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Integrative pharmacogenomics revealed three subtypes with different
immune landscapes and specific therapeutic responses in lung
adenocarcinoma
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Background: Pharmacogenomics is crucial for individualized drug therapy and plays an increasingly vital
role in precision medicine decision-making. However, pharmacogenomics-based molecular subtypes and
their potential clinical significance remain primarily unexplored in lung adenocarcinoma (LUAD).
Methods: A total of 2065 samples were recruited from eight independent cohorts. Pharmacogenomics
data were generated from the profiling of relative inhibition simultaneously in mixtures (PRISM) and
the genomics of drug sensitivity in cancer (GDSC) databases. Multiple bioinformatics approaches were
performed to identify pharmacogenomics-based subtypes and find subtype-specific properties.
Results: Three reproducible molecular subtypes were found, which were independent prognostic factors
and highly associated with stage, survival status, and accepted molecular subtypes. Pharmacogenomics-
based subtypes had distinct molecular characteristics: S-Ⅰ was inflammatory, proliferative, and immune-
evasion; S-Ⅱ was proliferative and genetics-driven; S-III was metabolic and methylation-driven. Finally,
our study provided subtype-guided personalized treatment strategies: Immune checkpoint blockers
(ICBs), doxorubicin, tipifarnib, AZ628, and AZD6244 were for S-Ⅰ; Cisplatin, camptothecin, roscovitine,
and A.443654 were for S-Ⅱ; Docetaxel, paclitaxel, vinorelbine, and BIBW2992 were for S-III.
Conclusion: We provided a novel molecular classification strategy and revealed three
pharmacogenomics-based subtypes for LUAD patients, which uncovered potential subtype-related and
patient-specific therapeutic strategies.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-small cell lung cancer (NSCLC) is a malignant tumor with
high incidence and cancer-related mortality, of which lung adeno-
carcinoma (LUAD) is the most prevalent pathological subclass [1].
Many FDA-approved drugs, such as chemotherapy agents, targeted
agents, and immune checkpoint blockers (ICBs), are available for
LUAD patients. Platinum-based chemotherapy is the primary
first-line treatment for NSCLC patients without driver mutations.
Targeted therapy, such as epidermal growth factor receptor (EGFR)
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tyrosine kinase inhibitors, is the standard treatment for lung can-
cer patients with driver mutations. In recent years, ICB (i.e., PD-
1/PDL-1 blocker) has been a novel therapeutic strategy for patients
with unresectable NSCLC. However, LUAD patients have a dismal
survival prognosis despite multiple therapeutic options, with a 5-
year relative survival rate of only 21% [2]. The poor survival rate
could be attributed to different individual therapeutic responses.
Tumor heterogeneity, such as different tumor microenvironment
(TME) patterns or cancer cell types, is a significant cause of low
response rates and drug resistance [3]. Therefore, LUAD patients
are urged to develop a precise classification strategy.

LUADmolecular subtypes are currently based on genomic, tran-
scriptomic, and epigenetic alteration and their combination [4].
The most accepted molecular subtypes were described in 2014
with 230 LUAD samples from the cancer genome atlas (TCGA)
cohort, namely terminal respiratory unit (TRU), proximal inflam-
matory (PI), and proximal proliferative (PP) [5]. Although distinct
molecular subtypes have different biological behaviors and prog-
noses, they have limitations in guiding clinical management deci-
sion. Therefore, we need to develop a novel pharmacogenomics-
based classifier to achieve precision medication for different
populations.

Cancer cell lines are the most commonly used models for defin-
ing drug efficacy. The large-scale high-throughput sequencing
technique permits cell lines genome-wide analysis of drug
response. Thus, we have access to a lot of pharmacogenomics data.
Some available pharmacogenomics resources include the profiling
of relative inhibition simultaneously in mixtures (PRISM) [6], the
cancer therapeutics response portal (CTRP) [7], and the genomics
of drug sensitivity in cancer (GDSC) [8]. The cell models of PRISM
and CTRP are from the cancer cell line encyclopedia (CCLE). Some
drugs overlap and are FDA-approved for LUAD patients. Thus, we
can utilize multiple pharmacogenomics databases and obtain mul-
tiple drug response data.

This study revealed the three distinct LUAD molecular subtypes
based on pharmacogenomics with different prognoses and TME
patterns. Our integrative pharmacogenomics-based classification
uncovered potential subtype-related and patient-specific thera-
peutic strategies.
2. Materials and methods

2.1. Data source and processing

RNA expression and clinical data of TCGA-LUAD samples
(n = 497) were retrieved from UCSC Xena (https://xenabrowser.
net/datapages/). Expression data in the form of fragments per kilo-
base of transcripts of million mapped reads (FPKM) were converted
to trans per million (TPM) form and then log2 transformed for fur-
ther analysis. Other LUAD datasets (GSE30219 (n = 85), GSE31210
(n = 226), GSE41271 (n = 182), GSE42127 (n = 133), GSE50081
(n = 127), GSE68465 (n = 442), and GSE72094 (n = 398)) were
obtained from gene expression omnibus (GEO, https://www.ncbi.
nlm.nih.gov/geo/). The RNA microarray data of GEO datasets were
normalized between arrays and then log2 transformed.
2.2. Drug response data collection and processing

