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Background: Pyroptosis is a recently identified mode of programmed

inflammatory cell death that has remarkable implications for cancer

development. lncRNAs can be involved in cellular regulation through various

pathways and play a critical role in gastric cancer (GC). However, pyroptosis

-related lncRNAs (PRlncRNAs) have been rarely studied in GC.

Methods: Pyroptosis-related gene were abstracted from the literature

and GSEA Molecular Signatures data resource. PRlncRNAs were obtained

using co-expression analysis. LASSO Cox regression assessment was

employed to build a risk model. Kaplan-Meier (KM), univariate along with

multivariate Cox regression analysis were adopted to verify the predictive

efficiency of the risk model in terms of prognosis. qRT-PCR was adopted to

validate the expression of PRlncRNAs in GC tissues. In addition, immune

cell infiltration assessment and ESTIMATE score evaluation were adopted

for assessing the relationship of the risk model with the tumor immune

microenvironment (TME). Finally, immune checkpoint gene association

analysis and chemotherapy drug sensitivity analysis were implemented to

assess the worthiness of our risk model in immunotherapy and

chemotherapy of GC.

Results: We identified 3 key PRlncRNAs (PVT1, CYMP-AS1 and AC017076.1)

and testified the difference of their expression levels in GC tumor tissues

and neighboring non-malignant tissues (p < 0.05). PRlncRNAs risk model

was able to successfully estimate the prognosis of GC patients, and lower

rate of survival was seen in the high-GC risk group relative to the low-GC

risk group (p < 0.001). Other digestive system tumors such as pancreatic

cancer further validated our risk model. There was a dramatic difference

in TMB level between high-GC and low-GC risk groups (p < 0.001). Immune

cell infiltration analysis and ESTIMATE score evaluation demonstrated that
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the risk model can be adopted as an indicator of TME status. Besides, the

expressions of immunodetection site genes in different risk groups

were remarkably different (CTLA-4 (r = −0.14, p = 0.010), VISTA (r = 0.15,

p = 0.005), and B7-H3 (r = 0.14, p = 0.009)). PRlncRNAs risk model

was able to effectively establish a connection with the sensitivity of

chemotherapeutic agents.

Conclusion: The 3 PRlncRNAs identified in this study could be utilized to predict

disease outcome in GC patients. It may also be a potential therapeutic target in

GC therapy, including immunotherapy and chemotherapy.

KEYWORDS

gastric cancer, lncRNA, immunotherapy, TCGA, LASSO regression, pyroptosis,
prognosis

Introduction

Gastric cancer (GC) is a critical public health issue that

should not be underestimated (Smyth et al., 2020).

According to the latest estimates of the International

Agency for Research on Cancer 2020, the number of new

cases of GC reached 1,089,000 worldwide in 2020, and GC

has become the fifth most frequent cancer and the fourth

most frequent cause of cancer death globally, seriously

threatening human health. There are many factors that

affect the development of GC including H. pylori

infection, age, gender, and dietary-behavior, etc.,

(Gonzalez et al., 2013; Oliveira et al., 2015; Praud et al.,

2018; Kumar et al., 2020; Poorolajal et al., 2020). Therefore,

there is still a long way to go in terms of GC prevention.

Besides, the prognosis of GC, particularly at the advanced

stage, is poor, and there is no reliable approach for

estimating the prognosis of GC subjects.

Pyroptosis, which triggers strong inflammation by

releasing dangerous molecules and inflammatory cytokines

consisting of interleukin (IL) -18, IL-1β, etc., (Zhou and

Fang, 2019), is a kind of necrotic and inflammatory

programmed cell death resulting from facilitating caspase-

1 activation (Broz and Dixit, 2016; Man et al., 2017;

Rathinam et al., 2019; Wang et al., 2020). Pyroptosis is

mainly mediated by inflammatory vesicles and excessive

pyroptosis can lead to various inflammatory diseases.

Pyroptosis and inflammation are important in mediating

infectious diseases, immune disorders, etc. Numerous

investigations in recent years have established that

pyroptosis is remarkably linked to tumorigenesis (Ma

et al., 2018; Wang et al., 2019; Zhou and Fang, 2019; Fang

et al., 2020).

Long non-coding RNAs (lncRNAs) are a subclass of RNA

molecules whose transcripts exceed 200 nucleotides in length

(Ponting et al., 2009). Generally, they do not encode proteins,

but can participate in protein-coding gene modulation as

RNAs at various levels, consisting of epigenetic modulation,

transcriptional modulation, and post-transcriptional

modulation. Most lncRNAs have a conserved secondary

structure, sheared form, and subcellular localization,

which are important for lncRNAs to perform their

functions. Although the majority of lncRNAs are

expressed at a low level compared to messenger RNA

(mRNA), many lncRNAs are of great importance in

regulating cellular homeostasis and gene expression and

have a central role in cellular processes, biological

development and disease progression (Chen et al., 2018).

Because lncRNA expression is very tissue-specific, it has the

potential to be utilized as diagnostic along with prognostic

biomarkers as well as therapeutic targets for some cancers

(Deng et al., 2017; Chen et al., 2018; Li Y. et al., 2021).

Recently, it has been shown that lncRNAs can be

involved in modulating the process and progress of GC.

