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APLP2 Modulates JNK-Dependent Cell Migration in Drosophila
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Amyloid precursor-like protein 2 (APLP2) belongs to the APP family and is widely expressed in human cells. Though previous
studies have suggested a role of APLP2 in cancer progression, the exact role of APLP2 in cell migration remains elusive. Here in
this report, we show that ectopic expression of APLP2 in Drosophila induces cell migration which is mediated by JNK signaling, as
loss of JNK suppresses while gain of JNK enhances such phenotype. APLP2 is able to activate JNK signaling by phosphorylation of
JNK, which triggers the expression of matrix metalloproteinase MMP1 required for basement membranes degradation to promote
cell migration. The data presented here unraveled an in vivo role of APLP2 in JNK-mediated cell migration.

1. Introduction

Amyloid precursor-like protein-2 (APLP2) belongs to the pro-
tein family that includes amyloid precursor protein (APP)
and amyloid precursor-like protein-1 (APLP1) in mammals
[1, 2]. The three proteins show sequence similarity in the
extracellular E1, E2 and the intracellular domains, while only
APP and APLP2 share a special Kunitz protease inhibitor
(KPI) domain and an Asp-Glu-rich domain, suggesting a role
that is likely specific for the two proteins [3, 4]. Consistent
with this notion, APP and APLP2 are widely expressed in
many tissues, whereas APLP1 is predominantly restricted to
the neural cells [5–7]. Studies in knockout mice have unrav-
eled that all the single knockout and the APP/APLP1 double
knockout mice are viable and fertile displaying no evident
phenotype, while the double knockout mice of APP/APLP2
orAPLP1/APLP2 are prenatally lethal, implying a specific role
of APLP2 in animal development [8–10], which is consistent
with their divergent protein interaction networks observed in
an in vivo brain study [11]. Furthermore, the phylogenetic tree
of APP protein family indicates that APLP2 is more distant
from an inferred ancestral gene than APP and APLP1 [12],
suggesting APLP2 may perform distinct in vivo functions.

APLP2 has been shown to regulate multiple cellular func-
tions such as neurite outgrowth, axogenesis, corneal epithelial
wound healing, cell adhesion, migration [13], and mitosis
[14–17]. The expression level of APLP2 is upregulated in the
pancreatic tumor cell lines S2-013, the prostate cancer cell line
DU145, and certain human cancers such as breast cancer [18–
20] but is downregulated in the lymphoma cell lines [21] and
in the lung neuroendocrine tumors [22]. Thus, the exact role
of APLP2 in tumorigenesis remains elusive.

The c-Jun N-terminal Kinase (JNK) pathway is a highly
conserved signaling from Drosophila to human that governs
diverse cellular functions including cell proliferation, differ-
entiation, death, and migration and regulates physiological
processes such as stress response and lifespan [23–28]. How-
ever, an in vivo role of APLP2 in modulating JNK signaling
has not been characterized.

In this work, we studied the in vivo function of human
APLP2 in Drosophila. We found that ectopic expression of
APLP2 in the wing disc of 3rd instar larvae promotes cell
migration, which is suppressed by loss of JNK signaling while
exacerbated by gain of JNK signaling. Consistently, APLP2
activates JNK signaling by the phosphorylation of JNK and
thus elevates JNK target gene MMP1 expression to initiate
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cell migration. This work, therefore, provides the first in vivo
function of APLP2 in JNK-mediated cell migration.

2. Materials and Methods

2.1. Fly Stocks. All the fly stocks were raised on standard Dro-
sophila cornmedia and crosseswere performed at 25∘Cunless
otherwise indicated. UAS-APLP2 was kindly provided by Dr.
Merders; 𝑝𝑢𝑐H246, UAS-puc-IR, UAS-mmp1-IR, and UAS-p35
were obtained from Bloomington Stock Center; UAS-BskDN,
UAS-puc[26], ptc-Gal4, en-Gal4, 𝑝𝑢𝑐E69[29], and UAS-LacZ
[30] were previously described.

