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ABSTRACT
Arable soils are frequently subjected to contamination with copper as the
consequence of imbalanced fertilization with manure and organic fertilizers and/or
extensive use of copper-containing fungicides. In the present study, the expo-
sure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu2+ levels
resulted in leaf chlorosis and lesser biomass yield at ≥2 µM. Root nitrate content was
not statistically affected by Cu2+ levels, although it was substantially decreased at
≥5 µM Cu2+ in the shoot. The decrease in nitrate contents can be related to lower
nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate
content increased strongly at ≥2 µM Cu2+ indicating an increase in demand for
sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of
water-soluble non-protein thiol increased markedly in the roots and to a smaller
level in the shoot. When exposed to elevated concentrations of Cu2+ the improved
sulfate and water-soluble non-protein thiols need further studies for the evalua-
tion of their direct relation with the synthesis of metal-chelating compounds (i.e.,
phytochelatins).
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INTRODUCTION
Transition metals such as copper (Cu), zinc (Zn) and molybdenum (Mo) are essential for

the growth and development of plants, but they rapidly get toxic at higher levels (Kopsell &

Kopsell, 2007). Cu contamination in agricultural soils as a consequence of mining metals,

dispersal of sewage sludge, arbitrary and improper application of agrochemicals, addition

of organic fertilizers and frequent use of irrigation with low quality water is a well-known

problem (Dach & Starmans, 2005; Yruela, 2009). Cu is a redox active metal that can exist in

both Cu2+ and Cu+ forms in living organisms. At the protein level, Cu serves as a co-factor

for various enzymes such as Cu/Zn-superoxide dismutase (Cu/ZnSOD), cytochrome c

oxidase, ascorbate oxidase, amino oxidase, laccase, plastocyanin (PC), and polyphenol
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oxidase (Yruela, 2005; Yruela, 2009; Pilon et al., 2006). However, redox cycling between

Cu2+ and Cu+ could induce oxidative stress by producing highly toxic hydroxyl radicals

(Yruela, 2005; Yruela, 2009).

Plants exposed to elevated levels of Cu show unspecific toxicity symptoms. Elevated

Cu levels in soils primarily result in stunted root growth and leaf chlorosis (Kopsell &

Kopsell, 2007; Shahbaz et al., 2010a). Copper toxicity-induced reduction in chlorophyll

contents hinder the development of chloroplast, thalakoid membrane and photosystem

II (PSII), which are considered as the most sensitive Cu toxicity sites (Pätsikkä, Aroan &

Tyystjärvi, 1998; Pätsikkä et al., 2002; Burkhead et al., 2009; Yruela, 2005; Yruela, 2009;

Shahbaz et al., 2010b). At cellular level, toxicity may lead to binding of sulfhydryl groups

in proteins, insufficiency or excess of other essential ions, oxidative damage and reduced

cell transport (De Vos et al., 1993; Yruela, 2009). Furthermore, Cu-toxicity can change

the mineral composition of plants. For instance, Fe contents may decrease in the shoot

(Pätsikkä, Aroan & Tyystjärvi, 1998; Pätsikkä et al., 2002; Kopsell & Kopsell, 2007; Shahbaz et

al., 2010b), Ca and Mg may decrease in the root and Zn contents may increase in both root

and shoot upon Cu exposure at elevated levels (Shahbaz et al., 2010b).

Root growth is more severely affected by elevated Cu than shoot growth and the major

proportion of Cu uptake retains in the root. Increased Cu contents in the plant tissues

induce the synthesis of metal-binding compounds (viz. phytochelatins), which are most

likely glutathione-derived compounds. (Inouhe, 2005; Ernst et al., 2008). Inductions of

phytochelatins presume that more sulfur is needed for synthesis of these compounds,

which results into higher absorption, and incorporation of sulfate. Nonetheless, the role

of phytochelatins in detoxification of Cu is not very clear yet (Ernst et al., 2008; Yruela,

2005; Yruela, 2009; Shahbaz et al., 2010a).