Drug response data of LUAD cell lines were obtained from
PRISM [6] and GDSC [9]. Nine FDA-approved and commonly used
drugs for the treatment of LUAD were included in this study: gefi-
tinib, erlotinib, afatinib, crizotinib, cisplatin, docetaxel, etoposide,
paclitaxel, and vinorelbine. The therapeutic response data of nine
drugs all appeared in the above two pharmacogenomics databases.
For each drug, cell lines were divided into groups of sensitive, par-
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tial response, or resistance by utilizing the mean ± 0.5 standard
deviations (SD) of the IC50, log10 (IC50), EC50, or log10 (EC50) val-
ues [10,11]. Cell lines with an IC50, log10 (IC50), EC50, or log10
(EC50) value more significant than the mean + 0.5 SD were defined
as resistant to the drug. Cell lines with an IC50, log10 (IC50), EC50,
or log10 (EC50) value less than the mean �0.5 SD were defined as
sensitive to the drug, and those with an IC50, log10 (IC50), EC50,
or log10 (EC50) value between the mean + 0.5 SD and the mean
�0.5 SD were defined as having a partial response to the drug. This
categorization corresponds to the RECIST 1.1 system (i.e., complete
response, partial response, and stable disease/disease progression)
in evaluating chemotherapeutic response in solid tumors [12]. The
corresponding expression data of LUAD cell lines from PRISM were
obtained from the CCLE (https://sites.broadinstitute.org/ccle/data-
sets) [13], and the expression data of LUAD cell lines from GDSC
were collected from the GDSC1000 resource. CCLE expression data
were acquired by RNA-seq-based measurements and transformed
into log2(TPM + 1). GDSC1000 was expression array data from
Affymetrix Human Genome U219 array platform and normalized
by robust multi-array average (RMA) algorithm. Considering the
different methods of expression data generation, each gene expres-
sion was transformed into Z-score across samples in CCLE and
GDSCA1000 cell lines.
2.3. Identification of drug response-associated genes

The limma package was applied in PRISM and GDSC databases
to screen out differentially expressed genes between sensitive
and resistant groups for each drug. P < 0.05 and |log2fold change|
(|log2FC|) > 0.5 served as the cutoff criteria [14]. Differentially
expressed genes for each drug that were both up-regulated or
down-regulated in two independent datasets were selected. The
combined up-regulated and down-regulated genes were identified
as drug response-associated genes (DRGs) for each drug. Finally,
we combined the DRGs of nine drugs and removed the duplicates
as the DRGs of LUAD (Fig. 1A).
2.4. Identification and validation of pharmacogenomics-based
subtypes

The DRGs expression matrix of the TCGA-LUAD samples was
used to identify the pharmacogenomics-based subtypes perform-
ing the non-negative matrix factorization (NMF) consensus cluster
method implemented in the R package NMF v.0.23.0. The nsNMF
algorithm [15] was performed using 100 iterations for the rank
(between 2 and 7 clusters) survey and 500 iterations for the clus-
tering runs. The value of k for which the cophenetic coefficient
starts decreasing is chosen as the optimal number of clusters
[16]. The silhouette width profiles were assessed, and samples
with negative silhouette width were excluded to identify
subtype-specific characteristics [17].

Using the centroids of the TCGA-LUAD cohort, the in-group pro-
portion (IGP) algorithm [18] implemented in the R package clus-
terRepro was conducted to classify LUAD samples of the seven
GEO cohorts. Because the expression data generation methods
are different in TCGA and GEO datasets, specifically, one based
on RNA-seq and the other based on the microarray. Utilizing the
scale method contained in the R, the gene expression values were
normalized to Z-score before the IGP analysis. In addition, subclass
mapping analysis (SubMap, Gene Pattern, https://cloud.genepat-
tern.org/gp/) [19] was performed to assess the genetic similarity
in DRGs expression profiles between subgroups from independent
TCGA and GEO cohorts.
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Fig. 1. Identification of pharmacogenomic-based subtypes.(A) Flowchart for screening drug response-associated genes. (B) The principal component analysis (PCA)
algorithm displayed the two-dimension spatial distribution of tumor and normal samples. (C) The first rank (K = 3) for which the cophenetic coefficient starts decreasing was
generally defined as the optimal rank. (D) The consensus map of NMF clustering results in the TCGA-LUAD cohort. (E) The silhouette statistic of three pharmacogenomic-
based subtypes. (F) Kaplan-Meier curves of overall survival according to pharmacogenomic-based subtypes. (G) The multivariate Cox regression analysis in TCGA-LUAD
cohort. (H) The links between pharmacogenomic-based subtypes and acceptable subtypes (TCGA 2014).
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2.5. Associations of pharmacogenomics-based subtypes with clinical
features and classical subtypes

