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Abstract: Arbutin is a plant-derived glycosylated hydroquinone with antioxidant features, exploited
to combat cell damage induced by oxidative stress. The latter hinders the osseointegration of bone
prostheses, leading to implant failure. Little is known about arbutin antioxidant effects on human
osteoblasts, therefore, this study explores the in vitro protective role of arbutin on osteoblast-like cells
(Saos-2) and periosteum-derived progenitor cells (PDPCs). Interestingly, cells exposed to oxidative
stress were protected by arbutin, which preserved cell viability and differentiation. Starting from
these encouraging results, an antioxidant coating loaded with arbutin was electrosynthesized on
titanium. Therefore, for the first time, a polyacrylate-based system was designed to release the effective
concentration of arbutin in situ. The innovative coating was characterized from the physico-chemical
and morphological point of view to achieve an optimized system, which was in vitro tested with
cells. Morpho-functional evaluations highlighted the high viability and good compatibility of the
arbutin-loaded coating, which also promoted the expression of PDPC differentiation markers, even under
oxidative stress. These results agreed with the coatings’ in vitro antioxidant activity, which showed a
powerful scavenging effect against DPPH radicals. Taken together, the obtained results open intriguing
opportunities for the further development of natural bioactive coatings for orthopedic titanium implants.

Keywords: arbutin; oxidative stress; coating; surface characterization; titanium implant; bone cells;
MSCs; viability; differentiation

1. Introduction

Oxidative stress is correlated with aging and with several age-related bone pathological conditions.
It alters bone remodeling, inducing the apoptosis of osteoblasts and osteocytes. This process ultimately
leads to several bone diseases, first and foremost, osteoporosis [1]. In addition, increased oxidative
stress occurs after the implantation of metallic prostheses, which represents the most common treatment
to guarantee suitable load bearing features. Thus, to prompt implant osteointegration, it is useful
to protect bone cells from oxidative stress, which worsens inflammation and could cause implant
rejection [2]. Cells innately counteract the adverse effects of reactive oxygen species (ROS) by several
mechanisms, including the upregulation of free radical scavenger enzymes, via the activation of a
family of ubiquitous transcription factors known as Forkhead box O (FoxO) [3]. To help cells restore
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the oxidative balance, one of the most innovative research strategies focuses on the exploitation of
plant-derived antioxidant molecules, to alleviate the negative effects of free radicals [4]. Arbutin is a
glycosylated hydroquinone typical of the Ericaceae family (i.e., blueberries, bearberries, cranberries,
uva ursi), but it is also found in wheat, strawberries and pear trees. This phytochemical, widely
known for its skin-lightening properties [5], has been also used as an antimicrobial compound [6].
More recently, a few researchers studied arbutin antioxidant features, exploring the potential usage of
this molecule in different medical applications. Dadgar and coworkers assessed the arbutin reduction
of oxidative stress in an in vivo model of Parkinson’s disease [7], while Zao et al. described an
arbutin-mediated attenuation of in vitro oxidative injury, induced by H2O2 on retinal ganglion cells [8].
As far as bone diseases are concerned, arbutin inhibited in vitro osteoclasts’ differentiation, suppressing
RANK-L-mediated superoxide production, which is one of the main sources of ROS in osteoporotic
tissues [9,10]. Furthermore, a positive effect of arbutin was demonstrated on mouse osteoblasts’ in vitro
proliferation and differentiation [11]. However, to the best of our knowledge, arbutin antioxidant effects
on human osteoblasts and their precursors are still unexplored. Therefore, this work aims at unveiling
arbutin scavenger activity on human osteoblast-like cells exposed to oxidative stress. Firstly, the most
effective arbutin concentration eliciting antioxidant activity was established with an in vitro screening
on Saos-2 and periosteal-derived precursor cells (PDPCs). In a second step, the selected arbutin amount
was loaded into a polymeric coating, synthetized on titanium implants. Thus, delivering arbutin in
situ would target bone cells, preventing high oral dosage administration and rapid clearance [12].
To date, no arbutin-loaded coatings on metallic implants are documented in the literature. Nevertheless,
Córdoba and co-workers envisioned the opportunity to graft flavonoid moieties on titanium surfaces
to reduce free radical damage [13]. However, a covalent grafting would hinder the release of bioactive
molecules from the coating, limiting their benefits. On the other hand, Chen et al. investigated the
opportunity to coat titanium implants with catechol, the ortho isomer of hydroquinone, to suppress
ROS toxicity [14]. The authors developed a multilayered system, depositing a film of chitosan–catechol
conjugate on titanium through spin-coating. However, this technique could not allow for finely
tuning the coating thickness and homogeneity. Therefore, in the present work, an electrochemical
polymerization was chosen to obtain a stable, uniform and adherent coating on titanium, able to
release arbutin once implanted. A polyacrylate-based copolymer [15] was selected to provide an
anticorrosion, cytocompatible coating, which was loaded with arbutin during or after its electrochemical
growth on titanium. The developed coating was characterized by X-ray photoelectron spectroscopy
(XPS), scanning electron microscopy (SEM) and high-performance liquid chromatography (HPLC)
analyses, while its in vitro antioxidant activity was assessed by a 2,2-difenil-1-picrylhydrazyl (DPPH)
assay, a free radical scavenging method assay. The prepared coating, beyond being cytocompatible,
reduced the oxidative stress in vitro, helping to prevent post-implant complications and accelerating
implant osseointegration.