2.2. Statistical Analysis for Cell Migration. More than 20
wing discs were dissected for each genotype. The number
of migrating cells in the posterior compartment of the wing
discs was counted. Unpaired t test by GraphPad Prism 5 was
used to analyze the statistical significance. Error bars mean
± SEM, ∗ ∗ ∗: p<0.001, ∗∗: p<0.01, and n.s.: no significant
difference.

2.3. X-Gal Staining. 3rd instar larvae wing discs were dis-
sected in PBST and stained for 𝛽 galactosidase activity[31].
The steps are shown below: dissect the 3rd instar larvae in
buffer A (50mL PBST +50ul 1mM MgCl

2
+1.5mL 5M NaCl)

(PBST +150mMNaCl+1mM MgCl
2
); fix the tissue in buffer

A containing 1% glutaraldehyde for 15 minutes at 4∘C; rinse
the tissue once in buffer A containing 3.3 mM K3Fe(CN)6
and 3.3 mM K

4
Fe(CN)

6
.3H
2
O; incubate the tissue in

buffer A containing 3.3 mM K
3
Fe(CN)

6
and 3.3 mM

K
4
Fe(CN)

6
.3H
2
O. and 0.2%5-bromo-4-chloro-3indolyl-𝛽-

D-galactopyranoside (X-gal) at RT 1-4h; and store the tissues
in 100% glycerol at 4∘C.

2.4. Immunohistochemistry. Antibody staining of the imagi-
nal discs was performed as previously described [32]. Anti-
bodies used are as follows: mouse anti-𝛽-gal (1:400, Develop-
mental Studies Hybridoma Bank), mouse anti-MMP1 (1:100,
Developmental Studies Hybridoma Bank), and rabbit anti-
phospho-JNK (1:200, Calbiochem). Secondary antibodies
were anti-rabbit-Alexa (1:1000, Cell Signaling and Tech-
nology) and anti-mouse-Cy3 (1:1000, Jackson ImmunoRe-
search).

3. Results and Discussion

3.1. APLP2 Promotes Cell Migration in Drosophila. The ex-
pression level of APLP2 is increased in many tumor cells sug-
gesting that APLP2 may play a vital role in tumor formation
and metastasis[13, 33, 34]. To examine the exact function of
APLP2 in cell migration in vivo, we ectopically expressed
APLP2 along the anterior/posterior (A/P) compartment
boundary in 3rd instar larval wing discs, which has been
commonly used to investigate the migrating phenotype in
vivo [35].We noticed that patched-Gal4 (Figures 1(A)–1(A”))
driven expression of APLP2 in the wing disc produced
a dosage-dependent invasive phenotype with GFP-labelled

cells diverted from the A/P boundary to the posterior part
(Figures 1(B)–1(B”), 1(E), Figure S1), while expression of
LacZ failed to induce such phenotypes (Figures 1(D)–1(D”),
and 1(E)). The c-Jun N-Terminal Protein Kinase (JNK) sig-
naling has been implicated in a wide range of cellular func-
tions including cell death and migration [32, 36–40]. Consis-
tently, RNAi-mediated depletion of puckered (puc), a negative
regulator of JNK signaling [41, 42], promoted a cell migrating
phenotype (Figures 1(C)–1(C”), and 1(E)). These data indi-
cate that APLP2 is able to trigger cell migration in vivo, which
phenocopies that of JNK activation.