Some lncRNAs can promote cancer, and conversely, some

lncRNAs can suppress cancer, but the detailed mechanism

is not clear (Sun et al., 2016; Wei and Wang, 2017; Ren et al.,

2020). Similarly, the role of pyroptosis in cancer also has

some duality (Kolb et al., 2014). LncRNA plays an

important role in pyroptosis, which can unbalance the

inflammasome and lead to cell pyroptosis. It can also

regulate pyroptosis through mediating different signaling

pathways (Wan et al., 2020; Xu et al., 2020). Some studies

have demonstrated the predictive value of pyroptosis-

related long noncoding RNAs (PRlncRNAs) for the

prognosis of cancer patients. This indicated a possible

important role of PRlncRNAs in tumors (Lu et al., 2022).

Given the limited amount of research on PRlncRNAs in GC,

we started investigating whether PRlncRNAs may be

employed as diagnostic, as well as prognostic indicators

for the prevention along with treatment of GC.

Based on the TCGA database and quantitative real-time

polymerase chain reaction (qRT-PCR), we screened for

PRlncRNAs that play an important role in GC prognosis.
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We then constructed a risk model to further predict the

prognosis of GC patients, and explored the predictive

significance of the model in immunotherapy and

chemotherapy, thereby providing a more reliable scientific

basis for its use as a prognostic marker as well as an indicator

of treatment response for GC patients.

FIGURE 1
Flowchart of this study.
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Materials and methods

Data collection

The original gene expression data (375 samples of GC tissues

along with 32 samples of para-cancerous tissues) were obtained

from the TCGA data resource (https://portal.gdc.cancer.gov).

The original clinical data of the GC subjects were also

abstracted from the TCGA data resource. Corresponding

clinical information consisted of age, family history, gender,

grade, pathological stage, along with vital status. The clinical

characteristics of the subjects are shown in Supplementary Table

S1. All our data were abstracted from TCGA, thus, approval from

the Ethics Committee was not required. This research work was

in full compliance with the guidelines for the NIH TCGA human

subject protection and data access policies. The flowchart of this

study was shown in Figure 1.

PRlncRNAs co-expressed with
pyrophosis-related encoding genes

A total of 50 pyrophosis-linked encoding genes (mRNAs)

were abstracted from literature and the Molecular Signatures

Database of Gene Set Enrichment Analysis (GSEA, http://www.

gsea-msigdb.org/). Firstly, we screened out the differentially

expressed lncRNAs in the tumor group and the adjacent

normal group by the limma R package. Then co-expressed

lncRNAs were assessed via creating a pyrophosis-linked

mRNA-lncRNA co-expression network on the basis of the

criteria of |Correlation Coefficient| > 0.4 and p < 0.

001 through Pearson correlation analysis by the cor. test

function. Finally, lncRNAs that are both differentially

expressed and significantly co-expressed with pyroptosis-

related genes are PRLncRNAs.

LASSO cox regression analysis

Herein, the prognostic worthiness of these PRlncRNAs were

screened by univariate along with multivariate Cox regression

assessment firstly. Then, we created an efficient Risk Assessment

Model by the least absolute shrinkage and selection operator

(LASSO) Cox regression assessment via the glmnet package in R

for modeling. We adopted the Glmnet package to explore the

penalty parameter lambda through the cross-verification and

uncovered the optimal lambda value. The optimal values of the

penalty parameter were assessed by 1000-round cross-

verification. We chose the most suitable lncRNA group to

create a risk model. The median value of the risk score was

adopted as the cut-off point. Herein, the patients were stratified

into high-GC and low-GC risk groups. The risk score was

calculated on the basis of a linear combination of the

coefficients resulting from the LASSO regression model

multiplied with the expression value of each selected lncRNA

(coef: coefficient; expr: expression; lncRNAn: The nth lncRNAs):

Risk score = coef (lncRNA1) *expr (lncRNA1) +coef (lncRNA2) *expr

(lncRNA2) +. . .+coef (lncRNAn) *expr (lncRNAn).

Evaluation of the risk model

The area under the curve (AUC) for two-year, three-year, as

well as five-year overall survival was estimated via the time-

dependent receiver operating characteristic (ROC) curve, and the

accuracy for survival estimation of the risk model was assessed

with the survival package in R. To assess the effect of the risk

model on patients’ rates of survival, we used univariate along

with multivariate independent prognostic analysis.

We utilized independent prognostic criteria to create a

prognosis nomogram via the R “rms” package in order to

provide a quantitative tool for forecasting the rate of survival

in the TCGA GC data set. Afterwards, a calibration curve was

generated to check if the estimated survival outcome (two-year,

three-year, and five-year survival) matched the observed

outcome.

GSEA analysis of prognostic lncRNAs and
risk groups in the model

Gene Set Enrichment Analysis (GSEA) is a very powerful

enrichment analysis method that can perform GSEA analysis

against data from a variety of databases, including common

Gene Ontology (GO) databases, Kyoto Encyclopedia of Genes

and Genomes (KEGG) databases, etc., (Powers et al., 2018).

Herein, we assessed the potential molecular mechanisms of

prognostic lncRNAs, the cellular processes enriched in high-

GC and low-GC risk groups on the basis of the KEGG library

in GSEA software 4.1.0. The visualization of the results was

carried out by R.