2. Materials and Methods

2.1. Materials

All chemicals were supplied by Sigma-Aldrich® (Italy) unless otherwise specified. They were
used without further purification. The poly (ethylene-glycol diacrylate), PEGDA (Mn 575 Da), was used
as macromer, while acrylic acid (AA) was the monomer, to obtain PEGDA-AA copolymer coatings.
Ammonium peroxydisulfate ((NH4)2S2O8) was selected as an electrochemical initiator. The purity of
arbutin (hydroquinone β-d-glucopyranoside) was greater than 99%.

2.2. Coating Preparation

Titanium sheets (2 cm2) were used as electrodes, after mechanical polishing by fine diamond paper,
Al2O3 powder (50 µm) and ultrasonical etching in ethanol and, successively, triple-distilled water.
The PEGDA macromer 0.1 M was co-polymerized with AA monomer 0.05 M, in the presence of the
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electrochemical initiator (NH4)2S2O8. Cyclic voltammetry was set up to obtain a PEGDA-AA coating,
as reported in detail in [16]. Briefly, for all the electrochemical deposition steps, a three-electrode
cell was assembled and connected to a PAR VersaSTAT4 potentiostat–galvanostat (Princeton Applied
Research, UK). A platinum wire was used as an anode, while the cathode was the titanium electrode.
An Ag/AgCl (KCl sat.) in water (0.199V vs. SHE at 25 ◦C) was the reference system. Moreover, in order
to improve the compactness of the PEGDA-AA coatings, after arbutin loading (see Section 2.3 for
details), they were subjected to an annealing treatment, as already reported [17]. Briefly, the annealing
was carried out in air at 200 ◦C for 10 min. In order to ascertain the thermal stability of the biomolecule
during the heat treatment, a thermogravimetric analysis of arbutin was carried out by heating 5–10 mg
of sample in an air-saturated atmosphere, using a PerkinElmer TGA-400 instrument (PerkinElmer Inc.,
Waltham, MA). The heat range was set between 30 and 600 ◦C at a flow rate of 20 ◦C/min. The gas flow
was set at 20mL/min. Thermograms (TG) with respective derivative curves (DTG) were recorded and
data were analyzed using the software TGA Pyris series. Additional information is reported in the
Supplementary Materials.

2.3. Arbutin Loading Procedures

Arbutin was embedded within coatings using two different procedures: during electrosynthesis
(DE) and after electrosynthesis (AE), exploiting the same approach described in [16]. In the first case,
the drug was trapped in the copolymer coating during its electrosynthesis from an electrolyte solution
containing the natural compound (ranging from 0.1 M to 0.01 M), together with the monomer/macromer
and the electrochemical initiator. In the AE loading procedure, the coatings were first electropolymerized
on titanium sheets and successively dipped, for 1 h, in an aqueous solution with arbutin in the range
0.1–0.01 M. Finally, the sheets were removed from the solution and dried with a nitrogen flux.
The fine-tuning of both the arbutin concentration and loading time allowed the achievement of the
optimum balance between cytocompatibility and antioxidant features.

2.4. X-ray Photoelectron Spectroscopy (XPS)

A scanning microprobe PHI 5000 VersaProbe II, equipped with a monochromatized AlKα X-ray
radiation source (Physical Electronics, Chanhassen, MN), was exploited to perform XPS analysis.
The samples were analyzed in HP mode (scanned size ~1400 × 200 µm), with an X-ray take-off angle
of 45◦. For each sample, survey scans and high-resolution spectra were recorded in FAT mode (pass
energy 117.4 eV and 29.35 eV, respectively). The instrument base pressure was 10−9 mbar.

The MultiPak software package (version 9.9.0), a non-linear least square fitting program, was
exploited to fit the detailed spectra through Gaussian–Lorentzian peaks with the same full width at half
maximum (FWHM). The lower binding energy of C1s photo peak (e.g., C1s hydrocarbon peak) was set
at 284.8 eV as a charge reference. Normalized peak areas were used to quantify atomic percentages
(At%). Empirically derived sensitivity factors, in accordance with the MultiPak library, enabled the
corrections to compare data from different elements and to normalize the peak areas.

2.5. Scanning Electron Microscopy (SEM) Morphological Analysis of the Coatings

SEM analysis was performed on unannealed and annealed PEGDA-AA coatings loaded with
arbutin after electrosynthesis, using a Philips XL 20 scanning electron microscope (FEI Italia S.r.l., Milan,
Italy). The specimens were mounted on aluminum stubs and were gold-sputtered before the analysis.

