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The endothelial cells that compose the vascular system in the body display a wide range

of mechanotransductive behaviors and responses to biomechanical stimuli, which act in

concert to control overall blood vessel structure and function. Such mechanosensitive

activities allow blood vessels to constrict, dilate, grow, or remodel as needed during

development as well as normal physiological functions, and the same processes can

be dysregulated in various disease states. Mechanotransduction represents cellular

responses to mechanical forces, translating such factors into chemical or electrical

signals which alter the activation of various cell signaling pathways. Understanding

how biomechanical forces drive vascular growth in healthy and diseased tissues could

create new therapeutic strategies that would either enhance or halt these processes to

assist with treatments of different diseases. In the cardiovascular system, new blood

vessel formation from preexisting vasculature, in a process known as angiogenesis,

is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor

2 (VEGFR-2) which promotes blood vessel development. However, physical forces

such as shear stress, matrix stiffness, and interstitial flow are also major drivers

and effectors of angiogenesis, and new research suggests that mechanical forces

may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked

to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and

YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered

mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing

and arresting angiogenesis associated with tumor growth have been strategies for

anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical

regulation of angiogenesis could enhance vascularization strategies for treating a variety

of cardiovascular diseases, including ischemia or permit development of novel tissue

engineering scaffolds. This review will focus on the impact of VEGFR-2mechanosignaling

in endothelial cells (ECs) and its interaction with other mechanotransductive pathways,

as well as presenting a discussion on the relationship between VEGFR-2 activation and

biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with

dysfunctional vascular growth.
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INTRODUCTION

Angiogenesis, or the development of blood vessels from
preexisting vasculature, is a pillar of normal development and

growth; however, various disease states are associated with

dysregulation of blood vessel growth. For example, tumors

express irregular and tortuous vasculature, while ischemia is the
lack of functional vessels, creating hypoxic environments and

ultimately leading to tissue death. Much research has focused
on either inhibiting or promoting angiogenic processes to treat
diseases, but these therapeutic approaches have shown mixed
results. Perhaps some of these failures are due in part to the
focus on biochemical regulation of angiogenesis while ignoring
mechanical cues that could also be controlling blood vessel
development. For this review, we will use biochemical signaling

FIGURE 1 | Mechanical forces in blood vessels. Vascular ECs (red boxes) experience a variety of forces. Compressive forces (blue) can be caused by matrix (light

blue) stiffness, tumor expansion, and surrounding cells. Shear stress (purple) caused by blood flow is also a major component of the vascular environment. Pulsatile

flow and atherosclerosis also affect fluid flow and the resulting shear stress. Interstitial fluid flow and pressure (red) is also present during angiogenesis, and especially

in the TME. Permeable vasculature is commonly present in disease states such as tumors and edema. Figure was derived based on the following references: (1–13).

to refer to the binding of vascular endothelial growth factor
(VEGF) to VEGF receptor 2 (VEGFR-2), while biomechanical
signaling will refer to VEGFR-2 activation or downstream
signaling induced by non-ligand binding cues.

Mechanotransduction is the process by which mechanical
signals from the extracellular matrix (ECM), nearby cells, or
surrounding fluids interact with a cell and are subsequently
processed into a biochemical signaling cascade of various
proteins to regulate the cellular response to the mechanical cue.
In the vasculature, the endothelial cells (ECs) that comprise the
vessel walls are in a constant state of mechanical stimulation,
through a variety of forces (Figure 1). This includes not only
shear stress from blood flowwithin the vessels, but also interstitial
flow over the vessels from the surrounding tissues (1–3). There
are compressive strains due to matrix composition or stiffness,
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as well as regulation of the vascular tone by vascular smooth
muscle cells (VSMCs) or pericytes (4, 5). Also, the geometry
of blood vessels induces curvature stresses in the endothelial
cells (1, 3, 5). Finally, in larger vessels of the arterial system, a
pulsatile fluid pressure wave is experienced with every heartbeat
(3). Together, these forces may alter endothelial cell behaviors
in underappreciated manners that could affect the growth and
development of new vasculature. During development, these
forces guide cell activity, but many disease states possess an
altered biomechanical milieu that dysregulates the vasculature.
For example, in the tumor microenvironment (TME), matrix
remodeling initiated by stromal and tumor cells increases matrix
stiffness, usually through increased collagen deposition and
organization. This increases both compressive forces on the cells
and vessels, forcing higher levels of interstitial flow as fluids
are “squeezed” from the vessels and generating irregular shear
stresses. These types of changes have been associated with the
regulation of tumor-associated angiogenesis, as will be discussed
below. Additionally, arterial stiffening, which is common with
increased age, is due to changes in elastin and collagen content
of the arterial wall. These changes alter forces induced by
blood flow and could significantly impact the endothelial cell
signaling processes. Understanding how mechanotransduction
by endothelial cells regulates angiogenesis will provide critical
knowledge in how to promote or inhibit blood vessel growth
in the dysregulated biomechanical environments of various
disease states.

The ligand VEGF and one of its receptors VEGFR-2 are
the major regulators of angiogenesis; however, VEGFR-2 has
been known to be activated independent of its ligand (14,
15). Several studies have demonstrated that mechanical forces
can regulate VEGFR-2 expression and activation (15–21). For
example, ECs exposed to shear stress showed formation of a
VEGFR-2 and VE-cadherin-β-catenin complex that acted as a
mechanotransducer and allowed the cells to activate downstream
pathways such as p38 and Akt (22). Since VEGFR-2 can promote
angiogenesis, changes in the physical environment could inhibit
or promote blood vessel development. This paper will focus on
how VEGFR-2 on ECs has been shown to be mechanically-
activated, which downstream mechanotransductive factors are
regulated by VEGFR-2 signaling, and how knowledge and future
studies of this phenomenon could help develop treatments for
various disease states.

VEGFR-2

Considered one of the key components of endothelial
proliferation and vascular growth, VEGFR-2, also known as fetal
liver kinase 1 (Flk-1) or kinase insert domain receptor (KDR),
is mostly found within vascular ECs, though it is also weakly
expressed in other cells such as osteoblasts, hematopoietic
cells, and megakaryocytes (23–26). Although this receptor
tyrosine kinase (RTK) is primarily known for its angiogenic
signaling effects, it is also involved in embryonic development,
differentiation, and EC migration (27–29). Regulation of
these processes is controlled by additional signaling pathways

