
Secondary Structures of Proteins: A Comparison of Models and
Experimental Results
Mónika Bokor* and Ágnes Tantos
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ABSTRACT: Secondary structure predictions of proteins were
compared to experimental results by wide-line 1H NMR. IUPred2A
was used to generate predictions of disordered protein or binding
regions. Thymosin-β4 and the stabilin-2 cytoplasmic domain were
found to be mainly disordered, in agreement with the experimental
results. α-Synuclein variants were predicted to be disordered, as in
the experiments, but the A53T mutant showed less predicted
disorder, in contrast with the wide-line 1H NMR result. A disordered
binding site was found for thymosin-β4, whereas the stabilin-2
cytoplasmic domain was indicated as such in its entire length. The
last third of the α-synuclein variant’s sequence was a disordered
binding site. Thymosin-β4 and the stabilin-2 cytoplasmic domain
contained only coils and helices according to five secondary structure
prediction methods (SPIDER3-SPOT-1D, PSRSM, MUFold-SSW,
Porter 5, and RaptorX). β-Sheets are present in α-synucleins, and they extend to more amino acid residues in the A53T mutant
according to the predictions. The latter is verified by experiments. The comparison of the predictions with the experiments suggests
that helical parts are buried.

■ INTRODUCTION
New recently developed and older sequence-based predictors
are widely applied for the characterization and prediction of
protein structure and function. Several accurate predictors have
been produced, many of which are based on machine-learning
models and evolutionary information generated from multiple
sequence alignments. Here the particular predicted protein
secondary structures (SSs) are compared with the structural
information gained by wide-line nuclear magnetic resonance
(NMR) experiments for verification. To get a more reliable
prediction, several prediction methods were applied, and the
results were averaged.
Two protein systems were investigated, both of which are of

medical importance. Thymosin-β4 (Tb4) and the stabilin-2
cytoplasmic domain (CTD) constitute one such system, as a
1:1 complex has a major role in apoptotic cell clearance.1 Wild
type (WT) and A53T α-synucleins (α-Ss) are the second
system, which is involved in Parkinson’s disease.2 The A53T
mutation in α-synuclein is related to autosomal-dominant early
onset familial Parkinson’s disease.3 All of these proteins are
intrinsically disordered proteins (IDPs)4,5 that have no single
well-defined tertiary structure under native conditions.
Wide-line 1H NMR experimental results provide unique

information on the interactions of proteins with the solvent
water in the form of a melting diagram (MD).4−6 The MDs
(the amount of mobile hydration water measured by wide-line
NMR versus the temperature/potential barrier; see the

Supporting Information) contain experimental information
on structural properties of the studied proteins.5−8 A constant
section of MDs at low temperatures/potential barriers is a sign
of ordered protein regions, that is, secondary structural
elements. A constantly increasing amount of mobile hydration
water at higher temperatures/potential barriers reflects
heterogeneous water−protein interactions, which are con-
sequences of the disordered protein structure. The HeR
parameter of MDs serves as a ratio of the heterogeneous/
disordered protein regions of the solvent-accessible surface
(SAS), the complementary of which is the ratio of the
secondary structural elements. HeR is measured from MDs as
a ratio of the thermal width of the heterogeneous behavior to
the thermal distance of the mobile hydration water appearance.
Both are measured from 0 °C.
In the following work, we compare SS predictions with wide-

line 1H NMR experimental results and evaluate the predictions
based on their agreement.
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■ RESULTS AND DISCUSSION

Calculations to establish the presence of disordered protein
regions and disordered binding regions were made for Tb4 and
the stabilin-2 CTD by IUPred2 and ANCHOR2, respectively
(Figure 1). IUPred2 showed that the degree of disorder for the
whole Tb4 sequence is 83(1)%. The degree of disorder is
71(1)% for the first 11 amino acid residues and 90.7(6)% for
the last 35 amino acid residues of the stabilin-2 CTD. The
Stabilin-2 CTD is disordered to a high degree in its whole
length. HeR, the ratio of heterogeneously binding interface,7

established that individual Tb4 and stabilin-2 CTD have very
heterogeneous bonds with mobile hydration water molecules.
According to IUPred2 predictions, they are highly disordered
in their entire length, in accordance with experimental wide-
line 1H NMR results.4