2.6. High-Performance Liquid Chromatography (HPLC)

Arbutin loading and release from the coatings were monitored by HPLC (Prominence Series
20 with SPD-M20A PDA detector, Shimadzu) following the method reported by Muchtaridi et al.,
with some modifications [18]. A Shim-Pack GIST C18-AQ column (150 mm × 4.6 mm, 5 µm Shimadzu)
was eluted in isocratic mode at 30 ◦C, with 15% methanol in water, monitoring the effluent at 282 nm.
The mobile phase’s flow rate was kept at 1 mL/min and the sample was injected through a 20 µL
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injection loop. Using LabSolutions software, a calibration curve was also built to quantify the loading
and release of arbutin from the prepared coatings. The release experiment was performed after
incubating titanium-coated samples in 0.9% NaCl solution for 10 min, 30 min, 1 h, 2 h, 4 h, 8 h and 24 h.

2.7. DPPH Assay

According to the procedure already described by Kudachikar et al., arbutin’s in vitro antioxidant
activity was assessed by DPPH assay [19]. A stock solution of DPPH 60 µM was prepared in methanol
and its absorbance was measured at 515 nm using a Cary 60 UV–Vis Spectrophotometer (Agilent
Technologies, Santa Clara, CA, USA). A calibration curve with arbutin standard solutions ranging
from 0.4 mM to 8 µM (R2 = 0.999) was built and exploited for quantifications. Arbutin-containing
coatings (PEGDA-AA/Arb AE 1h with and without annealing, PEGDA-AA/Arb DE) were incubated
with DPPH at room temperature, in dark conditions and absorbance changes were measured after
30 min. Incubation time was selected after an optimization procedure achieved through the continuous
monitoring of absorbance decay at 515 nm. The radical scavenging activity percentage (%RSA) was
calculated with the following equation:

%RSA = (ADPPH − AS)/ADPPH 100 (1)

in which AS represents the sample’s absorbance, while ADPPH is the absorbance of bare DPPH [20].
Each measurement was performed in triplicate.

2.8. Cell Culture, Cytocompatibility and Antioxidant Activity Assessment

2.8.1. Cell Cultures

Saos-2 cell line (ATCC-HTB-85) was cultured in high/low glucose (1:1) Dulbecco’s modified
Eagle’s medium (DMEM) (H-DMEM; Sigma-Aldrich, St. Louis, MO, USA; L-DMEM; Euroclone,
Milan, Italy) supplemented with 10% fetal bovine serum (FBS; Corning Inc., Corning, NY, USA )
and 100 U/mL penicillin–streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in a
humidified atmosphere, with 5% CO2. The periosteal derived precursor cells (PDPCs) were harvested
from the periosteal tissue of healthy subjects undergoing surgery for orthopedic trauma, as previously
described [21]. According to the Local Ethical Committee guidelines and the 1964 Helsinki declaration,
informed consent was obtained. Patients were aware of the voluntariness of their participation in the
study and that the tissue used for the research was a discard of surgical procedures. Briefly, periosteal
explants were washed thrice with phosphate-buffered saline (D-PBS) lacking in Ca2+ and Mg2+,
aseptically cut into small pieces (4–9 mm2) and then positioned in a 100 mm culture dish in DMEM/F-12
supplemented with 10% FBS and 1% penicillin–streptomycin (100 U/mL) in a humidified incubator at
37 ◦C with 5% CO2. The medium was changed every 2–3 days and cells were characterized for their
mesenchymal stem/stromal cell (MSC) origin, according to the minimal criteria of the International
Society for Cellular Therapy (ISCT) [22].

2.8.2. Arbutin Treatment

Saos-2 and PDPCs from the 3rd passage of subculture were seeded into 96/well plates at a
concentration of 1 × 104 cells/cm2. After 24 h, each appropriate medium was changed with the one
containing 0.1, 0.2 or 0.4 mM of arbutin and cultured at 37 ◦C with 5% CO2 for up to 72 h. Increasing
concentrations of H2O2 (from 25 µM to 300 µM) were tested on both cell populations to induce oxidative
stress. In order to assess the potential of arbutin in preventing oxidative stress, H2O2 was added
after 24 h to the cell cultures containing arbutin and cell viability was assessed 24 h (T1) and 48 h
(T2) after stress induction. Control cultures (Ctrl) were represented by Saos-2 and PDPCs cultured in
their appropriate media without arbutin. To evaluate the arbutin effect on PDPC gene and protein
expressions, arbutin was maintained up to 14 days in the presence of normal or differentiating medium.
Normal medium, defined as complete medium (CM), was represented by DMEM/F-12 supplemented
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with 10% FBS and 1% penicillin–streptomycin (100 U/mL). Differentiating medium (DM) consisted
of 0.1 mM dexamethasone, 10 mM β-glycerophosphate and 0.05 mM ascorbic acid in DMEM/F-12
supplemented with 10% FBS and 1% penicillin–streptomycin (100 U/mL), as previously described [23].

2.8.3. Material Seeding

The coated Ti specimens were UV-sterilized (254 nm) for 48 h (24 h per side). PDPCs were
detached using 0.25% trypsin in 1 mM EDTA and plated in triplicate onto: (i) PEGDA-AA Ann.
(internal controls) or (ii) PEGDA-AA/Arb AE Ann. at a density of 1 × 104 cells/cm2.