3.2. JNK is Required for APLP2-Induced Cell Migration.
Since expression of APLP2 induced a migrating phenotype
mimicking JNK activation in the wing disc, we hypothesized
that JNK signaling pathway might be required for APLP2-
triggered cell migration. To test this, we first elevated JNK
signaling by deleting one copy of the endogenous puc
gene encoding a JNK phosphatase that negatively regulates
JNK activity [41, 42]. Compared with the ptc-Gal4 control
(Figures 2(A) and 2(I)), we observed that APLP2-induced
cell migration phenotype (Figures 2(B) and 2(I)) was dra-
matically enhanced in heterozygous pucE69 (Figures 2(C)
and 2(I)) or pucH246 (Figure S2) mutants, while neither
mutant alone could produce any migration phenotype [43],
suggesting a genetic interaction between APLP2 and the JNK
signaling in promoting cell migration. To further probe the
role of JNK signaling in APLP2-induced cell migration, we
blocked JNK pathway by expressing a dominant negative
form of Drosophila JNK, Bsk [44], or the JNK phosphatase
puc. We found that APLP2-induced cell migration was
significantly suppressed by the expression of BskDN or puc
but remained unaffected by the expression of LacZ (Figures
2(D)–2(F), and 2(I)). Furthermore, blocking JNK signaling
also inhibited APLP2-induced, pucE69-enhanced cell migra-
tion phenotype (Figures 2(G), 2(H), and 2(I)). Thus, we
conclude that APLP2 induces JNK-dependent cell migration
in vivo.

3.3. APLP2 Triggers JNK Activation In Vivo. The above data
suggest that APLP2 promotes JNK-mediated cell migration
in vivo. To investigate whether APLP2 is able to activate
JNK signaling, we checked the expression of a puc-LacZ
reporter, a commonly used readout of JNK signaling[27],
and JNK phosphorylation in the wing disc. We found that
APLP2was sufficient to induce puc-LacZ expression (Figures
3(B)–3(B”), Figure S3B) and JNK phosphorylation (Figures
3(F)–3(F”)) in wing discs, compared with the ptc-Gal4
control (Figures 3(A)–3(A”), 3(E)–3(E”)). Consistent with
the cell migration data, APLP2-induced puc-LacZ expression
and JNK phosphorylation was considerably impeded by
the expression of BskDN (Figures 3(C)–3(C”), 3(G)–3(G”),
Figure S3C) or puc (Figures 3(D)–3(D”), 3(H)–3(H”)). Col-
lectively, the data suggest that APLP2 expression is sufficient
to trigger JNK activation in the wing disc.

To investigate whether APLP2 could induce JNK acti-
vation in other tissues, we checked the salivary glands
where ptc-Gal4 is also expressed. Compared to the control
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Figure 1: APLP2 promotes cell migration in Drosophila. Fluorescence micrographs of wing discs are shown. Compared with the ptc-Gal4
UAS-GFP control (A–A”), expression of APLP2 induced mild cell migration behavior (B–B”). Activation of JNK signaling by depleting puc
also triggered cell migration and served as a positive control (C–C”), while expression of LacZ served as a negative control (D–D”). A’–D’
and A”–D” are high magnifications of A–D. (E) Quantification of the cell migration phenotypes, which were classified into four categories
based on the number of GFP-labelled cells migrated to the posterior compartment. None: no migrated cells; Weak: 1-5 cells; Moderate: 6-20
cells; Strong: >20 cells. More than 20 discs were examined for each genotype. The crosses were performed at 29∘C. ∗ ∗ ∗, P<0.001; n.s., no
significance. Scale bars in A, A’, and A” represent 200 𝜇m, 100 𝜇m, and 50 𝜇m, respectively. The genotypes used in the figure are as follows:
ptc-Gal4 UAS-GFP/+ (A–A”), ptc-Gal4 UAS-GFP/UAS-APLP2 (B–B”), ptc-Gal4 UAS-GFP/UAS-puc-IR (C–C”), and ptc-Gal4 UAS-GFP/+;
UAS-LacZ/+ (D–D”).
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Figure 2:APLP2 induces JNK-dependent cellmigration. Fluorescencemicrographs ofwing discs are shown. Comparedwith the ptc-Gal4UAS-
GFP control (A), APLP2-induced cell migration (B) was exacerbated in heterozygous puc mutants (C) and suppressed by the expression of
BskDN (D) or puc (E) but remained unaffected by LacZ expression (F). The puc mutant-enhanced APLP2 cell migration phenotype was
suppressed by the expression of BskDN (G) or puc (H). (I) Quantification of the migration phenotypes in A–H. The crosses were performed
at 29∘C. ∗ ∗ ∗, P <0.001. Scale bar in A represents 100 𝜇m. The genotypes used in the figure are as follows: ptc-Gal4 UAS-GFP/+ (A), ptc-
Gal4 UAS-GFP/UAS-APLP2 (B), ptc-Gal4 UAS-GFP/UAS-APLP2; 𝑝𝑢𝑐E69/+ (C), ptc-Gal4 UAS-GFP/UAS-APLP2; UAS-BskDN/+ (D), ptc-
Gal4 UAS-GFP/UAS-APLP2; UAS-puc/+ (E), ptc-Gal4 UAS-GFP/UAS-APLP2; UAS-LacZ/+ (F), ptc-Gal4 UAS-GFP/UAS-APLP2; 𝑝𝑢𝑐E69/
UAS-BskDN (G), ptc-Gal4 UAS-GFP/UAS-APLP2; 𝑝𝑢𝑐E69/ UAS-puc (H).