ANCHOR2, which recognizes disordered binding regions
with score values >0.5, shows a definite binding region at the
N-terminus of Tb4 and a less expressed one in the second half
of the protein. Residues 1−16 and 28−37 are considered as
binding sites in Tb4. However, ANCHOR2 signifies the whole
stabilin-2 CTD as a binding region.

Predictions with IUPred2A were performed for wild-type
(WT) and A53T mutant α-Ss (Figure 2). IUPred2 predicted
on the basis of sequence that two-thirds of their N-termini
have a 42(8)% degree of disorder. The A53T mutant was
predicted to be a little more ordered, with a more pronounced
difference around and before the site of mutation at residues
34−54 (Figure 2). ANCHOR2 gives identical predictions for
the two variants of α-Ss. The first 80−100 residues do not
form a disordered binding site (average score of 0.42(8)), but
the last 30 residues at the C terminus do form a disordered
binding site (score of 0.82(4)). Residues 100−110 form a
transitional region between the two states.
These results agree with the fact that the α-Ss are

intrinsically disordered, as seen by wide-line 1H NMR.5,10

More precisely, 68(4)% of their SAS is heterogeneous/
disordered.
The β-sheet formation increases near the site of mutation in

the N-terminal region11 due to the amino acid change; that is,
the A53T mutation causes slightly more order around the
mutation site. This experimental result verifies the prediction
that at residues 34−54, the mutant is more compact than the
wild-type α-S. Wide-line 1H NMR experiments, on the
contrary, indicate that there is more mobile hydration water

Figure 1. Prediction of protein disorder and disordered binding sites9 for thymosin-β4 (red) and the stabilin-2 CTD (blue) by ANCHOR2 (left)
and IUPred2 (right) programs.

Figure 2. Prediction of protein disorder and disordered binding sites9 for wild-type and A53T α-synuclein by the IUPred2 and ANCHOR2
programs.
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at the heterogeneously hydrated regions, which means a more
open structure.5,10

The SSs of Tb4 and the stabilin-2 CTD were predicted by 3-
state and 8-state methods. Both methods provided the same
results, although the 8-state methods are less accurate than the
3-state methods.
The 3-state SS prediction methods (SPIDER3-SPOT-1D,

PSRSM, MUFold-SSW, Porter 5, and RaptorX) resulted in a
structure for Tb4 containing only coils and helices (Figure 3).
Helices are predicted to be at the N and C terminal ends of the
sequence. They extend to 12 and 23% of the Tb4 length,
respectively. More precisely, the first helix is formed by
residues 6−10 in the average predicted SS or by residues 6−11
in the SPIDER3-SPOT-1D predicted SS at the N-terminal end,
and the second helix is formed by residues 31−40 or 31−39,
respectively, at the C-terminal end in these predictions. The
second helix is present according to each of the five methods.
On average, the second helix is longer by one residue, and it is
predicted to be only nine residues long by the SPIDER3-
SPOT-1D method. The motifs run to 11.6, 14.0, 23.3, and
20.9% one after another. This prediction is in good agreement
with the solution NMR structures of the free and actin-bound
Tb4.