Kaplan-Meier (K-M) analysis was performed to examine differ-
ences in survival among the three pharmacogenomics-based sub-
types in the TCGA and GEO cohorts. We performed multivariate
Cox regression analysis to determine whether
pharmacogenomics-based subtypes in the TCGA and GEO cohorts
were independent prognostic factors. The LUAD consensus molec-
ular subtypes [13], namely TCGA 2014 (TRU, PP, and PI), were
assigned to each LUAD patient of TCGA and GEO cohorts using
the nearest centroid predictor. Sankey plot was used to demon-
strate the lines between pharmacogenomics-based subtypes and
TCGA 2014. The pie chart showed the relationship between
pharmacogenomics-based subtypes and clinical features.
2.6. Molecular characterization of pharmacogenomics-based subtypes

To understand the biological pathways of pharmacogenomics-
based subtypes, quantitative set analysis for gene expression
(QuSAGE, R package qusage v2.26.0) was conducted to compare
each subtype to all others, leveraging hallmark gene sets from
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molecular signature database (MSigDb) to identify pathway activ-
ity within each subtype. QuSAGE quantified pathway activity with
a complete probability density function. Hallmark pathways with
activity scores (adjusted p < 0.01) were represented as a heatmap.

To further confirm the biological properties of
pharmacogenomics-based subtypes, we again contrasted each sub-
type to all others. We conducted pathway enrichment analysis
using gene sets from the Reactome database implemented through
the R package ReactomePA v1.36.0. For each subtype, pathways of
adjusted p < 0.01 and normalized enrichment score (NES) > 0 were
chosen as subtype-specific biological pathways.

Finally, we conducted a single-sample gene set enrichment anal-
ysis (ssGSEA) of gene sets for representative pathways to further
refine the above discriminatory molecular characterization. Heat-
map was used to represent the Z-score value of ssGSEA score for
each sample of pharmacogenomics-based subtypes. In addition,
we combined thesemetabolism-related pathways and downloaded
inflammatory and proliferative signatures from the CancerSEA
website (http://biocc.hrbmu.edu.cn/CancerSEA/). Scores of inflam-
matory, proliferative, and metabolic signatures were calculated by
ssGSEA. The difference analysis of cancer signatures among sub-
types was presented as boxplots for TCGA and GEO cohorts.

http://biocc.hrbmu.edu.cn/CancerSEA/
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2.7. Immune landscapes of pharmacogenomics-based subtypes

The TIMER, MCPcounter, CIBERSORT, and ssGSEA algorithms
assessed immune cellular components among
pharmacogenomics-based subtypes. The differences in the
immune response under different algorithms were uncovered
using the heatmap. Correlation analyses between three subtypes
and immune cell ssGSEA score were performed using Pearson cor-
relation implemented in the R package ggcor v 0.9.8.1. ESTIMATE
algorithms were performed to compare immune score, stomal
score, ESTIMATE score, and tumor purity among
pharmacogenomics-based subtypes. T cell receptor diversity
(Shannon Entropy), tumor neoantigen number, immune costimula-
tory gene, immune coinhibitory gene, and antigen presentation
gene were retrieved from previous literature [20]. Boxplots were
used to visualize the differences among pharmacogenomics-
based subtypes.
2.8. Molecular mechanisms of pharmacogenomics-based subtypes

Maf file of the mutation data was downloaded from the GDC
website (https://portal.gdc.cancer.gov/). The top 20 genes with
the highest mutation frequency were selected for subsequent anal-
ysis. Fisher’s exact test compared the frequency of mutated genes
among pharmacogenomics-based subtypes. The waterfall and fre-
quency diagram were used to show the genes with significantly
different mutation frequencies among three subtypes. We calcu-
lated the number of tumor mutations per megabase and obtained
each sample’s tumor mutation burden (TMB) value.

Copy number analysis data of GISTIC_2.0 level were collected
from FireBrowse (http://firebrowse.org/). Top 20 chromosome seg-
ments with gain or loss frequency were selected for subsequent
analysis. Fisher’s exact test compared the frequency of gain or loss
segment among subtypes. The copy number alteration burden
(gain or loss) was obtained by calculating the total number of
genes with copy number alteration at the focal and arm levels.

DNA methylation profile was accessed from the UCSC database.
MethylMix algorithm [21] was conducted to identify DNA
methylation-driven genes for each subtype. Genes whose both
methylation and expression levels were different (adjusted
p < 0.05) were selected for subsequent analysis. Boxplots were
used to visualize these genes’ methylation and normalized expres-
sion levels differences among subtypes. Correlation analysis of
DNA methylation and mRNA expression levels was examined and
pictured for each subtype. Besides, we further surveyed the corre-
lation between mRNA expression levels and inflammatory, prolif-
erative, and metabolic signatures scores.
2.9. Pharmacotherapy prediction for pharmacogenomics-based
subtypes

To assess the sensitivity to ICBs for LUAD patients, we utilized
SubMap analysis to evaluate the gene expression profiles similarity
between the three subtypes and melanoma patients receiving
CTLA-4/PD-1 blockers with different immunotherapy responses.
Adjusted p < 0.05 was considered a significant sensitivity or insen-
sitivity to ICBs.