Correlation analysis between the model
and TMB

The total number of non-synonymous mutations in every

coding region of the tumor genome was characterized as Tumor

mutation load (TMB), which included the total number of gene

coding errors, base substitution insertions, and deletions (Lv

et al., 2020; Zhang et al., 2020). In this work, we abstracted the

somatic mutation information via a Perl script, after which TMB

value was determined via dividing the number of somatic

mutations. R was utilized to merge the patient’s TMB

information with the risk scores. We investigated the TMB

levels of patients in different risk categories and the
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association between TMB and riskscore. Then we assessed the

rates of survival of patients with varied TMB levels.

Immune cell infiltration analysis and
ESTIMATE score evaluation

Cell-type Identification by Estimating Relative Subsets of

RNA Transcripts (CIBERSORT) is a deconvolving algorithm-

based analytical resource for estimating the composition and

number of immune cells in mixed cell (Newman et al., 2015). To

accurately assess the composition of immune cells in the tumor

microenvironment, we utilized the CIBERSORT algorithm to

calculate and quantify tumor-infiltrating immune cells from

RNA sequencing data to analyze whether different types of

immune cells infiltrate differently in the high-GC risk and

low-GC risk groups.

In this research work, the immunoscore for every patient was

computed with the ESTIMATE approach utilizing the “estimate”

R package. ESTIMATE is a popular enrichment algorithm, which

was extensively utilized in medical studies (Liu et al., 2021a; Liu

et al., 2021b; Liu et al., 2021c). The abundance ratio matrix of

22 immune cells for each sample was acquired by cell type

identification by estimating relative sub-sets of RNA

transcripts (CIBERSORT: https://cibersort.stanford.edu/). The

algorithm of 1,000 permutations was employed. Only samples

having a CIBERSORT p of < 0.05 were incorporated in the

subsequent analysis of comparing differential immune invasion

levels between the sub-groups categorized by risk scores.

Correlation analysis between the model
and immunotherapy

The immune checkpoint is a key regulator of the immune

system’s ability to suppress or stimulate systemic function

(Gibney et al., 2016; Topalian et al., 2016). Immune

checkpoint blockade (ICB) therapy is used to unblock the

suppressive effect of tumor cells on immune cells by blocking

the interaction between immune checkpoint expressing tumor

cells and immune cells, thus restoring effective T cell function

(Pardoll, 2012; Patel and Minn, 2018; Wei et al., 2018). We

adopted the limma package to analyze whether the expression of

common immune checkpoint genes (CTLA-4, B7-H3, VISTA,

PD1, PD-L1, etc.) differed in high-GC and low-GC risk group,

and thus to assess the significance of this risk model in assessing

the benefits of immunotherapy.

To further assess the relationship of the risk scores with

clinical chemotherapy, we predicted the sensitivity of

chemotherapeutic agents and analyzed the differences in

chemotherapy drug sensitivity between high-GC and low-GC

risk groups. We utilized the “pRRophetic” R package to predict

the drugs’ half-maximal inhibitory concentration (IC50) on the

basis of the Cancer Cell Line Encyclopedia (CCLE) by ridge

regression.

GC samples collection and quantitative
real-time polymerase chain reaction

A total of 40 pairs of GC tissues and Para cancerous tissues

were acquired from Zhongda Hospital, Southeast University, and

authorized by the Ethics Committee of Zhongda Hospital,

Southeast University. All subjects signed an informed consent

form. All the tissues were collected following surgical excision

from individuals who had never undergone prior radiotherapy or

chemotherapy. Then, we stored these samples at −80°C for

further use.

We extensively assessed the expression of predictive

lncRNAs in GC tissues and neighboring non-tumorous tissues

via qRT-PCR. Isolation of total RNA from GC tissues was done

with the TRIzol reagent (Invitrogen, Carlsbad, United States).

After that, generation of cDNA was done with the

PrimeScriptTM RT reagent kit (TAKARA). The qPCR

reaction constituted a 20 μL mixture, comprising diluent

cDNA 1 μL, 2x RealStar Power SYBR Mixture (GenStar,

China) 10 μL, DEPC water 8.2 μL, forward primers (FP) and

reverse primers (RP) 0.4 μL, respectively. The reaction was

carried on the StepOnePlus PCR System (Applied Biosystems,

United States) for 40 cycles (95°C for 15 s, 60°C for 30 s, and 72°C

for 30 s) following a 2 min pre-denaturation at 95°C. Relative

transcript expression was computed with the 2−ΔΔCt approach

and standardized to GAPDH. All primers were synthesized by

Sangon Biotech (Shanghai, China). The sequence of the primers

is as follows: GAPDH FP: TCAAGATCATTGCTCCTCCTGAG;

RP: ACATCTGCTGGAAGGTGGACA, PVT1 FP: TCCACT

CACTTTGGCCTTTC; RP: AGGTGAACACAGAGCACCAA,

CYMP-AS1 FP: GAGGTGGTCCTGAGGTTCAA; RP: ACC

TTTGTCGGTGCTAGTGC, AC017076.1 FP: AAGTTGAGG

TGGCCCTGAAT; RP: TTTAGCTCACATCTGTCCAGTCA.

Statistical analysis

All statistical analyses and visualization were impelemented

in R software 4.1.1 (https://www.r-project.org/), including R

packages limma, pheatmap, igraph, reshape2, ggpubr, glmnet,

forestplot, survival, survminer, timeROC, rms, foreign, utils, org.