Brassica and other vegetable crops are often grown in the surrounding areas of big cities

and industrial areas in developing countries like Pakistan, where they may be subjected

to air and heavy metals pollution (Yang, Stulen & De Kok, 2006). The direct application

of sewage water to vegetables is not only the source of many nutrients, but it is often

contaminated with high levels of Cu and other heavy metals. As a result of continues

untreated sewage application, heavy metals not only accumulate in the soil but also in

vegetables (Younas et al., 1998; Butt et al., 2005). High Cu content in crop plants might

not only negatively affect plant growth and functioning, but will also enter the food chain

(Brun et al., 2001).

The present study used the hydroponics system which allows very close control over

water soluble Cu and other mineral concentrations as compared to soil-grown system.

Cabbage is a very important vegetable in all over the world. In Pakistan, cabbage is

cultivated on almost 4.9 thousand hectares with 76.7 thousand tonnes annual production

(FAO, 2013).The present study was aimed to investigate the response of growth, pigment

contents and sulfur metabolism of stone-head cabbage grown in hydroponics to copper

exposure.
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MATERIAL AND METHODS
Stone-head cabbage (Brassica oleracea var. capitata F1) seeds were germinated to sand

in a green house. The seedlings collected at ten days after germination were transferred

on an aerated 25% modified Hoagland nutrient solution in a 11 liter container

(15.8′′L × 10.3′′W × 7′′H; 3 plants set−1 and 12 sets container−1) in a greenhouse for

10 days. The nutrient solution consists of 1.25 mM Ca(NO3)2.4H2O, 1.25 mM KNO3,

0.25 mM KH2PO4, 0/0.5 mM MgSO4.7H2O, 11.6 µM H3BO3, 2.4 µM MnCl2.4H2O,

0.24 µM ZnSO4.7H2O, 0.08 µM CuSO4.5H2O, 0.13 µM Na2MoO4.2H2O and 22.5 µM

Fe3+-EDTA with supplemental concentrations of 0, 2, 5 and 10 µM CuCl2 and pH 5.9–6.0.

The nutrient solution was continuously aerated with Aqua-Supreme—Air Pump—Model

AP-4.The photoperiod was 14 h. 30 and 25 ◦C (±5 ◦C) temperatures were set for day and

night respectively, whereas the relative humidity was maintained at 60–70%.

Pigment contents
Whole shoot was homogenized (in 100% acetone 10 mL per g FW) followed by

centrifugation at 800 g for 20 min. Lichtenthaler (1987) was followed for the determination

of chlorophyll a, b and total carotenoid contents.

Nitrate and sulfate contents
Frozen root and shoot material was homogenized in de-mineralized water (10 mL per

g fresh weight) and one layer of Miracloth filter was used to filter the homogenate. The

supernatant was incubated in a water bath at 100 ◦C for 10 min. The remainder was

centrifuged for 15 min (0 ◦C) at 30,000 g. The anions were separated by HPLC and Maas et

al. (1986) was followed for their refractometric determination using a Knauer differential

refractometer (model 98.00, Bad Homburg, Germany).

Water-soluble non-protein thiols
Extraction medium containing 80 mM sulfosalicylic acid, 1 mM EDTA, and 0.15% (w/v)

ascorbic acid with an Ultra Turrax at 0 ◦C (10 mL per g fresh weight) was used for the

homogenization of fresh plant matter. The resultant homogenous material was passed

through one layer of Miracloth which was then centrifuged at 30,000 g for 15 min (0 ◦C).

De Kok, Buwalda & Bosma (1988) was followed for the determination of total water-soluble

non-protein thiol content colorimetrically at 413 nm after reaction with 5, 5′-dithiobis

[2-nitrobenzoic acid].

RESULTS
Plant biomass in response to Cu exposure
Exposure of stone-head cabbage to higher concentrations of Cu2+ (≥2 µM) in nutrient

solution caused chlorosis of both the shoot and young emerging leaves, that ultimately

reduced both root and shoot biomass production (Fig. 1). A 10 day exposure to increasing

Cu2+ concentrations in nutrient media led to a significant reduction of both root and

shoot biomass production at ≥2 µM Cu2+. Shoot to root ratio improved at ≥5 µM Cu2+,

demonstrating that when exposed to copper, root growth was more affected than shoot
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Figure 1 Impact of elevated levels of Cu2+ on biomass production of stone-head cabbage (Brassica
oleracea var. capitata). 10-day-old seedlings of stone-head cabbage (Brassica oleracea var. capitata) were
grown on a 25% Hoagland solution containing 0, 2, 5 and 10 µM CuCl2 in the root environment. Data on
biomass production (g FW) and shoot/root ratio represent the mean of 2 independent experiments with
9 measurements having 3 plants in each treatment (±SD). Means with different letters differ significantly
at p ≤ 0.01 (Student’s t-test).

growth (Fig. 1). Root dry matter content increased at 10 µM Cu2+, whereas shoot dry

matter content increased at ≥5 µM Cu2+ (Fig. 2).