and kinase activity including Rho/ROCK, ERK, and Src
(30, 31). In fact, many Rho-GTPases and mechanotransductive
transcription factors are downstream of VEGF binding to
VEGFR-2 (Figure 2). There are three domains of VEGFR-2:
extracellular, transmembrane, and intracellular. Ligands bind
to the extracellular region, which is rich in immunoglobulin
domains, and the transmembrane domain stabilizes receptor
dimerization (39, 40). The intracellular region contains a kinase
domain and several tyrosine residues, which permit VEGFR-2 to
act as an RTK and activate a variety of signaling cascades within
ECs (32). Some of the prominent phosphorylation locations are
Y1054/Y1059 which are necessary for angiogenic activation (41).
The Y951 residue is more specific, causing Src activation and
VE-cadherin phosphorylation; these effects lead to increased
vascular permeability and mitogenesis (42, 43). Another well-
studied phosphorylation site is Y1175, which interacts with
Shb and activates PLCγ/MAPK, promoting migration and
proliferation (44–46). Furthermore, Y1214 is a prominent site
commonly associated with activation of p38, cdc42, Akt, and
ERK pathways (33, 47). There are seven members of the VEGF
ligand family: placenta growth factor (PIGF), four mammalian
VEGFs (VEGF-A, VEGF-B, VEGF-C, VEGF-D), viral VEGF-E,
and VEGF-F from snake venom (23). Each of these members
of the VEGF ligand family has splice variant isoforms of
varying molecular weights, with VEGF-A isoforms being the
most prominent in directing blood vessel growth (23, 34, 48).
VEGFR-2 dimerizes when activated, and though it can bind to
other VEGF receptor family members, VEGFR-1 and VEGFR-3,
to control migration and lymphangiogenesis, a VEGFR-2
homodimer is the primary regulator of blood vessel development
(32, 39, 49–51). When inactive, VEGFR-2 colocalizes with
caveolin-1, which resides in caveolae of the plasma membrane
and is involved in cell signaling roles such as negatively regulating
VEGFR-2 (52). However, once activated VEGFR-2 dissociates
from caveolin-1, and VEGFR-2 is subsequently phosphorylated,
endocytosed, and degraded (35, 52, 53). This phosphorylation
and internalization of VEGFR-2 then leads to the activation
of various signaling pathways, causing different reactions
such as increased vascular permeability due to VE-cadherin
endocytosis (54).

Two other members of the VEGF receptor family are VEGFR-
1 and VEGFR-3, which also bind members from the VEGF
family (34). Neuropilin-1 (NRP-1) and neuropilin-2 (NRP-
2) act as co-receptors to members of the VEGF-receptor
family and have been shown to play roles in vascular growth
in developmental angiogenesis as well as tumor-associated
angiogenesis (23, 55, 56). Similar to VEGFR-2, VEGFR-1 also
regulates angiogenesis, specifically by inhibiting pro-angiogenic
signals due to binding kinetics with the VEGF ligand. The
extracellular domain of VEGFR-1 has higher affinity for VEGF
than VEGFR-2, and evidence suggests this binding is responsible
for angiogenic inhibition; however, VEGFR-2 has a higher level
of tyrosine kinase activity, resulting in the more prominent role
in angiogenesis (23, 32, 34). Alternative splicing can form a
soluble VEGFR-1 (sVEGFR-1) that contains no transmembrane
or intracellular domain, and this variant has been shown to
block proliferation of vascular ECs (57). On the other hand,
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FIGURE 2 | Mechanosignaling in the VEGFR-2 pathway. The VEGFR-2 receptor (red) dimerizes when bound by the VEGF ligand, spans the cell membrane (blue) and

possesses multiple phosphorylation sites in the intracellular domain (orange). Downstream signaling initiated by VEGFR-2 includes several known

mechanotransductive proteins and enzymes (green) including the MEK/ERK, Rho/ROCK, Src, and YAP/TAZ pathways. Crosstalk between related pathways, i.e.,

ERK/p38, are not shown for the sake of clarity. The primary target of each pathway is identified with a dashed gray line (light blue region) and includes cytoskeletal

regulation, focal adhesion regulation, and VE-cadherin signaling. Finally, resulting cellular phenotypes for each mechanosignaling pathway are indicated with a solid

blue arrow in the lowest region of the figure. Figure was derived based on the following references: (23, 24, 32–38).

VEGFR-3 is commonly associated with the development of
the lymphatic system, or lymphangiogenesis, though it has a
role in regulating other angiogenic properties such as VEGFR-
2 expression (58–60). Similar to VEGFR-2, VEGFR-3 can be
mechanically-activated by sheer stress, and it complexes with
VEGFR-2 and VE-cadherin on the cellular membrane (61).
Further discussion of the other VEGF receptors can be found
in the following reviews: Melincovici et al. as well as Koch and
Claesson-Welsh (23, 32).

ANGIOGENESIS

Angiogenesis is the growth of new blood vessels from
preexisting vasculature, as opposed to vasculogenesis, which is
the development of vessels de novo (62). Both angiogenesis and
vasculogenesis have been shown to play roles in progression
of diseases including cancer, ischemia, and arterial stiffening
(63, 64). The process of angiogenesis can be classified as
either intussusceptive, also known as splitting, or sprouting
angiogenesis. Splitting angiogenesis is less studied and occurs
when one vessel develops into two parallel vessels through
the growth and fusion of tissue pillars in the middle of the
original capillary or vessel (63, 65). Sprouting angiogenesis is

more widely understood and involves nascent vessels entering
a previously un-vascularized tissue region, which is common in
embryonic development and certain disease states including the
TME (66–68). Sprouting angiogenesis begins with a stimulus,
such as hypoxia which affects oxygen sensors including hypoxia
inducible factors (HIF), causing cancer or stromal cells to
produce VEGF that diffuses to a preexisting vessel before
binding VEGFR-2 (69, 70). The binding of VEGF to VEGFR-
2 causes a breakdown of the basement membrane, and these
ECs undergo a phenotypic shift into tip cells, with increased
cell-matrix interactions, matrix remodeling, and high migratory
potential. When a tip cell is formed, the VEGFR-2 receptors
on filopodia follow the VEGF gradient, or other pro-angiogenic
stimulus, to lead the growth of the sprouting blood vessel.
As these cells migrate toward the angiogenic signal, stalk cells
behind them proliferate and form the new vascular structure
(63, 66, 69, 71). This basic understanding of angiogenesis is
incomplete, however, because other biomechanical forces can
also induce and direct vasculature development. For example,
the highly invasive breast cancer cell line MDA-MB-231 migrates
against flow, and increased matrix stiffness can decrease the EC
vascular sprouting (72–75). Moreover, recent work has shown
that angiogenesis can be driven through biomechanical strains
induced in a matrix by cancer-associated fibroblasts (CAFs) or
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through mechanical manipulation with a magnetic bead system,
in a manner that is not dependent on secreted VEGF (76, 77).
Physical, and not solely chemical, signals in the ECM can result
in altered angiogenic patterns, and such changes in physical
or biomechanical signals are commonly seen in many disease
states. As the role of biochemical regulation of the VEGFR-2
pathway is still only partially understood, the objective of this
review is to describe key themes in VEGFR-2 mechanoactivation
and mechanotransduction and how these are present in various
pathological conditions.