Hs.eg.db, clusterProfiler, enrichplot, vioplot, ggExtra, plyr, grid,

gridExtra, pRRophetic, etc. Wilcoxon test was adopted for the

comparisons between two groups. Survival analysis was done

with the survival along with survminer R packages. The limma

package was adopted to estimate the mean and variance of gene

expression, immune cell infiltration levels, drug sensitivity, etc. in

different subgroups to perform a variance analysis through a

linear model. The Kaplan Meier method and the log-rank test
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were adopted for survival analysis and survival distribution

comparisons. Logistic LASSO regression, univariate along with

the multivariate Cox regression analysis were implemented to

screening for effective prognosis-linked genes. Forest map was

drawn by the R language ggforest package. p-value less than 0.

05 was regarded as statistical significance.

Results

Identification and screening of
pyrophosis-related lncRNAs

We have obtained 50 pyrophosis-related genes through

searching literature and GSEA database (Supplementary Table

S2). Based on the transcriptome dataset of GC cohort

downloaded from TCGA database, we performed co-expressed

analysis and constructed pyrophosis-related mRNA-lncRNA co-

expression network. There were 29 lncRNAs strongly associated

with pyrophosis-related genes (Figure 2A). Then, univariate Cox

regression analysis was conducted on these 29 lncRNAs. A total

of 8 lncRNAs were identified according to the criterion of p <
0.05 (Figure 2B). Subsequent multivariate Cox regression

analysis indicated that only 3 lncRNAs (PVT1, p = 0.004;

CYMP. AS1, p < 0.001; AC017076.1, p = 0.020) exhibited

significant prognostic value for GC. In addition, the boxplot

and heatmap showed that the expressions of these 3 lncRNAs

were all higher in tumor samples than in adjacent normal

samples (Figures 2C–E).

Functional and pathway enrichment
assessment of the 3 pyrophosis-related
lncRNAs signature

To further clarify the possible biological processes

involved in the 3 lncRNAs, we analyzed the pathways in

which they were enriched by GSEA. The result showed that

the low expression of PVT1 was mainly associated with these

signaling pathways, including ECM receptor interaction,

calcium signaling pathway, drug metabolism cytochrome

p450, focal adhesion etc.; its high expression mainly

focused on RNA polymerase, pyrimidine metabolism,

spliceosome and so on (Figure 2F). Notably, CYMP.

AS1 and AC017076.1 had no significant enrichment

pathways corresponding to its high expression, while at low

FIGURE 2
(A) Co-expression network of the pyroptosis-related mRNAs-lncRNAs was constructed and visualized using R. (B) The forest showed the HR
(95% CI) and p-value of selected lncRNAs by univariate Cox regression analysis. (C–E) Visualization of the expression levels of lncRNAs with
prognostic value expressed in human GC tumor tissues and adjacent normal tissues. (F–H) Represents the significantly enriched KEGG pathways of
lncRNA PVT1, CYMP-AS1, and AC017076.1 in different expression level, respectively. GC, gastric cancer.
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expression CYMP-AS1 affected N_glycan biosynthesis, base

excision repair, selenoamino acid metabolism, pyrimidine

metabolism, etc. (Figure 2G). Similarly, the low expression

of AC017076.1 was related to these basic cellular metabolic

processes (Figure 2H).

The establishment of prognostic risk score
model

We applied Lasso Cox regression to the 3 lncRNAs and found they

are all highly related to survival time of GC patients (Figures 3A,B). We

calculated the risk scores of each GC patient with the LASSO Cox

regression model based on the expression levels and the coefficients of

these 3 lncRNAs. Risk score = (-0.0820120141988985*expression level of

PVT1) + (0.717013150171401*expression level of CYMP-AS1) +

(0.834152964623546*expression level of AC017076.1). According to

the median risk score, All GC patients were divided into the high-risk

(high risk score) or the low-risk (low risk score) group.

In addition, Kaplan-Meier survival curve was constructed to

assess the associations between the expression levels of the 3-

PRlncRNAs signature and overall survival (OS), As the Kaplan-

Meier survival curve shows in Figure 3C, samples of high-risk group

exhibited poorer OS than those of low-risk group (p < 0.001),

suggesting that the prognostic signature of risk score is effective.

Time dependent ROC analysis demonstrated that the prognostic

accuracy of the 3-PRlncRNAs signature was 0.601 at 2-year, 0.613 at

3-year, and 0.706 at 5-year (Figure 3D). The risk curve and scatterplot

were drawn to show the risk score and survival status of each GC

patient. The risk coefficient and mortality of patients in the high-risk

group were higher than those in the low-risk group (Figures 3E,F).

Univariate and multivariate cox regression
analyses of the prognostic ability of the
risk model

Univariate and multivariate Cox regression analysis were

employed to estimate whether our model was a clinically

independent prognostic factor for GC patients. The risk scores of

the 3-PRlncRNAs signature and clinicopathological characteristics,

including age, gender, grade, pathological tumor stage, were used as

variables. Based on the GC cohort, univariate analysis indicated that

the risk score (p < 0.001), age (p = 0.023), and pathological tumor

stage (p = 0.008) were significantly associated with OS (Figure 4A).