2.8.4. MTT (3-Dimethylthiazol-2,5-diphenyltetrazolium bromide) Colorimetric Assay

An MTT viability assay was performed after culturing Saos-2 and PDPCs in the presence of
different arbutin concentrations, as well as after cell seeding on the different Ti substrates. Briefly, the
medium was removed, 200 µL of MTT (Aldrich 135038) solution (5 mg/mL in DMEM without phenol
red) and 1.8 mL DMEM were added to all cell monolayers. Then, the multi-well plates were incubated
at 37 ◦C for 4 h. After discarding the supernatants, the dark blue formazan crystals were dissolved by
adding 2 mL of solvent (4% HCl 1N in isopropanol absolute) and quantified by spectrophotometry
(MultiskanGo, Thermo Scientific™), monitoring the absorbance at 570 and 690 nm.

2.8.5. qRT-PCR

Total RNA was retrieved from PDPCs cultured for 7 and 14 days, with or without arbutin,
using the PerfectPure RNA cultured cell kit (5-Prime GmbH, Hamburg, Germany) according to the
manufacturer’s instructions. UV spectrophotometric analysis (bioPhotometer plus, Eppendorf GmbH,
Germany) was used for the evaluation of RNA quality and quantitation. An amount equal to 2.5 µg of
total RNA was reverse transcribed in a 20 µL reaction volume using the SuperScript IV VILO Master
Mix (Thermo Fisher, Monza, Italy). Neo-synthesized cDNA was kept at −20 ◦C. Real-time assays with
SsoFast™ EvaGreen® Supermix (1× in a final volume of 10 µL) were performed in a Mastercycler
Realplex2 thermocycler (Eppendorf GmbH, Germany). All PCR reactions included 1 µL of cDNA
(equivalent to 50 ng of total RNA template). Primer sequences were designed by Primer 3 (v. 4.1.0)
software and each primer was used at a 200 nM final concentration. To circumvent any substantial
homology to pseudo-genes or other unexpected targets, primer specificity was tested by BLAST against
RefSeq Genomes. The mRNA of both reference genes (gusb and gapdh) and each gene of interest
(bmp2, runx-2, coll1a1, alp and sparc) were measured under matching conditions and at the same
time in each assay. Supplementary Materials Table S1 depicts oligonucleotide sequences designed
for the target and reference genes. Primers exhibited equal amplification efficiency. The cycling
conditions included an initial step at 95 ◦C for 30 s, followed by 40 cycles at 95 ◦C for 5 s and 60 ◦C
for 20 s. The specificity of the PCR reactions was also determined by melt curve analysis. Indeed,
for each amplicon, the detected melting temperature was the expected one. Threshold cycle (Ct) values
for reference genes were utilized to normalize cell mRNA data. Each assay was made in triplicate.
Normalization involved the ratio of mRNA concentrations for specific genes of interest (as mentioned
above) to that corresponding to Ct medium values for glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) and beta-glucuronidase (GUSB) [24]. Data were expressed as gene relative expression
(2−∆Ct). The qPCR efficiency in all experiments was more than 90%. The difference between the actual
and theoretical (100%) efficiencies would result in an underestimation of the mRNA concentration of
all the analyzed samples. To point out the effect of arbutin on PDPC differentiation ability, the ∆∆Ct
method for fold change evaluation was used [25], comparing values obtained in cells cultured with
arbutin with those cultured without arbutin and data obtained with or without oxidative stress.

2.8.6. Western Blot Analysis

Total proteins were extracted from PDPCs after 7 and 14 days of culture with or without arbutin
using the RIPA Lysis Buffer System (PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS,
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0.004% sodium azide) supplemented with protease inhibitors (S8820, Sigma-Aldrich, St. Louis, MO,
USA). In cells cultured on Ti, total proteins were extracted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Protein concentration was measured by
Bradford reagent (B6916, Sigma-Aldrich). Total protein extracts (30 µg) were incubated with NuPAGE™
LDS Sample Buffer (4X) (Invitrogen) according to the manufacturer’s instructions, fractionated in
NuPAGE™ 4–12% Bis-Tris Protein Gels (Invitrogen) and electrophoretically transferred to PVDF
membranes (Millipore). Membranes were incubated with 5% milk in Tris-buffered saline with 0.1%
Tween 20 (TBS-T) to block non-specific sites and then with rabbit anti-BMP2, anti-ALP (57, 78 and
200 kDa fragments), anti-type I collagen, mouse anti-RUNX-2 and anti-osteonectin (ON, 35 and
45 kDa fragments) primary antibodies at 4 ◦C. Mouse anti-GAPDH was used as an endogenous
control. After overnight incubation, the membrane was washed with TBS-T and then incubated
with anti-mouse and anti-rabbit secondary antibodies conjugated to horseradish peroxidase for 1 h
at room temperature. The detection of antibody binding was performed with Pierce ECL Western
Blotting Substrate (Thermo Scientific, Waltham, MA, USA) and images were acquired with an Alliance
Mini HD9 (Uvitec, Cambridge, UK). Densitometric analysis was performed with ImageJ software
(https://imagej.nih.gov/ij/download.html).