Angiogenesis in Disease
Dysregulation of angiogenesis occurs in various pathologies, and
often this is caused or amplified by changes in the ECM. One
common disease state is arterial stiffening which becomes more
prevalent with age; this stiffening is also observed in several
of the diseases discussed below, including peripheral arterial
disease and ischemia (64). Late-passage or senescent ECs are
more spread out and have decreased proliferative and angiogenic
behaviors, with an increased chance to become apoptotic (78,
79). Understanding why this behavioral shift is associated with
age could help to treat or even prevent further cardiovascular
complications (79). In vascular walls, elastin and collagen help
provide flexibility and rigidity, respectively; however, as an
individual ages, concentration of elastin decreases and collagen
increases (6, 7). As a result, the ECs of the blood vessel walls
experience increased matrix stiffness and a higher arterial pulse
pressure (80, 81). Furthermore, stiffer blood vessels can have
increased permeability and becomemore likely to develop plaque
accumulation, which can lead to further complications (82).
Transcription factors YAP/TAZ, which reside downstream of
VEGF/VEGFR-2, are upregulated on stiffer matrices and in
disturbed flow, and in vivo inhibition of YAP/TAZ caused
decreased atherosclerosis and EC inflammation (83, 84). Since
many cells are known to respond to environmental mechanical
cues, the natural stiffening of arteries could be a contributing
factor of further cardiovascular diseases that are more common
with age. Understanding how angiogenesis is affected by these
physical changes would help develop new treatments that would
target an overall cause of these illnesses instead of effects of
arterial stiffening.

Another major disease state that involves angiogenesis is
cancer progression, which has elucidated how the mechanical
environment can affect blood vessel growth. When tumors
are small, they can rely on simple diffusion for delivery of
nutrients including oxygen; however, as the tumor increases in
size, vasculature is required to provide cells with the increased
nutrients for the increased cell numbers (2, 85). The TME
is significantly different than normal, healthy tissue in both
chemical and mechanical factors. First, there is an increase
in proangiogenic factors such as VEGF within tumors (2,
75). Regarding mechanical components, tumor matrices are
stiffer due to higher collagen production from stromal cells,
and these collagen levels have been linked to Rho/ROCK
and FAK regulation (8–11). New blood vessels grown during
tumor progression are often not fully inter-connected with each

other or the existing vasculature and can feature poor cell-
cell contacts, leading to increased permeability or leakiness
(12, 13). Furthermore, the interstitial fluid pressure is higher
within tumors due to vessel compression leading to leaky,
tortuous structures (12, 13). The combination of chemical and
mechanical changes in the TME causes changes in angiogenic
activity; understanding how such changes affect tumor growth
and metastasis will help predict and treat this disease.

Unlike in the TME where angiogenesis is upregulated, some
diseases are caused by or related to inhibited blood vessel growth,
function, or survival. For example, peripheral arterial disease
(PAD) causes hypoxic conditions in extremities often as a result
of arterial blockage limiting blood flow. Late stages of this disease
can lead to critical limb ischemia and eventually the need for limb
amputation. Those that have PAD are at a higher risk of stroke
and myocardial infarction, and many suffer from claudication,
or pain from insufficient blood supply (86, 87). Mechanical
changes such as disrupted fluid shear stress and stiffer arteries
can result from plaque build-up and vessel narrowing present in
many PAD cases (88–90). Also, patients suffering from PAD have
been shown to have higher blood viscosity, especially when they
experience regular claudication (91). Patients with PAD also show
elevated levels of VEGF and lower levels of VEGFR-2 (92). Most
current treatments focus on improving general cardiovascular
health, with more drastic procedures such as stents being used
if the condition worsens. Research is being done to determine
if pro-angiogenic factors such as VEGF and fibroblast growth
factor (FGF) could promote revascularization; however, these
trials have shown limited success, suggesting that the angiogenic
mechanisms of PAD are not fully understood (86, 93, 94). Since
mechanical changes are present in the PAD disease state, how
those changes affect the growth and deterioration of vasculature
should be examined to produce more effective treatments aimed
at revascularizing affected areas.

Related to PAD, ischemia occurs when tissue does not
receive sufficient nutrients and oxygen due to insufficient or
inefficient vasculature, creating a hypoxic environment and
eventually leading to tissue death (95). Ischemia is classified
based on the affected tissues. For example, myocardial ischemia
is where cardiac tissue does not receive sufficient oxygen which
can lead to multiple adverse events including arrythmias or
myocardial infarctions (96). Myocardial infarctions cause heart
tissue damage and scarring, with a higher amount of collagen
deposited by cardiac fibroblasts during post-infarction events
(97). This results in a stiffer matrix which is shown to express
upregulated VEGF levels (98). The increased contractility of
the myocardium, due to increased stiffness in the scar region,
prevents revascularization of the affected area and severely
impacts overall cardiac performance (99). Limb ischemia occurs
when blood flow is limited to extremities such as the hands and
legs. Both types of ischemia can be caused by atherosclerosis,
or a build-up of plaque in the arteries, and limb ischemia can
also be a complication of other diseases such as diabetes or
PAD (96, 100, 101). Studies have shown upregulation of HIF,
VEGF, and VEGFR-2 in limb ischemia, especially in acute limb
ischemia as opposed to chronic (102, 103). Since limb ischemia
is so similar to PAD, many of the mechanical changes present
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in PAD are also in ischemia, such as increased arterial stiffening
and increased blood pressure (104). Studies have explored
whether pro-angiogenic factors could promote vascularization
in ischemic tissues, although so far these strategies have
demonstrated mixed success, with single factors appearing to
be less effective than combined treatments (93, 105, 106). A
broader understanding of the relationship between angiogenic
cytokines, VEGFR-2 mechanoactivation and mechanosignaling,
and vessel reperfusion could benefit the development of this
potential treatment strategy.

Angiogenesis in Development
The cardiovascular system of the developing fetus is the first
functional system generated, occurring even before circulation
is established. Since an early embryo does not have any blood
vessels, vasculogenesis must initially occur before angiogenesis
later in development (62). VEGF and VEGFR-2 are both
necessary in vasculogenesis and angiogenesis, with higher VEGF
expression levels present during the former and lower expression
during the latter (107, 108). Expression of VEGFR-2 is also
upregulated early in development, especially after FGF is secreted
(109). Knockdowns of VEGFR-2 and VEGF are embryonically
lethal, demonstrating their significant roles in development
(27, 110, 111). During development, cells naturally produce
mechanical forces which can influence many factors including
differentiation, migration, and angiogenesis as the tissues of
the fetus form. These rapid changes in organization cause
cells to experience stretch, pressure, and shear stress, which
cause mechanoactivation of various proteins, such as cadherins,
caveolins, Rho, and cdc42, and aid in development in normal
physiological conditions (4). However, deletion of vegfr-2 in a
genetically-modified mouse model is embryonically lethal by
stage E10.5 and showed no vasculature, suggesting that VEGFR-2
is required for vasculogenesis in development (27). Studying how
these dynamic forces, and what additional cell types or matrix
changes cause them, alter VEGFR-2 signaling could provide
information about congenital vascular diseases and strategies for
controlling blood vessel growth.