Subsequent multivariate analysis displayed that the risk score (p <
0.001), age (p = 0.004), pathological tumor stage (p = 0.008), gender

(p = 0.048), and grade (p = 0.033) were significantly correlated with

OS (Figure 4B). The results demonstrated that the risk score,

pathological tumor stage and age were the optimal independent

prognostic factors that could be used to predict the survival rate in

GC patients. Especially, the prognostic 3-PRlncRNAs signature

FIGURE 3
Construction of a 3-PRlncRNAs risk model and its predictive worthiness for GC subjects on the basis of TCGA data resource. (A) Logistic LASSO
regression analisis on the optimum lncRNAs to create the final estimationmodel. The total number of lncRNAs is provided at the top of the figure. The
deviation in partial likelihood is displayed versus log lambda. Dotted vertical lines designate the optimal values. (B) Profiles of the core lncRNA’s
LASSO coefficients. The total number of lncRNAs is indicated at the top of the figure. Each curve corresponds to a certain key lncRNA, and the
number next to it indicates the lncRNA’s serial number. (C) Kaplan-Meier survival analysis of the high-GC risk and low-GC risk groups based on the
risk model andmedian risk score in GC patients. (D) The receiver operating characteristic (ROC) curve of the risk model for two-year, three-year, and
five-year survival prediction. (E) The risk curve for each sample was on the basis of the risk score. (F) The scatterplot depicting each sample’s survival
status. The green and red dots, respectively, signify survival and death. GC, gastric cancer; OS, overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2022.939439

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.939439


showed a higher significance in being an independent prognostic

predictor for GC patients.

External verification of the 3-PRlncRNAs
signature in other cancers of digestive
system

To estimate whether the prognostic 3-PRlncRNA signature had

similar predictive values in different cohorts, we calculated the risk score

for each sample according to the coefficients of these 3 PRlncRNAs to

predict OS in other digestive system tumors from TCGA. A total of

177 pancreatic cancer (PC) patients were divided into a low-risk group

and a high-risk group by the optimal cutoff value, and theOS of the PC

patients in the low-risk group was significantly higher than that of the

patients in the high-risk group (log-rank p < 0.05; Figure 4C). The 3-

PRlncRNA signature constructed with the PC cohort also displayed a

pretty accuracy in predicting the 2- year, 3- year, and 5-year OS, with

AUC values of 0.584, 0.649 and 0.724 (Figure 4D).

Construction of a nomogram for
predicting survival

To offer a clinically applicable and quantitative tool for

predicting the prognosis of GC patients, we further

FIGURE 4
(A,B) Forest plot for the univariate (A) andmultivariate (B)Model of the risk score along with clinicopathological variables on the basis of the Cox
proportional hazard regression. Kaplan-Meier curve (C) and the receiver operating characteristic (ROC) curve (D) of the relationship between risk
score and OS of PANC patients. (E) Nomogram for prognosis in subjects with GC based on risk score along with the clinical data. (F–H) The
nomogram’s calibration curve. Perfect prediction is represented by a dashed line at 45°. GC, gastric cancer; PANC, pancreatic cancer; OS,
overall survival. *p < 0.05; **p < 0.01; ***p < 0.001.
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constructed a prognostic nomogram to predict the survival

probability at 2-year, 3-year, and 5-year based on the TCGA

GC cohort. Six independent prognostic parameters,

including age, gender, grade, stage, family history and risk

score, were enrolled in the prediction model (Figure 4E). The

calibration curve of the prognostic nomogram showed good

agreement between prediction and observation

(Figures 4F–H).

Functional and pathway enrichment
assessment of high and low risk groups

To investigate whether biological processes and pathways

differed between the high and low risk groups, we performed GO

and KEGG enrichment analysis. The results showed that the high

and low risk groups exhibited differences in some basic cellular

biological activities, including DNA replication, nucleotide

metabolism, primary immunodeficiency, nucleosome

assembly, protein−DNA complex assembly, etc. (Figures 5A,B).

Correlation of the 3-PRlncRNA signature
with immune cell infiltration

Considering the close relationship between pyroptosis and

immunity, we explored the difference in immune cell infiltration

between the two groups. Based on the ESTIMATE algorithm, we

calculated the stromal score, immune score and ESTIMATEscore

of each GC sample. Higher ESTIMATEscore (p = 0.003) were

observed in the high-risk group compared with the low-risk

group (Figure 5D), illustrating the different composition of

tumor microenvironment in different risk groups. We further

analyzed the abundance of 22 immune cells in the tumor

microenvironment in the two groups. As the results shown in

Figure 5C, in the high-risk group, the proportions of B cells

memory (p = 0.044), T cells follicular helper (p = 0.013),

Macrophages M1 (p < 0.001) and T cells CD4 memory

activated (p = 0.019) were decreased, while the proportions of

Monocytes (p = 0.006) and Neutrophils (p = 0.030) were

increased compared with those in the low-risk group. High

and low risk groups showed differential immune cells

FIGURE 5
(A,B) Functional enrichment analysis of the two risk groups by GSEA. (C,D) Assessment of the correlation between the risk score of the GC
patients and the complex immune infiltration level. (C) Violin plot displayed the distribution of diverse immune cell invasions in the high-GC risk and
low-GC risk groups. (D) The ESTIMATE Score in different risk groups. The red group designates the high-GC risk group, whilst the blue group
represents the low-GC risk group. GC, gastric cancer.
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expression, which suggested that the 3-PRlncRNAs signature

may be associated with prognosis by influencing the infiltration

of immune cells in GC.