(Figure S4A), expression of APLP2 induced JNK signaling
activation, as revealed by the puc-LacZ expression in the
gland (Figures S4B). Expression of BskDN fully suppressed
both the endogenous and the ectopically activated expression
of puc-LacZ (Figure S4C). Together, the data demonstrate
that APLP2 is able to activate JNK signaling in a nontissue
specific manner.

3.4. APLP2 Induces JNK-Mediated MMP1 Expression. JNK-
dependent cell migration is mediated by transcriptional

upregulation of the matrix metalloproteinase MMP1[45, 46],
which is required for the degradation of basement membrane
and serves as a hall marker for cell migration behaviors
in Drosophila [47–50]. Consistently, expression of APLP2
driven by ptc-Gal4 induced MMP1 expression in the wing
disc (Figures 4(B)–4(B”)), which was dramatically sup-
pressed by the expression of BskDN (Figures 4(C)–4(C”))
or puc (Figures 4(D)–4(D”)). Intriguingly, APLP2 induced
both autonomous andnonautonomous JNKphosphorylation
(Figures 3(F”)) and MMP1 expression (Figures 4(B”)),



BioMed Research International 5

Figure 3: APLP2 triggers JNK signaling activation. Fluorescencemicrographs of wing disc are shown. Compared with the ptc-Gal4UAS-GFP
control (A–A”, E–E”), ectopic expression of APLP2 activated puc-LacZ expression (B–B”) and JNK phosphorylation (F–F”), which were
impeded by the expression of BskDN (C–C”, G–G”) or puc (D–D”, H–H”). The crosses were performed at 29∘C. Scale bar in A represents
100 𝜇m. The genotypes used in the figure are as follows: ptc-Gal4 UAS-GFP/+; puc-LacZ/+ (A–A”, E–E”), ptc-Gal4 UAS-GFP/UAS-APLP2;
puc-LacZ/+ (B–B”, F–F”), ptc-Gal4 UAS-GFP/UAS-APLP2; puc-LacZ/UAS-BskDN (C–C”, G–G”), ptc-Gal4 UAS-GFP/ UAS-APLP2; puc-
LacZ/UAS-puc (D–D”,H–H”).

which have been previously reported for other migration-
promoting genes [37, 38]. Hence, APLP2 is able to induce
JNK-mediated MMP1 activation, which is necessary for
basement membrane degradation and cell migration. Similar
results were observed in the P-compartment of wing discs
when APLP2 expression was initiated by engrailed-Gal4 (en-
Gal4) (Figure S5). Finally, we examined the role of MMP1
in APLP2-induced cell migration. We found that RNAi-
mediated MMP1 depletion impeded APLP2-induced cell
migration (Figure S6). Thus, ectopic expression of APLP2
is able to induce JNK-mediated MMP1 upregulation, which
is crucial for basement membrane degradation and cell
migration. Actin accumulation is a key hint for the cell migra-
tion phenotype [45, 46], and APLP2 was shown to modulate
actin cytoskeleton in pancreatic cancer cells [13, 33, 34].
Consistently, we found that APLP2 expression could induce
actin polymerization in the wing disc (Figure S7).