Angiogenesis in Tissue Engineering
While there has been a significant rise in interest for tissue
engineered scaffolds for replacement of disease tissues or organs
in recent years, generation of large-scale systems has been limited
by size restrictions due to limited nutrient diffusion. Currently
tissue scaffolds with cells can be no more than approximately
200µm away from a capillary, which represents the limit of
oxygen diffusion in these tissue mimics (112, 113). Although
many tissue engineering strategies have attempted to incorporate
or promote vascularization during scaffold generation, there have
been mixed results for creating functional and mature blood
vessels, often because of the vascularization of the new tissue can
take weeks (114, 115). Many studies have used pro-angiogenic
factors, such as VEGF and FGF, to promote blood vessel growth.
However, the concentrations and gradients of these factors is
complex in native tissues, and imprecise use can limit vessel
maturity, function, permeability, and structure (113, 115, 116). In
addition to incorporating vascular growth factors, several groups

have attempted to use biomechanical stimulation to prime these
engineered scaffolds to generate more physiologically-relevant
tissue functionality (117, 118). Understanding the unique ways
in which biomechanical forces regulate blood vessel growth
and vascular function through mechanosignaling related to
the VEGFR-2 pathway could provide alternative strategies for
developing larger tissues or even organs with a fully functional
and interconnected vascular network.

Stromal Cells
Other cells in the perivascular matrix can also act as a
source of biomechanical signals to the ECs of the vasculature,
potentially impacting the VEGFR-2 signaling axis. While some
of these stromal cells, including vascular smooth muscle
cells (VSMCs), weakly express VEGFR-2 and can play a
role in ischemic conditions, the VEGFR-2 expression levels
in ECs are significantly higher (23, 119–121). This includes
VSMCs and pericytes in normal vasculature and stromal cells
including cancer-associated fibroblasts (CAFs) in the tumor
microenvironment. VSMCs comprise a concentric layer around
the vascular lumen formed by endothelial cells in the tunica
media and are most typically found on larger arterial vessels
and veins; the overall function of these cells is to facilitate
vasodilation or vasoconstriction based on physiological cues
from the nervous system and driven by somatic need (122).
These cells typically express alpha-smooth muscle actin and
smooth muscle myosin heavy chain and can play a significant
role in cardiovascular diseases including hypertension, ischemia,
and atherosclerosis (123). Through regulation of vascular tone,
VSMCs can directly lead to increased compressive forces on
ECs in blood vessels as well as increases in shear stresses in
the vessel lumen. Additionally, VSMCs demonstrate VEGFR-
2 expression when exposed to hypoxic conditions (124). An
additional example of mechanosensors present on both ECs and
VSMCs is Piezo1, which is a non-selective cation channel that
controls cellular response to shear stresses (125, 126). Pericytes,
on the other hand, act as support cells in smaller vascular
networks, specifically in capillary beds (122). There are multiple
markers for pericytes including alpha smooth muscle actin, NG2
proteoglycan, platelet derived growth factor receptor beta, N-
cadherin, and CD106 (127–129). Pericytes have been shown
to directly interact with ECs in growing vascular networks,
relying on heterotopic Notch signaling as well as heterotypic
cadherin bonds to control sprouting angiogenesis and cell
migration (130–132). These studies examined pericyte function
and behavior in a variety of in vitro and ex vivo model systems
in both cardiovascular development and disease as well as cancer
progression. Moreover, expression of VEGFR-1 on pericytes acts
as a regulator of tip cell formation in mice retinas and inhibiting
this signal causes overgrowth of the vascular field (133). A
full discussion of the mechanobiological roles of pericytes is
beyond the scope of this review but can be found in a recent
publication by Dessales et al. (5). In the context of the tumor
microenvironment, CAFs are a mechanically-active stromal cell
that promotes enhanced angiogenesis through growth factor
signaling, matrix remodeling, and contractile behaviors (20, 76,
77, 134–138). More specifically for angiogenesis, CAFs have been
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shown to increase expression of growth factors including VEGF-
A and stromal cell-derived factor 1 (SDF-1) after exposure to
either cyclic strains or compressive forces, leading to increased
angiogenesis in in vitromodel systems (134, 137). The activation
of VEGFR-2 and dissociation from VE-cadherin is regulated
by a Src-dependent process that can be induced by tensile
strains on pulmonary artery ECs (20). Overall, the regulation
of angiogenesis by stromal cells, including VSMCs, pericytes,
and CAFs, is a highly complex process based on interacting
biomechanical and biochemical cues. Careful consideration of
such factors should be considered when investigating therapeutic
strategies that target inhibiting or promotion vascular growth
through the VEGFR-2 signaling axis.

Models to Study VEGFR-2 Signaling
As it is highly difficult to control independent biomechanical
forces in in vivo models, most of what we know about VEGFR-2
mechanotransduction comes from in vitro systems. For example,
pulsatile or laminar flow can reduce inflammation and stabilize
the vascular wall, while a multidirectional disturbed flow can
cause inflammation and lead to atherosclerosis (61, 139–144).
One study examined how treating HUVECs with VEGFR-2
inhibitor ZM323881 in non-uniform shear stress conditions
caused decreased expression of adhesion molecules such as
VE-cadherin; however, static conditions did not show this
change (145). Inflammation and atherosclerosis are involved in
various cardiovascular diseases, and identifying whether VEGFR-
2 signaling is involved in this mechanotransductive pathway
is an essential step in harnessing the receptor to treat disease
states. Though in vitro experiments allow for easier control of
mechanical and chemical stimulants, researchers still attempt
to incorporate animal models to ensure that all aspects of
the in vivo system are taken into account (21, 146). As the
knockout of VEGFR-2 is embryonically lethal in murine models,
alternative transgenic systems including inducible knockout or
Cre-Lox targeted knockout must be used to determine the role
of VEGFR-2 in disease progression (147–149). Some studies
instead focus on heterozygous VEGFR-2mousemodels and show
altered patterns of endothelial migration during embryogenesis
and decreases in angiogenesis in tumor models (149, 150). One
study analyzed the effects that a Y949F VEGFR-2 mutation
had on ECs in mouse aortas. Cell polarity and alignment was
disrupted due to this mutation, which mimicked the in vitro
experiment using HUVECs and VEGFR-2 inhibitors SU1498 and
ZM323881 (21). In mouse models utilizing a VE-cadherin Cre-
based knockdown of VEGFR-2 in endothelial cells, dramatic
decreases in angiogenesis were seen in retina samples, which
correlated with dysregulation of VEGFR-2 patterning in cell
membranes (151). Additional animal models studying VEGFR-
2 signaling in myocardial ischemia involve both mouse and
porcine samples and implicate TAZ interactions with VEGFR-2
(152). While such systems provide some useful information, it
can result in mosaic expression of VEGFR-2 due to inconsistent
Cre expression which, in combination with incomplete control
over biomechanical stimuli, generates confounding data and
unclear mechanisms of action. In fact, this extremely high
level of physiological complexity with limited understanding of