Potential of the 3-PRlncRNAs signature as
a predictor of response to immunotherapy

We selected six immune checkpoint genes that are

clinically popular to assess the potential of risk models as

indicators of immunotherapy response. The results showed

that the risk score was significantly correlated with the

expression of CTLA-4 (r = -0.140, p = 0.010), VISTA (r =

0.150, p = 0.005), and B7-H3 (r = 0.140, p = 0.009) (Figures

6A–H). These observed associations between our 3-

PRlncRNAs signature and immunotherapy-related

biomarkers indicated that GC patients in different group

may have different sensitivity to immune checkpoint

inhibitors.

TMB was negatively associated with risk
score and may predict patients’ survival
probability

We analyzed the correlation of the 3-PRlncRNAs signature with

TMB. Our result presented a markedly higher level of TMB in the

low-risk group than the high-risk group (p < 0.001) (Figure 6I).

Consistently, correlation analysis showed that patientswith highTMB

levels had lower risk scores than those with low TMB levels (r =

-0.230, p < 0.001) (Figure 6J). Moreover, in Kaplan-Meier survival

analysis, GC patients with high TMB levels had significantly higher

survival rates than those with low TMB levels (p = 0.003) (Figure 6K).

3-PRlncRNAs signature was predictive to
chemotherapy

In addition to exploring the relationship between risk

models and immunotherapy, we further investigated

FIGURE 6
Correlation assessment of the immune checkpoint genes with GC patients’ risk score. (A–E) Exhibited the expression level of immune
checkpoint genes in high- and low-GC risk groups. (F–H) Exhibited the correlation between the expression level of immune checkpoint genes and
the risk score of GC patients. (I) A boxplot demonstrated the different TMB level in high-GC and low-GC risk groups. (J) The correlation of TMB with
risk score. (K) Kaplan-Meier survival analysis of the high-GC and low-GC TMB groups in GC patients. GC, gastric cancer.
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whether risk models could be applied to the clinical use of

drugs, especially chemotherapeutic drugs. Thus, we analyzed

the differences in the sensitivity of ten chemotherapeutic

agents, which have been widely used in the clinical

treatment of tumors in recent years, in high and low risk

groups. The results demonstrated a significant difference in

the sensitivity of Tipifarnib (p < 0.001), Mitomycin (p <
0.001), Methotrexate (p < 0.001), Lenalidomide (p = 0.026),

Lapatinib (p = 0.044), Embelin (p = 0.009), Doxorubicin (p =

0.003), Dasatinib (p = 0.039), Cytarabine (p = 0.040),

FIGURE 7
The correlation analysis of the sensitivity of chemotherapeutic agents with GC patients’ risk score. (A–K)Represented eleven chemotherapeutic
agents’ IC50 in different risk groups. The green and red boxes represent low-GC risk and high-GC risk group, respectively. GC, gastric cancer.

FIGURE 8
(A–C) The expression of lncRNA PVT1, CYMP-AS1, and AC017076.1 in tumor tissues and normal para cancerous tissues of GC patients,
respectively. GC, gastric cancer.
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Gemcitabine (p < 0.001) and Camptothecin (p < 0.001) in the

high and low risk groups, which may be of critical use in the

treatment of tumors, especially GC (Figures 7A–K).

Quantitative real-time polymerase chain
reaction of GC samples

We compared the expression levels of these 3 lncRNAs in

40 pairs of GC tumor tissue and normal para cancerous tissue

samples. qRT-PCR was conducted to validate the expression level

of these lncRNAs in frozen tissues. Expectedly, all the 3 lncRNAs

were upregulated in GC tumor tissues than in normal para

cancerous tissues (n = 40, PVT1, p < 0.001; CYMP. AS1, p <
0.001; AC017076.1, p < 0.001) (Figures 8A–C).

Discussion

As one of the most frequent malignant tumors in the world,

GC seriously affects people’s health. Although the growth in the

incidence of GC has slowed in recent years, it still poses a

significant disease burden, due in large part to the poor

treatment outcomes as well as poor prognosis and low overall

cure rate (Pinheiro et al., 2014; Luo et al., 2017; Machlowska et al.,

2020; Sexton et al., 2020). Pyroptosis constitutes an inflammatory

programmed cell death mediated by multiple inflammatory

vesicles that play a pivotal role in a variety of diseases, for

instance atherosclerosis (Xu et al., 2018), inflammation-related

diseases (Crusz and Balkwill, 2015), tumors (Wang et al., 2019;

Ruan et al., 2020), etc. . Some pyroptosis related genes, including

the well-known gasdermin (GSDM), have been found can

remarkably regulate the gastric carcinogenesis (Zhang et al.,

2019; Li et al., 2020). lncRNAs have been widely studied in

tumors, and different lncRNAs play different biological roles in

tumors and can regulate its development and progression

through multiple pathways (Sun et al., 2016; Wei and Wang,

2017; Wei et al., 2020). It has been shown that lncRNAs can

mediate cellular pyroptosis through certain mechanisms and

further act on cancer cells. Many investigations have been

conducted to establish the signature of PRlncRNAs to predict

the prognosis of tumor patients in breast (Lv et al., 2021; Ping

et al., 2021), ovarian (Tan et al., 2021), melanoma (Wu L. et al.,

2021), lung (Lin et al., 2021), endometrial (Chen et al., 2021),

liver cancers (Wu Z. H. et al., 2021) etc., but they have rarely been

found in GC. Therefore, we started to establish a validated

PRlncRNAs biomarker to predict the survival status and

treatment outcome of GC patients.