As described above, the acquisition of DRGs was derived from
gene differential expression analysis between sensitive and resis-
tant cell lines. Thus, the expression level of up-regulated or
down-regulated DRGs in each drug may predict the sensitivity of
LUAD patients to this drug. Therefore, we conducted the ssGSEA
analysis of up-regulated or down-regulated DRGs for each drug.
Heatmap was used to represent the median Z-score value of
ssGSEA score for each subtype. Furthermore, we queried the con-
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nectivity map (CMap) database (https://clue.io/) to check the sen-
sitivity of these drugs.

Besides, we further explored potential agents targeting the
molecular pathways or genes related to the pharmacogenomics-
based subtypes by utilizing the CMap database. It can predict drugs
based on gene expression signatures and reveal the mode of action
(MoA) of agents targeting corresponding molecular pathways. The
differentially expressed genes between each subtype and others
were employed to query the CMap database. The most significantly
highly expressed genes of each subtype were considered potential
targets of compounds. The connectivity scores of agents were cal-
culated. Agents with connectivity scores < -95 were deemed poten-
tial therapeutic drugs for each subtype [22]. In addition, we applied
the pRRophetic package to examine the therapeutic sensitivity of
the above potential drug or molecular targeting, adjudicated by
the half-maximal inhibitory concentration (IC50) of LUAD patients.

2.10. Statistical analysis

All statistical analyses were performed utilizing the R statistical
environment (R version 4.1.1). The log-rank test was used to com-
pare the survival distributions among the three groups. The Mann-
Whitney U test compared categorical variables and non-normally
distributed variables between two groups. The Kruskal-Wallis test
compared differences in more than two groups.
3. Results

3.1. Identification of drug response-associated genes

Sensitive, partially sensitive, and resistant cell lines of nine
drugs were identified from the PRISM and GDSC databases, respec-
tively. Based on differential expression analysis (see methods and
Fig. 1A), a total of 195 drug response-associated genes (DRGs) were
identified. PCA analysis confirmed that the 195 DRGs effectively
stratified tumor and normal samples (Fig. 1B).

3.2. Identification of pharmacogenomics-based subtypes

The optimal clustering number of the NMF algorithm was three
clusters (Fig. 1C). Fig. 1D showed the clustering heatmap for three
subtypes, namely S-Ⅰ, S-Ⅱ, and S-III. The mean silhouette widths of
S-Ⅰ, S-Ⅱ, and S-III were 0.79, 0.76, and 0.77, respectively, indicating
that the samples of each subtype had an excellent internal consis-
tency (Fig. 1E). K-M analysis displayed significant survival differ-
ences among three subtypes (Fig. 1F, p < 0.0001). S-Ⅰ had the
worst prognosis, S-III had the most excellent prognosis, and S-Ⅱ
had an intermediate prognosis. S-Ⅰ and S-III are independent prog-
nostic factors, which are poor and favorable prognoses, respec-
tively (Fig. 1G). The TCGA 2014 subtypes revealed TRU had a
favorable prognosis, while PI and PP had poor prognoses [5]. The
comparison showed a strong correlation between
pharmacogenomics-based subtypes and TCGA 2014 subtypes
(Fig. 1H, p = 1.2e-47). S-Ⅰ was similar to PI, and S-III was akin to
TRU.

3.3. Validation of pharmacogenomics-based subtypes in seven cohorts

To investigate the reproducibility and utility of
pharmacogenomics-based subtypes, we performed the IGP algo-
rithm to capture the molecular subtypes in seven independent
cohorts, including GSE30219, GSE31210 GSE41271, GSE42127,
GSE50081, GSE68465, and GSE72094. The proportions of S-Ⅰ, S-Ⅱ,
and S-III in seven cohorts were almost similar (Fig. S1A). The Sub-
Map analysis revealed the significant consistency between sub-
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types from independent TCGA and GEO cohorts. (Fig. S1B-H,
p < 0.05). K-M analysis showed significantly poor survival with
S-Ⅰ and favorable survival with S-v, similar to the TCGA cohort out-
comes (Fig. 2A-G). The multivariate Cox regression analysis find-
ings for each GEO cohort were the same as those of the TCGA
cohort (Fig. 2H-N). The connection between subtypes of each
GEO cohort and TCGA 2014 subtypes was also consistent with
those of the TCGA cohort (Fig. 2O-U). These results indicated that
our novel pharmacogenomics-based subtypes were reliable and
generalized.
3.4. Associations of pharmacogenomics-based subtypes with clinical
features