12

The 8-state prediction models result in almost the same SS
for Tb4 compared to the 3-state models (Figure 3), with only
very small differences. The 23% helix length fit the HeR value
measured by wide-line 1H NMR very well, according to which
Tb4 contains 22(1)% secondary structural elements.4 The
shorter helix is stabilized by the binding to actin monomers
and is highly flexible in solution;12 therefore, it is not visible for
wide-line 1H NMR.
The stabilin-2 CTD has a 17(3)% ordered SAS, as the HeR

value measured by wide-line 1H NMR indicates. The predicted
3- and 8-state SSs of the stabilin-2 CTD are identical according

to both the averaged and the SPIDER3-SPOT-1D methods,
except for the prediction of the 8-state averaged results (Figure
3). The stabilin-2 CTD can be described as a uniform coil,
except for a short helix motif. The helix can be found near the
C-terminal end, at positions 37−41. This is a five residue long
motif, and it occupies 10% of the entire length. The predicted
10% is very minute compared with the HeR value, and buried
secondary elements are not possible in this case. The
sequence-only-based prediction methods are unable to
properly handle the stabilin-2 CTD.
The stabilin-2 CTD is predicted to contain fewer secondary

structural elements than Tb4, but wide-line 1H NMR
experimental data prove just the contrary: Tb4 has a more
open structure than the stabilin-2 CTD with more binding
sites that are free to form a mobile hydration shell.4,6

In α-Ss, the determinant motifs are coils, helices, and β-
sheets according to 3- and 8-state prediction methods. For WT
α-S (Figure 4), the 3-state methods indicate the coil and the
helix to be the most determinant. The 8-state SS predicting
methods also forecast abundant β-sheets.
The predictions suggest that WT and A53T α-S variants

have very similar SSs. The first half of the sequence shows the
greatest difference between the two variants. In the results
averaged over five 3-state methods, the second short coil
region is shifted by five positions toward the C-terminus in
A53T relative to WT. A 29 residue long helical section
(residues 3−31) can be found in the WT α-S, and a 30 residue
long helical section (residues 3−32) can be found in the A53T
variant. These helices extend to 21% of the entire protein
length. A second helix, in the middle of the proteins, is 42
residues long for the WT (residues 49−90), which is 30% of
the protein, whereas it extends to 26% of the protein with a 36
residue length (residues 52−87) for A53T. Together, the two

Figure 3. Predicted 3- and 8-state secondary structures for thymosin-β4 and the stabilin-2 CTD. The average structure of the five modeling
programs (SPIDER3-SPOT-1D, PSRSM, MUFold-SSW, Porter 5, and RaptorX) and that of the separate SPIDER3-SPOT-1D prediction are
shown.
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helices add up to 51 (WT) or 47% (A53T) of the entire length
according to the average of the five methods.
Helices are responsible for ordered structures, which are

detected in 30(4)% of the WT and in 35(4)% of the A53T by
wide-line 1H NMR (average 32.5(2)%). According to the
predictions, the lengths of helices comprise 49% of the whole
α-S protein; that is, they are too long compared with the
measurements. An explanation of this phenomenon is that
parts of the helices are not on the SAS of the protein but are
buried in the hydrophobic interior of it. Altogether, helices and
β-sheets extend to half of the protein, which considerably
overestimates the amount of experimentally determined
secondary structural elements.
β-sheets can only be found in the A53T mutant, in the form

of a short, four-residue section (residues 38−41), as predicted
by averaged 3-state methods. The 3- and 8-state predictions
show the appearance of a β-sheet in α-Ss around residue
position 40 (Figure 4). The disorder prediction of IUPred2
(Figure 2) indicates greater order in A53T than in the WT α-S
at the exact site of the mutation and from it toward the N-
terminus. The mutation also entails the increment of β-sheet
content that was reported based on experimental results by
others.13−17

The 3-state prediction of SPIDER3-SPOT-1D (Figure 4)
differs significantly in detail from that calculated as an average
over five methods for the α-S variants. Coil motifs are shorter
by two residues for A53T compared with the WT. SPIDER3-
SPOT-1D predicts 21% lower helix content in the WT α-S

than the average result. On the contrary, there is a ten-residue
difference in A53T; the first coil is longer by two residues,
there is an extra β-sheet at positions 38−43, and the first helix
is longer by two residues than in WT. There is no β-sheet in
the WT variant, and in the A53T mutant it is minimal (four
residues at positions 38−41), as predicted by the five averaged
3-state methods. In contrast, the SPIDER3-SPOT-1D method
shows 10 (WT: positions 49−58) and 6 + 10 (A53T: positions
38−43 and 49−58) residues to have β-sheet arrangements. In
summary, there is a greater β-sheet ratio for the mutant
sequence and an excess of β-sheets near the site of mutation or
toward the amino terminus, in agreement with all of the above-
mentioned predictions.
The 8-state SS prediction methods also show random coils,