APLP2 expression is elevated in certain pancreatic and
prostate cancer cells as well as in breast cancer samples, while
downregulated in lymphoma cells and lung neuroendocrine

tumors, implying a controversial role in tumor progression
[13, 33, 34]. In this study, we investigated the in vivo function
of APLP2 inDrosophilawing disc epithelia. Our data indicate
that APLP2 is able to promote JNK-dependent cell migration
in vivo. Mechanistically, APLP2 activates JNK signaling
through the phosphorylation of JNK, which upregulates the
expression of MMP1 that is essential for basement mem-
branes degradation and cell migration. Our previous work
showed that expression of APLP2 could induce the expres-
sion of apoptotic gene hid and apoptosis[51], yet APLP2-
induced cell migration was not blocked by the expression
of baculovirus p35 (Figure S8), indicating APLP2-induced
cell migration is independent of apoptosis. Consistent with
our in vivo results, Chinese hamster ovary (CHO) cells
overexpressing APLP2 exhibit increased chemotaxis toward
type IV collagen and fibronectin [16], whereas depletion of
APLP2 in pancreatic cancer cells resulted in reduced migra-
tion and invasion ability [13, 33, 34]. Intriguingly, comparable
expression of APLP1[52] triggers stronger cell migration
than APLP2 in Drosophila[43], suggesting both amyloid
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Figure 4: APLP2 induces JNK-mediated MMP1 expression. Fluorescence micrographs of wing discs are shown. Compared with the ptc-Gal4
UAS-GFP control (A–A”), ectopic expression of APLP2 activatedMMP1 expression (B–B”), which was blocked by expressing BskDN (C–C”)
or puc (D–D”).The crosses were performed at 29∘C. Scale bar inA represents 100𝜇m.The genotypes used in the figure are as follows: ptc-Gal4
UAS-GFP/+; puc-LacZ/+ (A–A”), ptc-Gal4 UAS-GFP/UAS-APLP2; puc-LacZ/+ (B–B”), ptc-Gal4 UAS-GFP/UAS-APLP2; puc-LacZ/UAS-
BskDN (C–C”), ptc-Gal4 UAS-GFP/ UAS-APLP2; puc-LacZ/UAS-puc (D–D”).

precursor-like proteins can promote cell migration in vivo,
albeit at different efficiencies. Consistent with our finding,
APLP1 and APLP2 are found to be increased in cancers
[13, 33, 34] and knock-down of APLP2 in pancreatic cancer
cells reduced the ability of cell migration[13].Yet it remains
to be elucidated whether JNK signaling plays a crucial role

in APLP2-induced cell migration and tumor invasion in
mammals.

Data Availability
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Supplementary Materials

Supplementary 1. Figure S1: APLP2 induced dosage-depend-
ent cell migration. Fluorescence micrographs of wing discs are
shown. Compared with the ptc-Gal4 UAS-GFP control (A),
APLP2-induced cell migration (B) was enhanced by adding
another copy of APLP2 (C). (D)Quantification of migration
phenotype in A–C.The crosseswere performed at 29∘C.∗∗∗,
P <0.001. Scale bar in A represents 100 𝜇m. The genotypes
used in the figure are as follows: ptc-Gal4 UAS-GFP/+ (A),
ptc-Gal4 UAS-GFP/UAS-APLP2 (B), and ptc-Gal4 UAS-
GFP UAS-APLP2 /𝑈𝐴𝑆-APLP2 (C).
Supplementary 2. Figure S2: loss of puc enhances APLP2-in-
duced cell migration. Fluorescence micrographs of wing discs
are shown. Compared with the ptc-Gal4 UAS-GFP control
(A), APLP2-induced cell migration (B) was aggravated in
heterozygous pucH246 mutants (C). (D) Quantification of
migration phenotype in A–C.The crosses were performed at
29∘C. ∗ ∗ ∗, P <0.001. Scale bar in A represents 100 𝜇m.The
genotypes used in the figure are as follows: ptc-Gal4 UAS-
GFP/+ (A), ptc-Gal4 UAS-GFP/UAS-APLP2 (B), and ptc-
Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2; 𝑝𝑢𝑐H246/+ (C).
Supplementary 3. Figure S3: APLP2 activates JNK signaling
in the wing disc. Light micrographs of wing discs are shown.
The expression pattern of ptc-Gal4 was indicated by the red
dashing line. Compared with the control (A), expression of
APLP2 induced puc-LacZ expression in the wing pouch (B),
whichwas blocked by expressing BskDN (C).The crosseswere
performed at 25∘C. Scale bar in A represents 200 𝜇m. The
genotypes used in the figure are as follows: ptc-Gal4 UAS-
GFP/+; puc-LacZ/+ (A), ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2;
puc-LacZ/+ (B), and ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2; puc-
LacZ/𝑈𝐴𝑆-BskDN (C).