Pigment content in response to Cu exposure
The total chlorophyll (Chl. a + b) and carotenoid contents of stone-head cabbage were

significantly decreased upon exposure at ≥2 µM Cu2+ (Fig. 3). There were significant

decreases in chlorophyll a/b and chlorophyll/carotenoid ratios when exposed to increased

Cu2+ concentrations (10 µM Cu2+). Ten µM Cu2+ exposure resulted in the start of

rapid development of shoot chlorosis and significantly faster reduction in chlorophyll a

contents of chlorophyll b and carotenoids, ultimately leading to a significant reduction in

chlorophyll a/b and chlorophyll/carotenoid ratios (Fig. 3).

Sulfate and water-soluble non-protein thiol contents in response
to Cu exposure
Elevated Cu2+ levels showed a significant effect on concentration of the nitrate, sulfate

and water-soluble non-protein thiol in stone-head cabbage. The nitrate contents of the

roots showed a non significant response to the Cu exposure at different levels, however in

shoots it were significantly decreased at ≥5 µM Cu2+ (Fig. 4). Sulfate contents in the roots

were not affected; however, Cu2+ treatments of ≥2 µM substantially increased the sulfate

contents of the shoot (Fig. 4). There was slight decrease in nitrate to sulfate ratio in the root

and a strong decrease in the shoot when exposed to elevated levels of Cu (Fig. 4). Further-
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Figure 2 Impact of elevated levels of Cu2+ on dry matter content of stone-head cabbage (Brassica
oleracea var. capitata). 10-day-old seedlings of stone-head cabbage (Brassica oleracea var. capitata) were
grown on a 25% Hoagland solution containing 0, 2, 5 and 10 µM CuCl2 in the root environment. Data on
dry matter content (%) represent the mean of 2 independent experiments with 9 measurements having
3 plants in each treatment (±SD). Means with different letters differ significantly at p ≤ 0.01 (Student’s
t-test).
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Figure 3 Impact of elevated levels of Cu2+ on pigment content (chl. a+b & carotenoids) of stone-head
cabbage (Brassica oleracea var. capitata). 10-day-old seedlings of stone-head cabbage (Brassica oleracea
var. capitata) were grown on a 25% Hoagland solution containing 0, 2, 5 and 10 µM CuCl2 in the root
environment. Data on chlorophyll content (chl. a+b; mg g−1 FW) and carotenoid content (mg g−1 FW)
represent the mean of 2 independent experiments with 9 measurements having 3 plants in each treatment
(±SD). Means with different letters differ significantly at p ≤ 0.01 (Student’s t-test).
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Figure 4 Impact of elevated levels of Cu2+ on pigment content (chl.a/chl.b & chl./car. ratio) of stone-
head cabbage (Brassica oleracea var. capitata). 10-day-old seedlings of stone-head cabbage (Brassica
oleracea var. capitata) were grown on a 25% Hoagland solution containing 0, 2, 5 and 10 µM CuCl2 in
the root environment. Data on chlorophyll content (chl.a/chl.b and chl./carotenoid ratio) represent the
mean of 2 independent experiments with 9 measurements having 3 plants in each treatment (±SD).
Means with different letters differ significantly at p ≤ 0.01 (Student’s t-test).

more, the exposure to ≥2 µM Cu2+ resulted in a solid raise in water-soluble non-protein

thiol contents in the roots and to a smaller degree in the shoots at 10 µM Cu2+ (Fig. 5).