α-helices, and β-sheets only as the 3-state predictions. The size
of the random coils is the same for both the WT and A53T α-
Ss (Figure 4) according to averaged predictions. Helices
extend to the same number of residues in both the WT and
A53T α-Ss in the averaged predictions but at shifted positions
and in different sections (WT averaged helices: positions 3−6,
9−37, and 59−84; A53T averaged helices: positions 3−32,
45−48, and 60−84). The β-sheet structure is more extensive in
the mutant variant; the 14 residue length in the WT α-S grows
to 20 residues in the A53T α-S. An important difference
between the averaged and the SPIDER3-SPOT-1D prediction
is in the length of the random coil, which is longer by 40%
compared with the averaged structure. Moreover, helices and

Figure 4. Predicted 3- and 8-state secondary structures as an average structure of five modeling programs (SPIDER3-SPOT-1D, PSRSM, MUFold-
SSW, Porter 5, and RaptorX) and the separate SPIDER3-SPOT-1D prediction of secondary structures for wild-type and A53T α-synuclein.
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β-sheets are shorter according to the SPIDER3-SPOT-1D
prediction.
As a general conclusion of these observations, average of the

8-state predictions forecasts SS for the 55% of the whole
protein. SPIDER3-SPOT-1D method, very similarly to this,
indicates 50%. The 8-state SS prediction, consequently,
overestimates the measured value. The overestimation of
structured regions could indicate the predisposition of the
disordered monomers to fold upon formation of the amyloid
fibrils. The structural traits picked up by the SS predictors
mostly remain masked by the high flexibility of the disordered
monomers and only become realized when fibril formation
occurs.
For α-Ss, the 3- and 8-state methods overestimate the SS

content to be ∼50% instead of the measured 35(4)%, as
deduced from the HeR parameter of wide-line 1H NMR. The
ANCHOR2 protein binding region shows the WT and A53T
mutant α-Ss to behave identically. The last 35 residues at C-
terminus have the possibility of forming bonds.
According to the HeR, the individual Tb4 and the stabilin-2

CTD have very heterogeneous bonds with mobile hydration
water molecules. IUPred2 predicts them to be highly
disordered in their entire length, in accordance with
experimental NMR results.4 ANCHOR shows two disordered
binding regions of Tb4 and classifies the whole stabilin-2 CTD,
so the 3- and 8-state SS predictions of these proteins gave
identical results. A helix as large as 23% of Tb4 was predicted,
which fit very well the 22(1)% (1−HeR) value, that is,
secondary structural elements measured by wide-line NMR.4 A
smaller helix of 12% is not exposed on the SAS and is not
visible for wide-line NMR. The predicted 10% helical content
for the stabilin-2 CTD is very minute compared with the HeR
value. Tb4 has a more open structure than stabilin-2 CTD, as
measured by NMR,4,6 in contrast with the predictions.
IUPred2 predicted that both the WT and the a53T α-Ss

were partially disordered to 42(8)% (first 80−100 residues)
and 82(4)% (last 30 residues), respectively. This agrees with α-
Ss being intrinsically disordered. The A53T mutation induces
β-sheet formation, but it is not detected by the IUPred2
algorithm, as the single β-strand alone forms a rather extended
structure, similar to disordered segments. A stronger β-sheet-
forming tendency becomes apparent in the faster fibril
formation of the mutant variant, but the mutant appears to
be even more disordered than the WT in 1H NMR
measurements. Despite this, wide-line NMR experiments
indicate a more open structure.5,10 The IUPred2 prediction
indicates a more ordered section in the sequence of the A53T
than in the WT α-S. A β-sheet also appears in the 3- and 8-
state SS predictions with the A53T mutation. They show an
excess of β-sheets in the mutant, indicating its higher capacity
to form amyloid fibrils. The determinant motifs are coils,
helices, and β-sheets in the α-Ss according to these predictions.
They overestimate the SS content compared with the HeR
parameter values of wide-line NMR. The WT and A53T
mutant α-Ss behave identically, as the ANCHOR2 protein-
binding region shows.