The pie chart depicted the correlation between clinical features
and pharmacogenomics-based subtypes in eight cohorts (Fig. S2A-
H). Age distribution was associated with subtypes in three cohorts
(TCGA, p = 0.021; GSE50081, p = 0.025; GSE72094, p = 0.011), while
the distribution pattern was inconsistent. Gender distribution was
associated with subtypes only in the TCGA cohort (p = 0.018). The
stage or grade distribution was subtype-related in five cohorts, and
advanced or high-grade patients were predominantly subtypes
with poor prognosis (TCGA, p = 0.0027; GSE30219, p = 0.031;
GSE31210, p = 2e-05; GSE41271, p = 0.033; GSE68465, p = 1e-
19). Except for the GSE41271 cohort, the distribution of survival
status was correlated with subtypes (TCGA, p = 7.2e-05;
GSE30219, p = 0.0056; GSE31210, p = 0.00046; GSE42127,
p = 0.006; GSE50081, p = 0.0017; GSE68465, p = 7.6e-05;
GSE72094, p = 6e-04), and the distribution pattern was consistent
with the prognosis of subtypes. In summary, patients with
advanced stage and poor survival were mainly distributed in S-Ⅰ,
while patients with early stage and good survival were mainly dis-
tributed in S-III.
3.5. Molecular characterization of pharmacogenomics-based subtypes

The MSigDb hallmark and Reactome database were used to
investigate subtype-specific biological properties deriving
pharmacogenomics-based subtypes (Fig. 3A-B). Inflammatory
pathways (i.e., complement, inflammatory response, interferon
signaling, signaling by interleukins, and neutrophil degranulation)
were enriched only in S-Ⅰ. Proliferation pathways (i.e., MYC targets
v1, MYC targets v2, MTORC1 signaling, G2M checkpoint, E2F tar-
gets, telomere maintenance, DNA replication, and regulation of
mitotic cell cycle) were enriched in S-Ⅰ and S-Ⅱ. Metabolic path-
ways (i.e., bile acid metabolism, fatty acid metabolism, surfactant
metabolism, heme metabolism, and phospholipid metabolism)
were enriched only in S-III.

We further summarized the molecular pathways and calculated
the ssGSEA score for each sample of pharmacogenomics-based
subtypes (Fig. 3C). Thus, we defined the molecular characteristics
of S-Ⅰ as inflammation and proliferation, S-Ⅱ as proliferation, and
S-III as metabolism. We again compared the differences of inflam-
mation, proliferation, and metabolism signature among three sub-
types (Fig. 3D). S-Ⅰ showed high inflammation and proliferation
(p < 0.0001), S-Ⅱ showed high proliferation (p < 0.0001), and S-III
showed high metabolism (p < 0.0001). The findings of subtype-
specific molecular features were validated in seven independent
Fig. 2. Validation of pharmacogenomic-based subtypes in seven cohorts.(A-G) Kap
subtypes in the GSE72094 (A), GSE68465 (B), GSE30219 (C), GSE42127 (D), GSE41271 (E),
in the GSE72094 (H), GSE68465 (I), GSE30219 (J), GSE42127 (K), GSE41271 (L), GSE312
subtypes and acceptable subtypes (TCGA2014) in the GSE72094 (O), GSE68465 (P), GSE
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cohorts, demonstrating the concordance of subtype-specific bio-
logical behaviors from different cohorts (Fig. 3E-K).
3.6. Immune landscapes of pharmacogenomics-based subtypes

Since the three subtypes have significantly different enrich-
ment of inflammation-related pathways, we further explored
the immune landscapes of pharmacogenomics-based subtypes.
We utilized four algorithms to demonstrate the immune infil-
trating status of the three subtypes (Fig. 4A, Fig. S3A-D). S-Ⅰ
belonged to the immune-hot tumor. S-Ⅱ belonged to the
immune-cold tumor. S-III belonged to the moderate immune
infiltrating tumor.

We further analyzed the correlation between each subtype and
immune cell components (Fig. 4B). S-Ⅰ was markedly positively
correlated with T cell exhaustion, regulatory T cell, type-1 T helper
cell, type-2 T helper cell activated CD4 T cell, central memory CD4
T cell, gamma delta T cell, natural killer T cell, effector memory CD8
T cell, central memory CD8 T cell, CD56bright natural killer cell,
memory B cell, and neutrophil. S-Ⅱwas markedly negatively corre-
lated with T follicular helper cell, type-1 T helper cell, type-2 T
helper cell, central memory CD4 T cell, central memory CD8 T cell,
effector memory CD8 T cell, activated dendritic cell, CD56bright
natural killer cell, eosinophil, and mast cell. There were fewer
immune cell components associated with S-III only two (including
eosinophil and mast cell) were positively correlated, and three (in-
cluding T cell exhaustion, type-2 T helper cell, activated CD4 T cell,
natural killer T cell, memory B cell) were negatively correlated. In
general, S-Ⅰwas immune evasion, S-Ⅱwas immune desert, S-III was
immune activation.