mechanobiological factors that affect VEGFR-2 may be partially
responsible for the limited efficacy of therapeutic strategies
that target this pathway. To address this, a variety of in
vitro systems, including polyacrylamide hydrogels for substrate
stiffness studies and microfluidic flow systems for shear stress
studies, have been useful in elucidating VEGFR-2 responses to
specific and highly controllable biomechanical stimuli (77, 153–
160). Many such systems have been described through this
review article and have generated considerable knowledge of
VEGFR-2 signaling pathways. The next generation of model
systems to study VEGFR-2 mechanoregulation should work to
incorporate the in vivo complexity with the highly controllable
biomechanical parameters of in vitromodels. There is substantial
clinical evidence for mutations in or alterations of VEGFR-
2 signaling in not only cancer, PAD, and ischemia, but also
neurological disorders such as Alzheimer’s Disease, endometrial
disorders, retinal degeneration, and bleeding disorders due to
arteriovenous malformations (160–163). While these studies
do not directly demonstrate mechanobiological regulation of
VEGFR-2, there is substantial and increasing evidence that
biomechanical forces are involved in all of these pathologies
(3, 164–166). Therefore, a more fundamental understanding of
VEGFR-2 mechanosignaling provides context and elucidation
for a wide variety of disease states that may offer potential
therapeutic avenues.

SIGNALING

The role of biomechanical forces as regulators of cell and tissue
behaviors is appreciated across many fields including cancer
biology, stem cell differentiation, cardiovascular regulation,
tissue engineering, and many other areas (1, 167–170). For
example, a stiff bone-like matrix can cause mesenchymal stem
cells (MSCs) to present traits similar to osteoblasts instead of
like neural or muscle tissue (170). Studies like this revealed
that the physical environment can affect cellular pathways
and represent seminal foundations of the field of cellular
mechanics. In recent years, there have been more descriptions
of many proteins as mechanotransducers such as integrins,
cadherins, and the components of the cytoskeleton (4). The
biochemical signaling that results from cellular interpretations
or responses to biomechanical cues is commonly referred to
as mechanotransduction; the term mechanobiology includes the
wider understanding of the communication of biomechanical
features between a cell and its environment. In addition to
regulating angiogenesis, VEGFR-2 can also be considered a
mechanoreceptor, which is activated in ECs by forces such as
shear stress and cyclic stretch, and this mechanoactivation causes
activation of various downstreammechanotransductive signaling
pathways (15, 20, 21). Through these mechanical signals,
VEGFR-2 can promote angiogenesis without its VEGF ligand
(76, 77). This section of the review will describe how VEGFR-
2 acts as a mechanoreceptor and closely interacts with other
well-characterized mechanotransductive factors, demonstrating
that altered physical forces caused by disease states could affect
angiogenesis. A summary of specific pathways, inhibitors, and the
resulting effects of vascular growth can be found in Table 1.
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TABLE 1 | Effects of inhibitors on EC mechanobiological pathways.

Protein/ Inhibitor Effect References

Pathway

ERK PD98059 • Decreased EC proliferation on stiff and

compliant matrices

• Decreased EC proliferation caused

by VEGF

(19)

Rho P190RhoGAP • P190RhoGAP knockdown results in

increased VEGFR-2 mRNA

(146)

ROCK Y-27632 • Increases VEGFR-2 expression on EC

cell membrane and decreased

activation

• Similar VEGFR-2 expression between

ECs on 10kPa matrix treated with

Y-27632 and ECs without inhibitor on

1kPa matrix

(19)

Src PP2 • Decreased VEGFR-2, Akt, and eNOS

phosphorylation caused by

laminar flow

(15)

VEGFR-2 SU5416 • Increased apoptosis in osteoblasts

exposed to fluid flow

• Decreased ERK phosphorylation in

osteoblasts exposed to fluid flow

(18)

VEGFR-2 VTI • Decreased EC Akt and eNOS

activation caused by laminar flow

(15)

VEGFR-2 SU1498 • Limited EC elongation

• Lower shear stress alignment in

absence of VEGF

• Decreased EC Akt and eNOS

activation caused by laminar flow

(15, 21)

VEGFR-2 ZM323881 • Limited EC elongation

• Lower shear stress alignment in

absence of VEGF

• Increased shear stress alignment in

presence of VEGF

• Decreased adhesion molecules in ECs

in non-uniform shear stress

(21, 145)

YAP Verteporfin • Increased DLL4 expression in ECs on

a 25 kPa gel

(83)

Receptor-Ligand Interactions
Several different isoforms of VEGF-A are produced by alternative
splicing, with some of the most well-studied being VEGF121,
VEGF165, VEGF189, and VEGF206; this growth factor can
be secreted by many cell types including macrophages, tumor
cells, and fibroblasts (23, 171). The lowest molecular weight
isoform, VEGF121, is the most soluble and easily able to diffuse
throughout the ECM. However, other heavier isoforms such as
VEGF189 and VEGF206 remain bound to the ECM, with matrix-
bound VEGF165, VEGF189, and VEGF206 all able to promote
EC proliferation (172, 173). Studies have shown that the manner
of ligand presentation to a receptor, either as a soluble cue or
bound to the matrix, affects cell pathways and activity (174).
For example, bone morphogenic protein (BMP)-2 can be soluble
or matrix-bound, and cells grown on a stiff film showed slower
internalization of bound BMP-2 compared to soluble (175).
Binding a ligand to a matrix alters the interaction with a receptor,
which in turn changes cell response, so the different presentations

of VEGF could cause variable mechanoactivation of VEGFR-
2. The most expressed isoform of VEGF-A is VEGF165, which
can be found either in soluble form or bound to the ECM via
proteoglycans (172, 173). Chen et al. studied this phenomenon
by comparing VEGFR-2 phosphorylation and signaling caused
by soluble (Vs) or matrix-bound (Vb) VEGF165 (16). To make
Vb, VEGF was incorporated into a collagen gel. When analyzing
VEGFR-2 phosphorylation as a whole, the receptor showed more
sustained phosphorylation when activated by Vb than Vs. Upon
studying individual VEGFR-2 tyrosine residues, researchers
identified Y1214 to be the cause of this extended activation;
it maintained phosphorylation for 15min only when presented
with Vb, compared to 5min by Vs. The Y1214 phosphorylation
site is associated with the ERK1/2 pathway, which is a well-
known mechanosensitive pathway. This association reinforces
the conclusion that VEGFR-2 phosphorylation, especially at
Y1214, and activation are affected by mechanical forces within
the environment (33). Further study of mechanoactivation of
VEGFR-2 and the subsequent signaling cascades would provide
a deeper understanding of VEGFR-2 mechanoregulation that
could potentially identify novel targets for anti-angiogenic
therapies in cancer treatments.