A total of 50 pyroptosis genes were obtained by reviewing

literature and searching the GSEA pyroptosis gene set (Zhou and

Fang, 2019; Ren et al., 2020; Xiang et al., 2021). Then we

performed the co-expression correlation analysis of these

50 pyroptosis genes based on the TCGA GC transcriptome

data, and after the strict screening criteria, we obtained

PRlncRNAs significantly associated with pyroptosis related

genes. Based on these PRlncRNAs and TCGA GC cohort, we

built an effective risk model by logistic LASSO regression.

Logistics LASSO regression is a technique for selecting

variables while fitting a high-dimensional generalized linear

model (Wang et al., 2007; Lee et al., 2016). It was undertaken

to reduce the number of variables and effectively avoid

overfitting, as well as to choose the most appropriate lncRNAs

for modeling. Cross-verification was adopted to establish the

ideal lambda value for the penalty parameter. We obtained a risk

model for three PRlncRNAs by creating a penalty function via

logistic LASSO regression (PVT1, CYMP-AS1, and

AC017076.1). The model separated the GC cohort into high-

GC and low-GC risk groups. The low-GC risk group had a much

greater survival rate. Cox analysis, univariate along with

multivariate, validated that the 3-PRlncRNAs risk model is an

independent predictor of disease outcomes in GC subjects. It is of

interest that there is already a study on the lasso model of

PRlncRNAs construction (Xu et al., 2022). However, we found

that the component lncRNAs of this model were different from

the lncRNAs we used. Our obtained pyroptosis related genes

were comprehensive and pyroptosis related lncRNAs were

screened by stricter criteria. Furthermore, we did not exclude

the GC data in the TCGA data resource to ensure the integrity

and randomization of the clinical data as much as possible.

What`s more, we examined the expression of prognostic

lncRNAs in pairs of GC tissues from hospital using qRT-PCR

to initially validate our model. In addition, we tried to find other

tumor cohorts in the TCGA database to validate the reliability as

well as the applicability of our risk model. PC, like GC, is a cancer

of the digestive system. PC is severely lethal and poses a very high

threat to human health (Morrison et al., 2018). Similarly, when

we placed PC patients into our risk model, patients in the low-

risk group showed a longer survival time. These consistent results

further make our model more convincing.

Plasmacytoma variant translocation 1 (PVT1) is a common

lncRNA located in a cancer-related region chr8q24.21 region,

consisting of 1716 nucleotides (Lu et al., 2017; Onagoruwa et al.,

2020). Many reports have confirmed that PVT1 plays an

indispensable role in GC (Li et al., 2016; Xu et al., 2017). The

expression level of PVT1 is remarkably elevated and may

promote the proliferation as well as migration of GC cells by

activating STAT3-mediated signaling pathways (Zhao et al.,

2018; Niu et al., 2020). Herein, we established that

PVT1 expression was remarkably increased in GC tissues,

which is consistent with previous studies. Wu et al.

demonstrated that CYMP-AS1 can be used as a biomarker for

GC (Wu H. et al., 2021), which further makes our model more

convincing. However, AC017076.1 was less studied. We found

the potential of AC017076.1 as a survival signature by using lasso

algorithm. The value of AC017076.1 as an indicator needs to be

further explored and verified.
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The tumor microenvironment (TME) is a complex and

integrated system. It consists of tumor cells, the surrounding

immune cells, inflammatory cells, stromal cells, nearby

mesenchymal tissue, microvasculature, various cytokines, and

chemokines (Lei et al., 2020). Tumors are remarkably linked to

TME, which can influence its microenvironment through

releasing cell signaling molecules, enhancing tumor

angiogenesis, as well as inducing immune tolerance.

Interestingly, immune cells infiltrating in the

microenvironment can influence the development, growth and

even progression of tumor (Cassim and Pouyssegur, 2019;

Hinshaw and Shevde, 2019). Pyroptosis plays a pivotal role in

TME and thus may affect tumor progression. Cytokines

produced by pyroptosis can regulate immune cells and thus

affect the immune system (Li L. et al., 2021). In GC, immune

cell infiltration is also critical for tumor immune

microenvironment (Perrone et al., 2008). Consistently, we

found that in the GC cohort of TCGA, the infiltration of

B cells memory, T cells CD4 memory activated, T cells

follicular helper, Monocytes, Macrophages M1, and

Neutrophils had significant differences in the high- and low-

GC risk groups. The ESTIMATE algorithm was adopted to

estimate the stromal score and immune score of tumor

samples based on transcriptomic data. The stromal score

along with immune score represented the abundance of

stromal and immune cells, respectively. These two scores were

summed to obtain the ESTIMATE score, which can be used to

estimate tumor purity (Yoshihara et al., 2013). In our study, the

ESTIMATE score was remarkably higher in the high-GC risk

group than in the low-GC risk group, indicating that tumor

purity was higher in the high-GC risk group.