2.8.7. Fluorescence Microscopy

Cells cultured on the different Ti coatings were fixed with 4% paraformaldehyde in 0.1 M
phosphate-buffered saline (PBS), pH 7.4, at 4 ◦C for 30 min. After washing twice with PBS, cells were
permeabilized with 0.1% Triton X-100 in 0.01 M PBS to remove the nuclear envelope and soluble
nuclear material and were then blocked with normal goat serum in PBS (dilution 1:5). Cells were
incubated for 45 min at room temperature with TRITC-labeled phalloidin (dil 1:100) to visualize F-actin
fiber organization (red fluorescence) and with DAPI (dil 1:1000) to stain cell nuclei (blue fluorescence).
All samples were immersed in mounting medium (VECTASHIELD®), before laying on a coverslip
and visualizing them under a fluorescent microscope (Nikon Eclipse 600, Milan, Italy) equipped with
NIS-Elements microscope imaging software (Nikon). For the analysis of the stress fiber formation, a
five-point scoring system measuring the degree of actin stress fiber was used [16]. The criteria for blind
scoring were: (1) little or no resolved F-actin stress fiber formation and mostly cortical actin; (2) thin, short
F-actin filaments generally occupying at least 25% of the cell volume; (3) moderate stress fiber formation
of F-actin where stress fibers are thicker and occupy at least 50% of the cell volume; (4) extensive stress
fiber formation where stress fibers are thick and well defined; many stress fibers traversing the full
width of the cell; (5) the entire cell is densely packed with thick stress fibers, most traverse the width of
the cell. At least 20 cells were counted for each substrate. Mean data ± SD are reported.

2.9. Statistical Analyses

Physico-chemical characterizations were performed in triplicate, expressing results as mean ±
standard deviation. Biological experiments were carried out using six sample replicates. The statistical
analysis of data was performed with GraphPad Prism software (v.8.4.1). Data were compared by
ANOVA, followed by Tukey’s test. As far as biological experiments were concerned, the measurement
errors were taken from three replicates of two different experiments. Data were analyzed by
Mann–Whitney U tests. For all data, statistical significance was declared at p < 0.05.

3. Results and Discussion

3.1. Arbutin Cytocompatibility and Antioxidant Activity

The tmplant environment could cause oxidative stress and the modulation of antioxidants by surface
modification could improve the osseointegration of Ti-based implants. In this study, biological tests were
first devoted to assessing the effect of different arbutin concentrations on osteoblast behavior, to define the
appropriate amount of arbutin to be loaded in a polymeric coating on titanium endowed with antioxidant

https://imagej.nih.gov/ij/download.html
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properties. Among the different osteoblast cell lines used for the implant biocompatibility assessment,
Saos-2 cells are widely employed based on their cell anchorage dependency and homogeneity [26].
Moreover, to closely simulate implantation conditions, human PDPCs were also tested.

The MTT assay showed that the tested arbutin concentrations did not hamper the viability of
both cell populations during up to 72 h of contact (Figure 1A,B). No significant differences in terms of
concentration effect were detected. Thus, considering in vitro antioxidant activity (i.e., DPPH assay,
Section 3.3), we decided to test the capability of 0.2 mM arbutin, loaded into a polymeric coating,
to restore cell viability after stress induction. To the latter purpose, we added increasing concentrations
of H2O2 (from 0.025 mM to 0.3 mM) in culture media to define the appropriate H2O2 amount to
use on both cytotypes (See Supplementary Materials Figure S1). The H2O2 concentration was set at
0.2 mM, as it was capable of inducing a reduction in cell viability of about 40–60% in both cell types.
The previous addition of 0.2 mM arbutin to the culture media was able to restore cell viability in SaoS-2
(Figure 1C) and PDPCs (Figure 1D) after stress induction at both the timepoints analyzed.

Figure 1. 3-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT) viability test: histograms of
Saos-2 (A) and periosteal derived precursor cells (PDPCs) (B) cultured with different concentrations
of arbutin for up to 72 h. Histograms of Saos-2 (C) and PDPCs (D) cultured with 0.2 mM of arbutin
and exposed to oxidative stress (48 h = 24 h after stress induction, 72 h = 48 h after stress induction).
Data are expressed as the percentage of Saos-2 or PDPCs cultured without arbutin after 24 h (control);
* p < 0.05 vs. ctrl.

As far as PDPCs are concerned, further investigations were performed to ascertain if arbutin could
affect gene and protein expression, evaluating the main genes involved in osteoblastic commitment.
To shed light on this aspect, the experiments were made both in normal and osteogenic conditions.
The mesenchymal stem cell fate toward the osteoblast lineage is normally achieved by inducing the
osteogenic transcription factors RUNX-2 by BMP2. These immature cells still have the potential
to divide and express low levels of alkaline phosphatase (ALP) activity and to synthesize a low
amount of type I collagen. The further differentiation of these cells is dependent on a sequential
increased expression of ALP and several non-collagenous proteins, such as osteonectin, osteopontin
and osteocalcin, which have fundamental effects on the newly laid bone matrix maturation and
mineralization [27].
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The qRT-PCR relative expression analysis suggested the capability of arbutin to modulate the
expression of genes involved in the early (i.e., bmp2, runx-2 and alp) and late (i.e., collagen and sparc)
differentiation towards an osteoblastic phenotype at both time points analyzed. Relative expression
data are summarized in Supplementary Materials Table S2.