ERK/MAPK Pathway
A well-characterized mechanosignaling pathway is the mitogen
activated protein kinase, or MAPK, pathway which involves
numerous kinases including the extracellular-signal-regulated
kinase (ERK) (176, 177). This pathway has been implicated
in several diseases including multiple types of cancers and
cardiovascular diseases (178, 179). After receiving a signal from
a membrane bound receptor, the MAPK pathway activates
when RAS, a GTPase, activates a phosphorylation cascade
involving three kinases RAF, MEK, and ERK (180). The
MAPK pathway further regulates various transcription factors,
including but not limited to HSP27, p38, and c-Myc, which
control cell activities such as proliferation, differentiation, and
migration (177, 181). ERK is a known mechanotransductive
factor, translating biomechanical or biophysical signals external
to the cell into a biochemical signal that controls cell response
(15, 182, 183). For example, stretching or tensile strain can
cause ERK activation, which leads to Madin Darby canine
kidney epithelial cell (MDCK) contraction, propagation of the
ERK signal in neighboring cells, and collective cell migration
(184). Furthermore, ERK works with Piezo1, another known
mechanoreceptor, to cause proliferation when MDCKs are
stretched and apoptosis when cells are heavily confluent (185).

Several studies have demonstrated a link between VEGFR-
2 and the ERK pathway, where VEGFR-2 acts upstream of
ERK phosphorylation (186–188). Activation of the ERK pathway
is one of the major targets of VEGFR-2 activation, and this
link between ERK and VEGFR-2 is necessary for adipose
mesenchymal stem cell (AMSC) to EC differentiation (186,
187). One study demonstrated that shear stress upon an EC is
sufficient for VEGFR-2 phosphorylation and subsequent ERK
upregulation, without the biochemical stimulation of the VEGF
ligand (17). Specifically, phosphorylation of VEGFR-2 at Y1175
and Y1214 are linked to ERK activation (16, 33, 45, 189).
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In a study by LaValley et al., matrix stiffness was shown
to be connected to both VEGFR-2 and ERK activity (19).
Plating human umbilical vein endothelial cells (HUVECs) on
1 or 10 kPa collagen-coated gels showed that stiffer matrices
increased the levels of phosphorylated VEGFR-2 and ERK in
sub-confluent cultures, consequently increasing proliferation
(175). Combining VEGF with the 10 kPa gel resulted in the
highest cell growth, and the addition of the ERK inhibitor
PD98059 decreased this growth. Increased matrix stiffness also
promotes VEGFR-2 internalization, which then causes ERK
phosphorylation and cell proliferation (19). Another study linked
VEGFR-2 and ERK with mechanoactivation using pulsatile
flow. In osteocytes, pulsatile fluid flow can prevent cells from
undergoing apoptosis; this flow also causes an increase in ERK
phosphorylation. However, when treated with the VEGFR-2
inhibitor SU5416, the osteocytes displayed increased apoptosis
and decreased ERK phosphorylation (18). The link between
ERK mechanotransduction and VEGFR-2 activation indicates
that the receptor plays a previously underappreciated role in
cellular responses to various mechanical factors. While the
MAPK pathway is ubiquitous in numerous cell types, including
both healthy and diseased tissues, the specificity of VEGFR-2 as
a mechanoreceptor during angiogenesis could provide a unique
target for promotion or inhibition of angiogenic vessel growth
during disease progression.

c-SRC Pathway
Another mechanotransductive protein downstream of VEGFR-2
signaling is Src, known as c-Src in humans, which is a cytoplasmic
tyrosine kinase associated with the cell membrane or endosomal
membranes. The Src protein contains Src homology (SH)
domains and a kinase domain (190, 191). The role of Src has been
described in many cell processes including adhesion, motility,
proliferation, and differentiation, spanning across embryological
development, healthy tissue homeostasis, and several disease
pathways (192–198). Furthermore, Src activity is known to be
at least partially regulated by mechanical cues such as shear
stress and matrix adhesion, and it resides upstream of other
effectors such as the ERK pathway (199, 200). In addition,
Src serves as a key regulator of transforming growth factor
beta (TGFβ) signaling in contractility responses of valvular
interstitial cells during heart valve disease (197). These studies
demonstrate the role of Src as a key intersection in numerous
mechanotransductive pathways.

Moreover, Src has been shown to phosphorylate tyrosine
residues on VEGFR-2, ultimately generating a positive feedback
loop with further activation of both VEGFR-2 and Src (201).
In one study, ECs were exposed to laminar flow in a cone
and plate viscometer, which caused VEGFR-2 phosphorylation
even when cells were treated with a VEGF inhibitor. However,
exposure to Src inhibitor PP2 counteracted this effect and caused
a decrease in phosphorylation levels of VEGFR-2 (15). This
suggests that mechanical forces via shear stress cause Src to
activate VEGFR-2, which could further support VEGFR-2 as
a mechanoreceptor. In another study, aortic ECs from mice
were studied to elucidate how VEGFR-2 and Src regulate cell
alignment and polarity with respect to shear flow. Mice with a

VEGFR-2 mutation Y949F, which is Y951 in humans, presented
altered alignment and polarity, while mice with an inducible Src
knockout in endothelial cells, only had impaired polarity (21).
This reaffirms that Y951 of VEGFR-2 is linked to Src activity
and also suggests that VEGFR-2 and Src interact to respond
to the physical environment to control cellular polarity. Cell
polarity is a necessary aspect of cell migration, development, and
tissue organization; impairment of cellular polarity regulation
leads to disease states including cystic kidney disease and birth
defects such as neural tube defects (202–204). The role of Src
as a mechanotransductive factor in the regulation of activation
levels of VEGFR-2 suggest this mechanosignaling axis plays
a role in vascular growth and could be targeted in novel
therapeutic strategies.

Rho/ROCK Pathway
Another well-studied protein that has been linked to both
mechanoactivation of cells andVEGFR-2 is Rho. This is a GTPase
that causes downstream activation of Rho-associated coiled-coil
containing protein kinase (ROCK), which is a critical regulator
of cytoskeletal components involved in cell migration and is
typically referred to as the Rho/ROCK pathway (10, 205–210).
Rho can be activated by a variety of receptors and cytokines, and
ROCK is activated when phosphorylated by Rho, causing ROCK
to undergo a conformation change that increases its kinase
activity (205, 211). This pathway is involved in cytoskeleton
regulation, fibronectin matrix control, differentiation, and
apoptosis (212–215). Several studies have identified a connection
between physical forces and Rho activation (10, 214, 216–218).
When rat embryonic fibroblasts were subjected to mechanical
strain, Rho activity, as measured by Rho being bound to GTP
instead of GDP, increased compared to non-strain controls (219).
A different study observed the effect of strain on capillary
ECs in tumor and control environments, and the addition of
strain upregulated Rho activity in the control environment but
not in the tumor. Without strain, both Rho and ROCK were
upregulated in tumor ECs compared to control, and since there
was no significant difference between Rho activity in the strained
control conditions and the tumor ECs, mechanical factors in
the TME may be causing activation of the Rho/ROCK pathway
(220). In another study, ECs exposed to shear stress showed a
downregulation of Rho activity due to integrin binding to the
ECM, which allowed the ECs to reorganize their cytoskeletal
elements and align with the flow (221). Together with Src and
integrins, a substantial body of work has been completed on the
Rho/ROCK pathway to describe mechanotransduction in a wide
variety of cells in both physiological and pathological conditions
(222). Mechanical forces can work with other receptors and
enzymes to increase or decrease Rho/ROCK activity in order to
guide the cell cycle, differentiation, and migration.