Therapeutic strategies of tumor include traditional surgery,

radiotherapy, and chemotherapy, as well as targeted therapy,

tumor vaccine and immunotherapy, which have emerged in

recent years (Smyth et al., 2020). Immunotherapy of tumor is a

treatment method that applies immunological principles and

methods to specifically remove tumor lesions and inhibit tumor

growth by activating immune cells in the body and enhancing the

body’s anti-tumor immune response. Immunotherapy can break the

tumor immune tolerance and overcome the immune escape

mechanism (Petitprez et al., 2020). In recent years,

immunotherapy has shown great development potential in

antitumor clinical applications and is gradually becoming the

future direction of tumor therapy. Common immune checkpoint

genes, including PD-1 (Peng et al., 2020), PD-L1 (Topalian et al.,

2020), CTLA-4 (Rowshanravan et al., 2018), VISTA(Rowshanravan

et al., 2018), and B7-H3 (Du et al., 2019), are targets of immune

checkpoint inhibitors. They are widely used in antitumor therapy and

have produced good clinical effects. In our study, the expression levels

of CTLA-4,VISTA, andB7-H3were significantly different in the high

and low risk groups, suggesting that our risk model may be closely

related to immunotherapy for GC, and that patients with high

expression of immune checkpoint genes may be more sensitive to

these checkpoint inhibitors. Studies have shown that the efficiency of

mono-immunotherapy is just 15–20% (Gettinger et al., 2018). And

the combination of immune checkpoint inhibitors is a trend in the

future, as it is more effective in overcoming resistance to

immunotherapy and significantly enhances efficacy (Pollack et al.,

2018; Heinhuis et al., 2019). PD-1 and PD-L1 showed no statistical

significance in the high and low risk groups. We built a hypothesis

that potential synergistic effects may emerge when PD-1 and PD-L1

were combined with CTLA-4, VISTA, or B7-H3, etc. Certainly, this

hypothesis requires more research to prove it.

TMB represents the total number of mutations per

megabase (Mut/Mb) in DNA sequenced in a given cancer.

TMB is an indicator of the efficacy of immunotherapy and

higher TMB may be associated with better outcomes with

immune checkpoint inhibitor therapy (Topalian et al., 2016;

Chan et al., 2019; Negrao et al., 2021). Many studies have

found that the expression of common immune checkpoint

genes PD-1, PD-L1, and CTLA-4 is synchronized with TMB,

and high PD-1 expression levels corresponds to high TMB

(Cristescu et al., 2018; Hellmann et al., 2018; Samstein et al.,

2019). Similarly, in this study, the expression level of TMB was

consistent with that of CTLA-4, so we think that the level of

TMB could be fully considered when designing immunotherapy,

which may be more beneficial to improve the clinical outcome.

Pyroptosis modulates immune cells in TME. LncRNAs can

regulate immune genes and play important roles in immune cell

growth, differentiation, migration, and immune responses. Both

pyroptosis and lncRNAs have important effects on the immune

microenvironment in tumors and may contribute to the effects of

immunotherapy. Therefore, we tried to investigate whether

immunotherapy-related PRlncRNAs could be linked to TMB. We

found a significant difference of TMB in different risk groups,

suggesting that the 3-PRlncRNAs model might be effective in

identifying different levels of TMB. Then, we explored the

correlation between TMB and risk scores, which were negatively

correlated. TMB can be used as an indicator to predict survival rate of

tumor patients, a higher TMB often predicts a better prognosis

(Samstein et al., 2019). This may be due to the higher sensitivity

of patients with high TMB to immunotherapy, which in turn

improves prognosis. The strong link between TMB and

immunotherapy and prognosis, once proven, will be very

beneficial for clinical interventions outcomes and the OS of cancer

patients. Our study initially verified this, butmore in-depth theoretical

and clinical studies are needed to confirm the feasibility of this

conjecture.

We have already mentioned that chemotherapy is one of the

most basic and traditional treatments for tumors, and it is widely

used in clinical practice. However, there is a major problem of

resistance in chemotherapeutic drugs, which makes the

therapeutic effect much less effective (Wu et al., 2014;

Dallavalle et al., 2020). We therefore analyzed the role of the

risk model in differentiating chemosensitivity. The IC50 of

several common chemotherapeutic agents showed a significant
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difference in different risk groups, including Camptothecin,

Gemcitabine, Methotrexate, Mitomycin. C etc.

However, our study also has some limitations. Firstly, the

clinical data downloaded from the TCGA database for GC

patients was not perfect. For example, some clinical

information had lots of censored values, which made our

analysis possibly biased to some extent. Secondly, some

crucial clinical information was not provided, especially

treatment measures the patient has received, which is

important to the prognosis of patients. Above all, most of our

study is database mining and analysis, with only a few clinical

samples to initially validate our results, we need more clinical

prognostic data to support our conclusions.

Conclusion

In conclusion, we obtained 29 lncRNAs co-expressed by

50 pyroptosis genes. Then by univariate and multivariate Cox

regression analysis and lasso algorithm, we finally constructed a

risk model of 3-PRlncRNAs, which can effectively predict the

survival rate of GC patients. We constructed a prognostic

Nomogram based on the 3-PRlncRNAs model and

clinicopathological parameters, which provides an accurate

and effective means to assess the prognosis of GC patients. In

addition, the 3-PRlncRNAs model was expected to be an

emerging tool for immunotherapy effect assessment, which

will bring great benefits to individualized treatment and

medical decision making. Although we applied qRT-PCR for

preliminary validation, further studies are needed to explore the

prognostic value of the 3-PRlncRNAs signature and to confirm

our conclusions, as most of our study was based on

bioinformatics analysis carried out on retrospective data.
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