To better point out the possible interference of arbutin on PDPC differentiation potential, mRNA
changes were also examined using the ∆∆Ct method [25], comparing values obtained in cells cultured
with arbutin with those of untreated ones (Figure 2). After 7 days, the presence of arbutin induced a
significant upregulation of all genes of early osteoblastic differentiation in comparison with untreated
cells. A significant upregulation of the mRNA expression for alkaline phosphates (alp), as well as
lower values of runx-2 and sparc, were detected in differentiating medium (DM)-treated cells in
comparison to those cultured in complete medium (CM). These data are consistent with the use of a
medium (i.e., DM) made of dexamethasone, ascorbic acid and β-glycerophosphate, whose combination
increased alp levels in in vitro cultures [28]. The addition of an exogenous factor (i.e., arbutin) seems
to focus cell bioenergetics on ALP synthesis, limiting the expression of other markers. No changes
were evident in the expression of collagen type I mRNA (Figure 2A).

After 14 days of culture, the upregulation of genes was higher than after 7 days, except for collagen
type I mRNA expression. Moreover, an upregulation of the mRNA for sparc was detected in cells
cultured in DM (Figure 2B), suggesting an increase in the level of differentiation and the effective cell
adaptation to the proposed culture conditions. Overall, the qRT-PCR results indicated that arbutin is
able to modulate the gene expression induced by an osteogenic medium in PDPCs, supporting their
differentiation towards an osteoblastic phenotype. These results were highlighted when expressed
(∆∆Ct method) in cells cultured in DM were compared with those in CM (Figure 2C,D).

Figure 2. Histograms depicting changes in bmp2, runx-2, alp, collagen type I and sparc mRNA in
PDPCs cultured with or without arbutin in complete (CM) or differentiating (DM) medium for 7 (A,C)
and 14 days (B,D). (A,B) Data are expressed as fold change (2−∆∆Ct) as compared to untreated cells
(i.e., arbutin vs. no arbutin), The axes intersect at 1, which indicates the mRNA expression in untreated
cells. (C,D) Data are expressed as fold change (2−∆∆Ct) as compared to cells cultured in CM (i.e., DM vs.
CM), the axes intersect at 1, which indicates the mRNA expression in cells cultured in CM. # indicates
significant (p < 0.05) differences in comparison to controls and square brackets indicate significant
differences between the analyzed groups.
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Based on these data, we analyzed the expression of the proteins whose genes were upregulated by
arbutin. Western blotting analyses, depicted in Figure 3, highlighted the role of arbutin in all culture
conditions analyzed. In osteogenic conditions (DM) a significant (p < 0.05) reduction in RUNX-2
and ALP (78 kDa fragment) protein content and an increase in ALP 200 kDa expression were seen
after 7 days of culture with arbutin, in comparison with untreated cells (Figure 3A). After 14 days, an
increase in proteins involved in the early osteoblastic differentiation was detected, concomitantly with
a reduction in the amount of ON (Figure 3B).

Figure 3. Histograms depicting densitometric quantitation of western blotting at 7 (A) and 14 (B) days
of culture of the gel presented in (C): results are expressed as intensity normalized to GAPDH. Asterisks
indicate significant differences between CM and DM (p < 0.05); # indicates significant differences
between ctrl and arbutin (p < 0.05).

The human ALP peptide is synthesized as a native protein with a molecular weight of 57 kDa and
it is then modified in the endoplasmic reticulum and in the Golgi apparatus, with the addition of sugar
chains, until it reaches the mature form of about 80 kDa. The functional ALP enzyme is assumed to
exist as a homodimer with a molecular weight of about 165–200 kDa [29–31]. Similarly, osteonectin
is detectable as two different fragments, where the 45 kDa fragment represents the active form [32].
After 14 days of culture, our densitometric analysis showed a substantial reduction in the functional
form of ON, but not of the immature one, and no significative variations in the expression of the ALP
enzyme. Our data are consistent with the idea that arbutin did not hamper the capability of PDPC
differentiation towards the osteoblastic phenotypes. Arbutin may favor the anabolic activity of human
precursor cells and also support their differentiation [9].

3.2. Coating Preparation, Morphological and Physicochemical Characterization

3.2.1. Electrochemical Preparation of PEGDA-AA/Arb Coatings on Titanium

To obtain PEGDA-AA coatings on Ti electrodes, an electro-reductive process was applied using
the cyclic voltammetry technique. In particular, the potential was cycled between 0.0 V and −1.2 V for
20 cycles (scan rate = 100 mV/s). Arbutin was loaded during or after electrosynthesis (PEGDA-AA DE
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and PEGDA-AA AE, respectively), for further details, see Section 2.3. The addition of arbutin during
the PEGDA-AA electropolymerization did not compromise in any way the film growth, as shown by
the cyclic voltammograms with and without arbutin (see Supplementary Materials Figure S3). Some of
the prepared coatings, with or without arbutin loading, were subjected to an annealing treatment to
promote the polymeric network rearrangement under a thermal trigger. All coatings, annealed and
unannealed, were deeply characterized to shed light on the suitability of the thermal treatment.