In line with these results, S-Ⅰ presented the highest immune
score (Fig. 4C), stromal score (Fig. 4D), and ESTIMATE score
(Fig. 4E), while S-Ⅱwith the highest tumor purity (Fig. 4F). Surpris-
ingly, the number of neoantigens was significantly highest in S-Ⅱ
(Fig. 4G), and there was no difference in T cell receptor diversity
among the three subtypes (Fig. S3E). Furthermore, expression
levels of most costimulator (Fig. 4H), coinhibitor (Fig. 4I), and anti-
gen presentation (Fig. 4J) genes were the highest in S-Ⅰ, the lowest
in S-Ⅱ, and fluctuated in S-III Altogether, these analyses confirmed
pharmacogenomics-based subtypes corresponded to distinct TME
patterns.
3.7. Molecular mechanisms of pharmacogenomics-based subtypes

We explored the underlying molecular mechanisms of
pharmacogenomics-based subtypes at gene mutation, copy num-
ber alteration, and DNA methylation levels, respectively. First, we
assayed the mutation landscapes of three subtypes. Eleven of the
top 20 mutated genes were significantly different among the
three subtypes. Most of those genes were frequently mutated in
S-Ⅱ, less regularly in S-III (Fig. 5A-B). Interestingly, the mutation
frequency of TP53 was almost the same between S-Ⅰ and S-Ⅱ,
and the loss of TP53 function leads to proliferative features of
cancers. In addition, S-Ⅱ exhibited the highest TMB (Fig. 5C),
accounting for the mechanism by which S-Ⅱ had the highest
number of tumor neoantigens. Second, copy number alteration
was detected in three subtypes (Fig. 5D). Most of the chromo-
some fragments were gained or lost significantly in S-Ⅱ. In S-Ⅰ,
lan-Meier curves demonstrating survival differences of pharmacogenomic-based
GSE31210 (F), GSE50081 (G) cohorts. (H-N) The multivariate Cox regression analysis
10 (M), GSE50081 (N) cohorts. (O-U) The links between pharmacogenomic-based
30219 (Q), GSE42127 (R), GSE41271 (S), GSE31210 (T), GSE50081 (U) cohorts.
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Fig. 3. Molecular characterization of pharmacogenomic-based subtypes. (A) Heatmap representing MSigDb hallmark gene set QuSAGE activity scores for each subtype
compared with all others. The higher the score, the higher the pathway activity. (B) Dot plot depicting normalized enrichment score (NES) of Reactome gene set. (C) Heatmap
depicting representative pathways ssGSEA scores for each patient from the three subtypes. (D-K) Boxplots representing difference of inflammatory, proliferative, and
metabolic signatures among subtypes in TCGA-LUAD (D), GSE72094 (E), GSE68465 (F), GSE30219 (G), GSE42127 (H), GSE41271 (I), GSE31210 (J), GSE50081 (K) cohorts. P
values are shown as *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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chromosome fragments 7p11.2, 7p11.2, and 7q31.2 were gained
considerably, and chromosome fragments 9p21.3 and 9p23 were
lost significantly. In S-III, chromosome fragments 16p11.2 were
gained especially, while chromosome fragments 6q14.3 were lost
significantly. Furthermore, the burden of copy number alterations
(gain or loss) at arm and focal levels were highest in S-Ⅱ (Fig. 5F-
I). Finally, we identified DNA methylation-driven genes that dif-
3455
fered significantly among the three subtypes (Fig. 5J-L). In addi-
tion, we further analyzed the correlation between the
expression of these genes and inflammation, proliferation, and
metabolic signatures (Fig. 5M). Most DNA methylation-driven
genes showed significant positive correlation with metabolic sig-
natures. In summary, all these results suggested that S-Ⅱ was
genetics-driven and S-III is methylation-driven.



Fig. 4. Immune landscapes of pharmacogenomic-based subtypes. (A) Heatmap for immune responses based on TIMER, MCPcounter, CIBERSORT, and ssGSEA algorithms
among three subtypes. The heatmap is colored by the mean score of each subtype. (B) Correlations between three subtypes and immune cellular components. (C-G) Violin
plot of the immune score (C), stromal score (D), ESTIMATE score (E), tumor purity (F), and tumor neoantigen number (G) in three subtypes. (H-J) Boxplots representing
different expression levels of immune co-stimulatory genes (H), immune co-inhibitory genes (I), and Antigen presentation genes (J) among three subtypes. P values are shown
as *P < 0.05; **P < 0.01; ***P < 0.001.
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3.8. Pharmacotherapy prediction for pharmacogenomics-based
subtypes

First, we applied SubMap analysis to predict immunotherapy
responses of pharmacogenomics-based subtypes. SubMap uncov-
3456
ered that S-Ⅰwas genetically similar to melanoma tumors respond-
ing to PD-1 (P = 0.03) and CTLA4 (P = 0.02) blockers, suggesting
that ICBs had potential responses to S-Ⅰ (Fig. 6A).