■ METHODS

Protein preparation and wide-line NMR measurements (see
the Supporting Information) were described in former
publications.4,5 Tb4 (44 amino acids, with a starting
methionine) and the 2501−2551 amino acid sequence of the

stabilin-2 cytoplasmic domain were used for wide-line 1H
NMR experiments.
The applied 3-state SS prediction methods are SPIDER3-

SPOT-1D, PRSM, MUFOLD-SSW, Porter 5, and RaptorX. 8-
State predictions were also made with the same methods,
except for PRSM.
SPIDER3-SPOT-1D (https://sparks-lab.org/server/

spider3/) is a bidirectional recurrent neural network
(BRNN) model18 that contains long short-term memory
(LSTM) cells. The model used in SPOT-1D19,20 applies an
ensemble of LSTM BRNN and residual convolutional network
(ResNet) hybrid models. The method achieves 87 (segment
overlap measure (SOV) 80%) and 77% (SOV 75%) in 3- and
8-state SS predictions (Q3 and Q8 accuracy), respectively.21

The SPIDER3-SPOT-1D results are also reported individually,
not just as included in the average value, because this method
gives the most accurate predictions.
PSRSM (http://qilubio.qlu.edu.cn:82/protein_PSRSM/

default.aspx) uses methods based on data partitioning and
the semirandom subspace method.22 In the traditional random
subspace method, the low-dimensional subspace is generated
by random sampling in a high-dimensional space. First, the
training data are divided into different subsets according to the
length of the protein sequence; then, the subspace is generated
using the semirandom subspace method, and the basic
classifier is trained in the subspace. Finally, they are combined
by a majority vote rule on each subset. The experiment carried
out on six data sets achieves a Q3 result of 85.5% on average
(SOV 83.6%)
MUFold-SSW (MUFold Secondary Structure Web server, is

a web-based implementation that applies different deep-
learning methods and architectures.23 The architecture makes
possible the effective processing of local and global interactions
between amino acid residues and therefore accurate prediction.
The accuracy of the method is 85% on level Q324 (82.6%
SOV25), and it is 74% on level Q824 (71.5% SOV25).
Porter 5 (http://distilldeep.ucd.ie/porter/) is composed of

ensembles of cascaded BRNNs and CNFs. It incorporates new
input encoding techniques and is trained on a large set of
protein structures.26 Porter 5 achieves 84% accuracy (81%
SOV) when tested on three classes and 73% accuracy (70%
SOV) when tested on eight classes on a large independent set.
RaptorX Property (http://raptorx.uchicago.edu/) is a web

server that predicts the structure properties of a protein
sequence without using any templates.27 This server employs a
powerful in-house deep-learning model, DeepCNF (Deep
Convolutional Neural Fields), to predict the SS, solvent
accessibility, and disorder regions. DeepCNF not only models
the complex sequence−structure relationship by a deep
hierarchical architecture but also models the interdependency
between adjacent property labels. Experimental results show
that this server can obtain ∼84% Q3 (SOV 85%) accuracy for
a 3-state SS and ∼72% Q8 (SOV 68%) accuracy for an 8-state
SS.
IUPred2A9,28−30 was used, which is a combined web

interface that allows one to identify disordered protein regions
using IUPred2 and disordered binding regions using
ANCHOR2.
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(29) Dosztańyi, Z. Prediction of protein disorder based on IUPred.
Protein Sci. 2018, 27, 331−340.
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