3.2.2. Scanning Electron Microscopy of the Coatings

PEGDA-AA/Arb AE coatings, as prepared or after annealing, underwent morphological
characterization through SEM. Micrographs in Figure 4 display the impact of the annealing procedure
on the coating topography. First, the PEGDA-AA/Arb AE coatings, as prepared, had irregular
morphology, reflecting the grooves and scratches of the underlying titanium. Conversely, a noteworthy
enhancement of the film homogeneity can be seen after the annealing treatment.

Figure 4. SEM morphological analyses of PEGCA-AA/Arb AE, as prepared (on the left) and after
annealing (on the right).

3.2.3. XPS Analysis of the Coatings

PEGDA-AA-based coatings were characterized using the XPS technique, to ascertain the surface
composition and the arbutin presence on the coatings. The elemental atomic percentages of the
analyzed samples were reported in Table 1.

Table 1. Atomic composition of the samples by means of XPS analysis.

Sample
Atomic Percentages

(%)

C1s O1s

Arb 63.4 36.6
PEGDA-AA 67.6 32.4

PEGDA-AA Ann. 66.1 33.9
PEGDA-AA/Arb DE 72.8 23.6
PEGDA-AA/Arb AE 65.8 34.2

PEGDA-AA/Arb AE Ann. 69.9 30.1

The C/O corrected peak area ratios, relevant to arbutin and PEGDA-AA samples (i.e., 1.7 for
arbutin, 2.1 and 1.9 for unannealed and annealed copolymer coatings, respectively), were equal in both
cases to the theoretical ones (i.e., 1.7 for arbutin and 2.0 for the copolymer).

As far as the C1s high-resolution spectra are concerned, detailed curve fittings of the analyzed
samples are reported in Figure 4, together with the relevant attributions and binding energies. In the
pure arbutin C1s curve fitting (Figure 5A), the first peak was attributed to the C–H, C-C aromatic
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bonds with a characteristic binding energy (BE) of 284.8 eV, in addition to the ubiquitous hydrocarbon
contamination. The second peak was ascribed to the C–O bond in the hydroxyl or ether groups at
286.6 eV. The peak at a BE of 288.0 eV was attributed to the anomeric carbon linked to two oxygen
atoms, i.e., an O-C-O bond, typical of glucosidic molecules.

Figure 5. Curve fitting of C1s signals of (A) pure arbutin and (B) PEGDA-AA, (C) PEGDA-AA
Ann., (D) PEGDA-AA/Arb DE, (E) PEGDA-AA/Arb AE and PEGDA-AA/Arb AE Ann. (F) Coatings
electrosynthesized on Ti sheets. Attributions, binding energies values and percentages are reported in
the table.

To study the composition of the PEGDA-AA copolymer (Figure 5B), the peak area ratio between
C-OH(R):COOH(R) was compared to that observed in the used macromer (i.e., PEGDA575) equal to
7.4:1 [33]. The PEGDA-AA system showed a lower ratio (6.2:1), justified by the presence of the AA that
increased the COOH(R) peak. For PEGDA-AA annealed (Figure 5C), this ratio was further decreased
to 4.8:1, suggesting a surfacing of COOH groups due to the thermal reorganization, mainly involving
the mobility of AA moieties [17].

Moreover, PEGDA-AA/Arb DE, AE and AE Ann. coatings (Figure 5D–F) showed the additional
O-C-O contribution, suggesting the presence of arbutin on the surface of the samples. Considering
that this functionality was present only in the glucosidic compound, and the carboxylic groups belong
only to the copolymer, a comparison of the O-C-O:COOH(R) peak area ratios can supply an estimation
of the arbutin surface allocation in the three coatings. In particular, in PEGDA-AA/Arb DE, a ratio
of 0.6:1 was calculated. When arbutin was loaded after electrosynthesis, a high surface allocation
was recorded, with O-C-O:COOH(R) equal to 3:1. Finally, when the latter sample was subjected to
annealing, this ratio lowered to 0.4:1, thus evidencing a low arbutin surface allocation in the annealed
specimen, due to the chain reorganization after the heat treatment. On the other hand, the HPLC results
(see Section 3.2.4) highlighted a similar arbutin content in the PEGDA-AA/Arb AE and PEGDA-AA/Arb
AE Ann. coatings, allowing us to conclude that most of the phytochemical was present in deeper
layers of the annealed system. Furthermore, to assess the impact of the annealing procedure on arbutin
stability, TGA analyses were performed (Supplementary Materials Section 2.4). The thermogram of
arbutin evidenced a substantial stability of the molecule up to 238 ◦C (Tonset of the first decomposition
step of arbutin), thus suggesting that no thermal decomposition occurred at the annealing temperature
(i.e., 200 ◦C).
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3.2.4. Arbutin Quantification by High-Performance Liquid Chromatography (HPLC)