Second, we investigated the sensitivity of the above nine drugs
in the pharmacogenomics-based subtypes based on the ssGSEA



Fig. 5. Mutation, Copy number alteration, and DNAmethylation landscapes of pharmacogenomic-based subtypes. (A) Waterfall plot of genes with significantly different
mutations among three subtypes. (B) The mutation frequency of significantly different mutated genes among three subtypes. P values are shown as *P < 0.05; **P < 0.01;
***P < 0.001. (C) Boxplot representing difference analysis of TMB among three subtypes. (D) Waterfall plot of segments with significantly different alterations (gain and loss)
among three subtypes. (E) The copy number alteration frequency of significantly different segments among three subtypes. P values are shown as *P < 0.05; **P < 0.01;
***P < 0.001.The burden) The burden of copy number gain at arm (F) and focal levels (H). (G, I) The burden of copy number loss at arm (G) and focal levels (I). (J) Correlation
analysis between DNA methylation and mRNA expression levels for methylation-driven genes. (K, L) Boxplot representing methylation (K) and mRNA expression (L) levels for
methylation-driven genes. P values are shown as *P < 0.05; **P < 0.01; ***P < 0.001. (M) Heatmap represents the correlation between mRNA expression levels and scores of
inflammatory, proliferative, and metabolic signatures scores. P values are shown as *P < 0.05; **P < 0.01.
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Fig. 6. Pharmacotherapy prediction for pharmacogenomic-based subtypes. (A) Submap analysis of the three subtypes and melanoma patients receiving anti-CTLA-4/PD-1
treatment with different immunotherapy responses. (B) Heatmap representing the ssGSEA median z-score value of up-regulated or down-regulated DRGs for each subtype.
(C) Heatmap representing the connection score of CMap analysis for eight drugs. Drugs with Lower scores suggest better sensitivity for patients. (D) Heatmap showing each
compound (perturbagen) from the CMap that shares mechanisms of action (rows) and sorted by descending number the compound with shared mechanisms of action. (E)
Prediction of subtype-specific therapeutics by integrating CMAP database and pRRophetic package.
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scores of up-regulated or down-regulated DRGs and the CMap
database (Fig. 6B-C). Integrating the ssGSEA and CMap analysis
results, we discovered that afatinib was more sensitive to S-Ⅰ, eto-
poside, and crizotinib was more sensitive to S-Ⅱ, and docetaxel,
paclitaxel, and vinorelbine was more sensitive to S-III. Although
ssGSEA analysis suggested that cisplatin was more sensitive in
S-Ⅱ, its sensitivity could not be verified in the CMap database
due to the lack of cisplatin data.

Finally, we displayed potential agents targeting the molecular
pathways and genes by utilizing the CMap database (Fig. 6D). In
addition, we applied the pRRophetic package to examine the ther-
apeutic sensitivity of the above potential drug or molecular target-
ing and screened subtype-specific drugs (Fig. 6E). Notably,
pRRophetic package analysis suggested that cisplatin had the high-
est sensitivity in S-Ⅱ, confirming the ssGSEA results. The three
studies predicted that the sensitivity of the docetaxel, paclitaxel,
and vinorelbine drugs in S-III were consistent.

Altogether, ICBs, doxorubicin (topoisomerase inhibitor), tipi-
farnib (farnesyltransferase inhibitor), AZ628 (or vemurafenib, RAF
inhibitor), and AZD6244 (or selumetinib, MEK inhibitor) were
potential treatments for S-Ⅰ. Cisplatin, camptothecin (topoiso-
merase inhibitor), roscovitine (CDK inhibitor), and A.443654 (or
pyrvinium-pamoate, AKT inhibitor) were potential treatments for
S-Ⅱ. Docetaxel (tubulin inhibitor), paclitaxel (tubulin inhibitor),
vinorelbine (tubulin inhibitor), and BIBW2992 (TKI inhibitor) were
potential treatments for S-III.
4. Discussion

In this study, we integrated pharmacogenomics data of LUAD
cell lines and found three well-defined molecular subtypes in the
TCGA-LUAD cohort: S-Ⅰ (inflammatory and proliferative), S-Ⅱ (pro-
liferative), and S-III(metabolic). Our pharmacogenomics-based
classification had significantly different survival implication and
was independent prognostic factor. Besides, our
pharmacogenomics-based subtypes were highly associated with
the classical subtypes defined by previous reports. These
pharmacogenomics-based subtypes were validated in seven inde-
pendent GEO cohorts. The prognosis, association with previously
reported subtypes, and subtype-specific molecular behaviors in
all validation cohorts were highly consistent with the TCGA cohort.
These results demonstrated the robustness and reproducibility of
pharmacogenomics-based subtypes.