DISCUSSION
Cu exposure at elevated levels (<2 µM Cu2+) to stone-head cabbage significantly

decreased the production of root and shoot biomass and raised the ratio of the shoot to

the root. Copper contamination in the root environment generally results in retarded

production of root and shoot biomass and a reduced photosynthetic activity. Moreover,

it causes chlorosis, necrosis and bleaching of pigments (Yruela, 2005; Yruela, 2009; Sheldon

& Menzies, 2005; Shahbaz et al., 2010a; Shahbaz et al., 2010b). In cabbage, the reduced

production of biomass when exposed to elevated Cu levels coincided with decreased

pigment contents (chl. a, b, carotenoids; Fig. 3) which may have resulted in reduced

activity of photosynthesis and the dark respiration rate (Shahbaz et al., 2010a). It has

been shown that Cu-toxicity damages chloroplasts either by inducing iron deficiency or

by replacing Mg in the chlorophyll by Cu (Pätsikkä et al., 2002; Küpper et al., 2003). Cu

exposure at elevated levels not only decreased the pigment content but there was also a

change in pigment composition. Chlorophyll a content decreased significantly faster than

that of chlorophyll b and carotenoids, which resulted in a decreased chlorophyll a/b and

chlorophyll/carotenoid ratio. Similar results were reported by Chu et al. (2006) in Trifolium

repens L.

It is shown that the production of root biomass was more influenced than that of the

shoot biomass production. The relatively higher reduction in the root biomass upon
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Figure 5 Impact of elevated levels of Cu2+ on nitrate and sulfate content of stone-head cabbage
(Brassica oleracea var. capitata). 10-day-old seedlings of stone-head cabbage (Brassica oleracea var.
capitata) were grown on a 25% Hoagland solution containing 0, 2, 5 and 10 µM CuCl2 in the root
environment. Data on nitrate and sulfate content (µmol g−1 FW) represent the mean of 2 independent
experiments with 9 measurements having 3 plants in each treatment (±SD). Means with different letters
differ significantly at p ≤ 0.01 (Student’s t-test).

exposure to metal contamination could be due the fact that roots come in direct contact

with toxic metals (Cd, Cu). Toxic metal-induced hindered root growth also reduces the

uptake of essential nutrients (Sheldon & Menzies, 2005).

Plants have evolved a tightly-controlled mechanism for the absorption, allocation and

assimilation of sulfate under normal conditions. (Hawkesford & De Kok, 2006). Enhanced

exposure of cabbage to Cu concentrations considerably affects the contents and allocation

of sulfur compounds in the root and shoot of cabbage (Shahbaz et al., 2010a). The raised

shoot sulfate contents might be attributed to Cu-toxicity induced upregulation of the

sulfate suppliers in roots (Shahbaz et al., 2010a). To maintain rapid growth rates under

stress conditions, Brassica species increase their demand for sulfur supply (Koralewska

et al., 2008; Koralewska et al., 2009). Exposure of stone-head cabbage to elevated levels

of Cu did not affect the nitrate contents in roots, however at ≥5 µM Cu2+ there was a

significant decrease in the shoot nitrate contents. The reduced production of plant biomass

at ≥5 µM Cu2+ could be attributed to reduced supply of nitrate in the shoot. The decrease

in nitrate: sulfate ratio in the shoot of stone-head cabbage under elevated Cu levels may be

attributed to enhanced sulfate contents, however the link between uptake rates of nitrate

and sulfate is not evident yet (Stulen & De Kok, 2012). Since both nitrate and sulfate are

involved in amino acid and protein synthesis, their uptake rates are related with growth

rates (Stulen & De Kok, 2012).

Roots accumulated a slightly raised level of water-soluble non-protein thiols when

compared with that of the shoot. Only a small proportion of the rise in thiol content

might be attributed to a Cu-induced synthesis of phytochelatins in Chinese cabbage
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(Shahbaz et al., 2010a). Previous reports suggest that the formation of sulfur-rich

metal-chelating compounds (i.e., water-soluble non-protein thiols) when disclosed to

prospective toxic metals may perhaps require an enhanced demand for sulfur, viz. the

absorption rate and incorporation of sulfate (Sirko & Gotor, 2007; Ernst et al., 2008). The

possible significance of sulfur nutrition upon elevated copper exposure needs further

investigation.

CONCLUSIONS
This investigation has shown that the elevated copper levels in the root surroundings

proved toxic for stone-head cabbage. Copper exposure at ≥2 µM Cu2+ negatively affected

the plant biomass production and pigment contents. Furthermore, elevated Cu content

considerably affected the concentration of sulfate and water-soluble non-protein thiol of

stone-head cabbage which might be due to the induction of phytochelatins to detoxify

excess copper.
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