in FC are enhanced during passive viewing, 
thus facilitating their detection not only through reduced motion but 
also through the synchronization of hemodynamic fluctuations in large 
areas of the cortex across participants (Vanderwal et al., 2017). Another 
improvement could be yielded through the implementation of longer 
scan imaging times to strengthen the reliability of FC estimates, allow 
for some data loss in wiggly children and the use of other existing motion 
mitigation techniques (see e.g. Rohr et al., 2017, 2018; 2019). Finally, 
harmonized in- and exclusion criteria and scanner and experimental 
protocols could also aid in providing more comparable FC estimates (Di 
Martino et al., 2017; Noble et al., 2017). 

6. Conclusions 

The characterization of behavioral regulation has been of immense 
interest to researchers as it matures rapidly in children and is affected in 
many NDCs and psychiatric conditions with potentially lifelong negative 
consequences. Yet, it has largely been elusive due to the challenges 
associated with studying children and the heterogeneity inherent to 
NDCs such as ASD. In this study, we utilized a data-driven approach to 
develop objective quantitative FC models that elucidate and predict 
performance in behavioral regulation subdomains in ASD. We observed 
both commonalities and differences in the functional organization of 
inhibition and shifting across TD children and children with ASD, with 
inhibition relying on more posterior and shifting relying on more 
anterior brain networks. We also demonstrate the generalizability and 
trans-diagnostic utility of this approach, as well as its clear limits to date. 
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