The three pharmacogenomics-based subtypes had different
immune landscapes. S-Ⅰ was an immuno-hot tumor with high
immune infiltration but in the state of immune evasion. Although
tumor tissue of S-Ⅰ was heavily infiltrated with cytotoxic T cells
(CD8+ T cells) and antigen-presenting cells (dendritic cells), the
overall antitumor effect of the body’s immune system was poor
due to the low number of neoantigens, weak antigen-recognition
ability (abundant T helper cells), and T cell exhaustion [23]. Unfor-
tunately, the stimulation of inflammatory cells can promote the
growth, invasion, and metastasis of cancer tissue [24]. This also
explained the reason for S-Ⅰ with the worst prognosis from the
TME perspective. S-Ⅱ was an immune-cold tumor with low
immune infiltration and high tumor purity. Although tumor
neoantigens were the most numerous, the body’s immune system
cannot kill cancer cells due to the lack of various immune cells in
the TME. Of course, without stimulating inflammatory cells, S-Ⅱ
survived better than S-Ⅰ. S-III was moderate immune infiltration.
The body’s immune system can play an anti-tumor effect on cancer
cells, and S-III had the best prognosis. In short, subtype-specific
TME patterns were vital factors affecting patient survival because
of the essential influence of TME in tumor progression [25].
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TMB was previously reported to be an ICBs biomarker [26].
Nevertheless, our outcomes suggested that S-Ⅱ with high TMB
did not respond to ICBs, indicating the limitations of prior TMB-
based predictive biomarkers. We must examine all elements that
contribute to the immunotherapy process in an integrative and
global manner, rather than just one element. Besides, even
tumors with low TMB have been shown to provide high-quality
neoantigens that elicit antitumor T cell responses [27]. Conse-
quently, only S-Ⅰ responded well to ICBs due to enhanced tumor
antigen recognition.

Herein, we found the molecular mechanisms of cancer cells
were crucial factors driving S-Ⅱ and S-v. S-Ⅱ was genetics-
driven, and S-III is methylation-driven. The mutation analysis
identified TP53 as the primary mutant gene causing proliferation
signature. TP53, as a tumor suppressor gene, is frequently
mutated in various cancers, including LUAD. Wild-type TP53 sup-
pressed cell cycle via enhancing multiple cell cycle checkpoints
(including G2M checkpoint) arrest [28]. Thus, the mutant TP53
lost its normal function, leading to uncontrolled proliferation fea-
tures of cancer cells. Copy number alteration analyses revealed
that chromosomes 14q13.3 and 11q13.3 were amplified signifi-
cantly in S-Ⅱ. Amplification or overexpression of TITF1 (thyroid
transcription factor 1) on chromosome 14q13.3 can enhance lung
cancer cell proliferation via inducing the expression of the ROR1
(receptor tyrosine kinase-like orphan receptor 1) [29,30]. Overex-
pression of CCND1 (Cyclin D1) promoted NSCLC proliferation and
progression through regulating the cell cycle [31]. Finally, we
examined subtype-specific DNA methylation-driven genes. We
found that except for WDR17, expression profiles of other
methylation-driven genes were strongly correlated with meta-
bolic signature. Upregulated ADHFE1 (alcohol dehydrogenase iron
containing 1) promoted metabolic reprogramming of breast can-
cer [32]. SFTA3 (surfactant-associated protein 3), belonging to
the family of lung surfactant proteins, is involved in surfactant
metabolism [33].

This study aims to screen subtype-specific therapeutic agents
and achieve precision medicine for cancer patients. The positive
response rate of anti-PD-1 therapy for NSCLC patients was only
20% [34]. The response rate range to targeted treatment is 50 to
80% for patients with EGFR, ALK, ROS1, and BRAF mutations [35].
Although chemotherapy has been the traditional treatment for
the management of NSCLC, individual patients respond differently
to chemotherapy and have different survival rates. Therefore, it is
urgent to develop a novel classification strategy that accurately
identify the patients responding to drugs. In contrast to most pre-
vious reports studying precision medicine approaches from the
cancer hallmark perspective [36], we integrated pharmacoge-
nomics data of LUAD cell lines and proposed the
pharmacogenomics-based system. We integrated CMap and pRRo-
phetic analysis to identify subtype-specific sensitive drugs: ICBs,
doxorubicin, tipifarnib, AZ628, and AZD6244 were for S-Ⅰ; Cis-
platin, camptothecin, roscovitine, and A.443654 were for S-Ⅱ; Doc-
etaxel, paclitaxel, vinorelbine, and BIBW2992 were for S-III.

This study has some limitations. DRGs were obtained from
pharmacogenomics data of lung cancer cell lines. The influence
of the tumor microenvironment on drug response cannot be con-
sidered. Nevertheless, there are distinct TME patterns among our
pharmacogenomics-based subtypes. This study needs further con-
duct randomised controlled studies in homogenous cohorts based
on three subtypes. Besides, in this study, intra-tumor molecular
heterogeneity was not considered, which needs to be further
explored from a single-cell level. In addition, the three subtypes
may not exist independently. The relationship among the three
subtypes needs further study, which contributes to revealing the
mechanism of drug resistance.
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5. Conclusion

We found three reproducible and pharmacogenomics-based
subtypes with different prognoses. The three subtypes had distinct
molecular characteristics: S-Ⅰ was inflammatory, proliferative, and
immune-evasion, S-Ⅱ was proliferative and genetics-driven, and S-
III was metabolic and methylation-driven. Finally, our study pro-
vided subtype-guided personalized treatment strategies by apply-
ing integrative pharmacogenomics.
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