In addition, VEGFR-2 signaling has been shown to lead to
Rho/ROCK activation which then affects downstream enzymes
such as focal adhesion kinase (FAK) and transcription factors
such as signal transducer and activator of transcription (STAT)
(30, 223, 224). One study focused on Rho inhibitor p190RhoGAP,
which is naturally synthesized in cells, to see how decreases

Frontiers in Cardiovascular Medicine | www.frontiersin.org 9 January 2022 | Volume 8 | Article 804934

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Miller and Sewell-Loftin Mechanoregulation of VEGFR-2 in Angiogenesis

in Rho signaling altered VEGFR-2 expression and if VEGFR-
2 can be mechanically-activated (146). The pseudoenzyme
p190RhoGAP contains pseudo GTPase domains and can act as
a Rho regulator (223). Knockdown of 190RhoGAP in ECs using
siRNA caused an increase of VEGFR-2 mRNA levels compared
to the control. Additionally, VEGFR-2 mRNA was shown to be
expressed at higher levels on 4,000 Pa gels compared to a 150 Pa
gel. When treated with p190RhoGAP siRNA, the 150 Pa sample
VEGFR-2 mRNA levels increased (146). This Rho inhibitor
controlled VEGFR-2 levels according to the substrate stiffness
used for cell culture. HUVECs grown on a stiffer gel of 10 kPa
showed more VEGFR-2 endocytosis, a measure of activation,
compared to HUVECs grown on a more compliant matrix of
1 kPa (19). Cells grown on a 10 kPa gel and treated with a
ROCK inhibitor Y-27632 showed more VEGFR-2 on the cell
membrane, suggesting that there was less activation and uptake
of the receptor. The amount of VEGFR-2 present was similar
to HUVECs grown on the 1 kPa gel without Y-27632. This
experiment shows that the Rho/ROCK pathway is involved in
regulation of VEGFR-2 endocytosis and subsequent activation
in response to matrix stiffness. Understanding this complex
relationship will help researchers to identify targets that could
help control angiogenic activity.

Hippo Pathway
The Hippo pathway involves a kinase cascade leading to
downstream transcription factors YAP and TAZ, which are
involved in organ development as well as cell contractility,
migration, and proliferation (225). This pathway has thus been
connected to both regenerative medicine, because of its role
in development and tissue growth, and cancer, because of its
influence on proliferation and cell survival (225, 226). When
phosphorylated due to Hippo pathway activation, YAP and TAZ
become inactive; however, VEGF promotes the opposite effect
and induces YAP/TAZ activity and translocation to the nucleus
(151, 227, 228). These transcription factors are key mediators of
angiogenesis, and mice with an endothelial knockout of these
proteins resulted in major vascular dysregulation in development
(151). YAP, TAZ, and VEGFR-2 have also been linked with other
angiogenic factors such as BMPs, which have shown changes
in expression after ischemic conditions (152). Mechanical cues
influence YAP and TAZ activity, though these effects have
been shown to be at least partially independent of the Hippo
pathway (225). Mammary epithelial cells (MECs) grown on
stiffer matrices of 15–40 kPa show higher nuclear localization
of these factors than cells grown on compliant matrices of
0.7–1 kPa, resulting in increased proliferation and decreased
apoptosis (229). However, cells with a YAP/TAZ knockdown
acted similarly to those grown on the compliant matrices. Since
YAP/TAZ are known mechanotransducers, they likely play a role
with VEGFR-2 in angiogenic response to mechanical forces. One
study demonstrated that HUVECs grown on a 1 kPa matrix
caused downregulation of YAP activity and upregulation of
VEGFR-2 transcription levels (83). When VEGF was added,
VEGFR-2 levels increased on the 1 kPa gels. YAP activation
by lysophosphatidic acid causes increased delta-like ligand 4
(DLL4) expression, which is a Notch1 ligand (230). However,

in HUVECs, DLL4 showed the highest expression on 1 kPa
gels when YAP is least active, and addition of YAP inhibitor
verteporfin also caused increased DLL4 expression in HUVECs
plated on a stiff 25 kPa gel (83). Even though previous work has
shown that YAP activity can promote DLL4 expression, different
combinations of matrix stiffnesses and soluble VEGF leads to
varied results, exemplifying how complicated mechanobiology
can be. Biomechanical and biochemical signaling involves
complex pathway crosstalk which needs further study in order to
determine how YAP/TAZ, VEGFRs, and other angiogenic factors
regulate blood vessel growth.

Crosstalk With Other Mechanoignaling
Pathways
The VEGFR-2 pathway interacts with several known important
mechanotransduction pathways, as previously discussed (21, 61,
139–146). However, the crosstalk of mechanobiological agents
is not exclusive to downstream signaling targets in this context.
Considered as primary mechanosensors on ECs, signaling
through both integrins and cell-cell adhesion molecules can
lead to increases in expression of mechanotransductive factors
including ERK, Src, and PI3K/Akt, among others (231–235). The
interaction of adherens junctions and VEGFR-2 is required to
drive responses to shear stress in ECs (22). Moreover, it has
been shown that VEGF stimulation also promotes enhanced
growth factor secretion in ECs including TGF-β1 and connective
tissue growth factor (CTGF); inhibition of this process led to
decreased basement membrane thicknesses in mouse retains
(236). E-cadherin stimulation can cause increase in epidermal
growth factor signaling which in turns activates the PI3K
pathway (232, 237). It has also been shown that growth factor
signaling can in and of itself be regulated through mechanical
strain, in that activation of TGF-β1 from its latent form is
increased when cells are treated with tensile forces (238, 239).
Due to these confounding effects, precise model systems are
needed to elucidate independent roles and reactions of VEGFR-2
in mechanosignaling.