Supplementary 4. Figure S4: APLP2 activates JNK signaling
in the salivary gland. Light micrographs of salivary glands
are shown. Compared with the control (A), expression of
APLP2 induced puc-LacZ expression in the salivary gland
(B), which was blocked by expressing BskDN (C).The crosses
were performed at 25∘C. Scale bar in A represents 200 𝜇m.
The genotypes used in the figure are as follows: ptc-Gal4
UAS-GFP/+; puc-LacZ/+ (A), ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-
APLP2; puc-LacZ/+ (B), and ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-
APLP2; puc-LacZ/𝑈𝐴𝑆-BskDN (C).
Supplementary 5. Figure S5: APLP2 induces JNK-mediated
MMP1 expression in the wing disc. Fluorescence micrographs
of wing discs are shown. Compared with the en-Gal4
UAS-GFP control (A–A”), ectopic expression of APLP2
in the posterior compartment of wing disc elevated MMP1
expression (B–B”), which was blocked by expressing BskDN
(C–C”). The crosses were performed at 25∘C. Scale bar in
A represents 200 𝜇m. The genotypes used in the figure are
as follows: en-Gal4 UAS-GFP/+; (A), en-Gal4 UAS-
GFP/𝑈𝐴𝑆-APLP2 (B), and en-Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2;
UAS-BskDN/+ (C).
Supplementary 6. Figure S6: depletion of MMP1 compromises
APLP2-induced cell migration. Fluorescence micrographs of
wing discs are shown. Compared with the ptc-Gal4 UAS-
GFP control (A), APLP2-induced cell migration (B) was
compromised by RNAi-mediated depletion of mmp1 (C).
(D)Quantification of the migration phenotypes in A–C.The
crosses were performed at 29∘C. ∗ ∗ ∗, P <0.001, ∗∗, P <0.01.
Scale bar in A represents 100 𝜇m. The genotypes used in the
figure are as follows: ptc-Gal4 UAS-GFP/+ (A), ptc-Gal4
UAS-GFP/ UAS-APLP2 (B), and ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-
APLP2; UAS-mmp1-IR/+ (C).
Supplementary 7. Figure S7: APLP2 induces actin polymer-
ization. Fluorescence micrographs of wing discs are shown.
Compared with the ptc-Gal4 UAS-GFP control (A–A”’),
APLP2 induces cell migration and actin remodeling (B–B”’).
The crosses were performed at 29∘C. Scale bar in A represents
100 𝜇m. The genotypes used in the figure are as follows: ptc-
Gal4 UAS-GFP/+ (A–A”’), and ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-
APLP2; 𝑝𝑢𝑐E69/+ (B–B”’).
Supplementary 8. Figure S8: expression of p35 fails to block
APLP2-induced cell migration. Fluorescence micrographs of
wing discs are shown. Compared with the ptc-Gal4 UAS-
GFP control (A), APLP2-induced cell migration (B) cannot
be blocked by expression of p35 (C). The white arrow in B
and C indicates the GFP-labelled migrating cells. The crosses
were performed at 29∘C. Scale bar in A represents 100 𝜇m.
The genotypes used in the figure are as follows: ptc-Gal4
UAS-GFP/+ (A), ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2 (B), and
ptc-Gal4 UAS-GFP/𝑈𝐴𝑆-APLP2; p35/+ (C).
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