ANTI-VEGF TREATMENTS, SIDE EFFECTS,
AND EFFICACY

Current clinically available anti-VEGF therapeutics are either
derived from antibodies or are small molecule inhibitors
of the tyrosine kinase receptors, including VEGFR-2 that
VEGF interacts with to promote angiogenesis. The first such
therapies were available in the early 2000s, with bevacizumab
approved in 2004 for colorectal cancer which was soon
expanded to other types of cancer treatment including lung,
glioblastoma multiforme, ovarian, renal, and metastatic breast
cancer (240, 241). Other drugs approved by the USA-FDA
include ranibizumab, sunitinib and sorafenib, which also have
been expanded from anti-angiogenic therapies in cancers
to treat a variety of cardiovascular diseases including PAD
and ischemia (242). For anti-cancer treatments, the efficacy
of anti-VEGF-based therapies is substantially less in clinical
applications compared to preclinical in vitro and in vivo
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models; for example, disease free progression of breast cancer
is not significantly increased when bevacizumab is delivered
with other first line chemotherapeutics (240, 241, 243, 244).
Based on several studies with these limited benefits, the
FDA revoked approval for bevacizumab for breast cancer
treatments (245). For cardiovascular diseases, such as PAD, anti-
VEGF treatment strategies show little clinical improvements,
despite promising preclinical work in limb ischemia models
(242). Finally, in ocular vascular degenerative disorders,
several anti-VEGF therapies have been approved for clinical
use but show limited improvements in many clinical trials
(246). While some benefits have been observed in several
studies for the various diseases and conditions discussed here,
the side effects associated with anti-VEGF or anti-VEGFR-
2 therapies can be severe and include heightened risk of
arterial thromboembolic events, hypothyroidism, wound healing
complications, GI perforations, neutropenia and hematological
effects and increased risks for other cardiac adverse events
(245, 247–249). If future treatments combine anti-VEGFR-2
and anti-mechanotransductive elements, additional side effects
could be expected if the latter pathways are ubiquitous in
healthy and diseased tissues. An example of this is fasudil,
a selective ROCK inhibitor that has been used to treat
pulmonary hypertension, ALS, subarachnoid hemorrhages,
dementia, stroke, and atherosclerosis (250–258). While long
term side effects of fasudil treatment are not known, it
is expected that the inhibitor will affect the cardiovascular
system and potentially lead to adverse cardiac events or
hypertension; one study suggested that side effects in a
clinical trial were mild-moderate and ranged from skin rashes
to bleeding disorders (252). On the other hand, vascular
normalization therapies, where increases in VEGF signaling
would promote blood vessel growth or enhanced function,
demonstrate their own challenges most typically related to
delivery kinetics, administration routes, and ability to evaluate
clinical outcomes (259–261). To address these challenges, some
groups have begun investigating gene therapy as a technique
to create a more sustained and controllable deliver of VEGF;
an example of this is recent data from a clinical trial
where VEGF-D delivered by adeno-associated viruses decreased
angina associated symptoms in a majority of patients, with
similar levels of major cardiac adverse events compared to
control groups (262).

DISCUSSION

Studies have observed complicated interactions between the
biomechanical and biochemical environment which can prompt
blood vessels to undergo angiogenesis or degrade functioning
of existing vessels. LaValley et al. showed that individual effects
of VEGF addition and a stiffer gel on cell proliferation was
significantly less than when the two factors were combined
(19). Understanding only the independent biomechanical or
biochemical aspects of cellular signaling does not provide a full
view of developmental processes or disease progression; both
biochemical and biomechanical features must be studied to

acquire a complete view of cellular regulation and potential novel
treatment strategies.

All the diseases discussed in this paper cause both biochemical
and physical changes in the matrix surrounding the cells
and blood vessels, which alters normal function. For example,
the cardiovascular diseases mentioned—PAD, ischemia, arterial
stiffening—result in some form of matrix stiffening. In addition,
the TME contains higher levels of collagen, while arterial
stiffening, which is common in PAD and ischemia, is a result
of less elastin and more collagen (6, 8). The vascular ECs in
these diseases are surrounded by a stiffer matrix, and studies have
shown less angiogenic sprouting, increased VEGFR-2 activation,
and more cell growth in stiffer gels (19, 75). Additionally,
the abnormal vasculature in tumors and the atherosclerosis in
cardiovascular diseases both can cause abnormal shear stress
within the vessels (2, 90). Patients that experience claudication
often exercise less which causes lower fluid shear stress, and
regular intervals of high shear stress is known to promote
healthy vasculature (263). Flow regulates various cell activities
such as the phosphorylation of proteins like VEGFR-2 and ERK
and the orientation and polarity of the cell body (15, 18, 21).
Because of mechanical changes present in disease states and in
a developing embryo, further understanding of the relationship
between cytokines, physical forces, and mechanotransducers
will help researchers to determine how to either inhibit or
promote angiogenesis to treat diseases or develop improved
vascularization strategies for tissue engineering.

FUTURE DIRECTIONS

Regarding VEGFR-2 and angiogenesis, further investigation is
required to understand how different types of physical forces
such as pressure, matrix stiffness, tensile strains, and fluid
shear stress affect VEGFR-2 activation and internalization.
Furthermore, investigations of different VEGFR-2 tyrosine
residues and how changes in biomechanical factors cause and
sustain phosphorylation would help to clarify the interactions
VEGFR-2 has with other enzymes and transcription factors.
Identifying the exact phosphorylation site triggered by specific
biomechanical stimuli and the resulting signaling cascades would
help researchers develop ways to promote or inhibit relevant
signals. As mentioned previously, additional research could
be directed toward the complex relationship and interaction
between chemical and mechanical cues. Since the combination
of the two can produce the greatest effect and act synergistically,
understanding these processes would open more directions of
study that could ultimately lead to better control of angiogenesis.
Specifically, a rise in sophisticated microfluidic systems designed
to investigate individual and independent biomechanical and
biochemical signals will be crucial to fully elucidate these complex
interactions (72, 77, 154, 264). Finally, there are several members
of the VEGF ligand family, each with various isoforms. The
most common, VEGF-A, has some isoforms that are mainly
soluble and other which are mainly matrix-bound, and Chen
et al. discovered a difference caused by soluble vs. matrix-
bound VEGF (16). This type of prolonged and site-specific
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activation represents an understudied phenomenon in VEGFR-
2 regulation. The relationship between the VEGF and VEGFR
families is complex due to the various members and isoforms,
but each plays a role that needs to be more fully understood.

CONCLUSION

Mechanical forces, along with various cytokines, regulate
the formation and maintenance of the vasculature. Thus,
angiogenesis is a process that is central not only to development
but also in many diseases. Additionally, the field of regenerative
medicine should focus not only on chemical stimuli but also
mechanical stimuli in order to most effectively develop new
vasculature in scaffold structures. Investigations of how VEGFR-
2, along with other connected pathways such as ERK/MAPK,
Src, Rho/ROCK, and YAP/TAZ are mechanically controlled
have demonstrated that mechanics are an essential focus in
understanding how to evolve therapeutic angiogenesis or in

preventing angiogenesis in the TME. Further study of VEGFR-
2, its related pathways, and the interaction of biochemical and
biomechanical signaling that control vascular growth will aid
researchers in developing new treatments that more efficiently
treat the underlying cause of various disease states.
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