The preliminary biological assessments revealed that a 0.2 mM concentration of the phytochemical
was useful to ensure a protective effect against H2O2 without altering cell behavior (see Section 3.1).
Therefore, several strategies were set up to load the proper amount of arbutin onto the prepared
coatings. First, arbutin was added during the electrosynthesis of the coating (PEGDA-AA/Arb DE),
to allow a homogeneous incorporation of the phytochemical into the growing polymer. However,
HPLC analyses revealed that only a tenth of the desired arbutin amount was loaded on PEGDA-AA/Arb
DE coatings (Table 2). Hence, this approach was dismissed. As a promising alternative, arbutin
was added after the film electrosynthesis (PEGDA-AA/Arb AE), dipping it into a solution of the
phytochemical compound, as described in Section 2.3. The most promising results were obtained with
a 0.01 M arbutin solution, which allowed the loading of up to 0.41 mM of arbutin into the polymeric
systems. Therefore, setting the incubation time of the coated titanium substrate in the 0.01 M arbutin
solution to 1 h, the desired arbutin loading of about 0.02 mM was achieved (Table 2). Furthermore,
HPLC analyses demonstrated that the annealing treatment did not change arbutin loading on the
polymeric coatings (refer to PEGDA-AA/Arb AE 1 h and PEGDA-AA/Arb AE 1 h Ann. coatings
in Table 2). Nevertheless, the XPS results suggested that the annealing treatment promoted arbutin
distribution in the coating’s depth, likely due to a rearrangement of the system’s polymeric chains (see
Section 3.2.3).

Table 2. Arbutin loading onto the prepared coatings, evaluated by HPLC.

Sample Loaded Arbutin (mM)

PEGDA-AA/Arb DE 0.019 ± 0.002
PEGDA-AA/Arb AE 1 h 0.220 ± 0.004

PEGDA-AA/Arb AE 1 h Ann. 0.206 ± 0.003
PEGDA-AA/Arb AE 3 h 0.41 ± 0.09

This restructuring of the polymeric network could also be responsible for the slightly slower
arbutin release, observed from PEGDA-AA/Arb AE Ann. with respect to PEGDA-AA/Arb AE. In both
cases, however, the phytochemical compound was completely released within 8 h. Additional
details on arbutin’s in vitro release from the coatings in physiological conditions are reported in the
Supplementary Materials Section 2.5.

3.3. Antioxidant Activity Evaluations by DPPH Assay

The DPPH assay displayed the in vitro antioxidant activity of the arbutin-loaded coatings.
After incorporation in PEGDA-AA, the phytochemical compound retained its scavenger features,
eliciting a concentration-dependent antioxidant effect (Figure 6). PEGDA-AA/Arb DE was able to
load only 0.02 mM of arbutin, thus reaching 9.8 ± 0.3%RSA. On the other hand, the highest radical
scavenging activity (33.50 ± 0.04%RSA) was achieved with PEGDA-AA/Arb AE Ann., which trapped
0.2 mM of arbutin. Furthermore, the PEGDA-AA/Arb AE as prepared, without annealing, reached an
antioxidant activity of 32.9 ± 0.1%RSA. Therefore, it could be concluded that the annealing procedure
did not alter the arbutin antioxidant performance. Furthermore, the %RSA of PEGDA-AA/Arb AE Ann.
coating overcame that of other antioxidant systems reported in the literature. Indeed, Catauro et al.
reported a 24.7%RSA against DPPH for silica/poly(ε-caprolactone) implants trapping 15%wt quercetin.
The authors found, at 24.7%RSA, the suitable balance between cytotoxicity and oxidative stress
prevention [34]. Furthermore, Shrikanta et al. explored the antioxidant activity of 0.2 mg/mL of
mulberry fruit extracts with the DPPH assay, measuring an activity of 20.08% of DPPH radicals, which
increased to 77.75% at 1.0 mg/mL [20].
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Figure 6. DPPH assay to assess in vitro antioxidant activity. The calibration curve (r2 0.999) was
obtained with arbutin-containing solutions at decreasing concentrations (from 0.5 mM to 8 µM).
The cuvettes refer to PEGDA-AA/Arb DE and PEGDA-AA/Arb AE Ann.

Considering the scavenging performances of PEGDA-AA/Arb AE Ann. coatings, together with
their improved morphology due to annealing, as well as arbutin loading and release behavior,
the PEGDA-AA/Arb AE Ann. coatings proved to be the best systems prepared. Therefore, they were
selected for the subsequent biological experiments, described below.

3.4. Arbutin-Loaded Coating Cytocompatibility and Anti-Oxidant Activity

To closely simulate implantation, tests on PEGDA-AA/Arb AE Ann. were performed with human
PDPCs. At first, investigations evaluated the cell viability and adhesion using MTT tests at 48 and 72 h
after seeding (24 h and 48 h after oxidative stress induction, respectively) and cytoskeletal detections at
48 h (24 h after oxidative stress induction). Then, the effect of the PEGDA-AA/Arb AE Ann. on PDPC
early differentiation towards an osteoblastic phenotype was assessed by culturing cells for up to 7 days.
All investigations were also performed in the presence of oxidative stress.

The MTT tests evidenced the good viability of PDPCs cultured on the coatings with arbutin,
with the maintenance of values higher than 80% after the administration of 0.2 mM H2O2 in the
culture medium. On the contrary, on PEGDA-AA Ann., the addition of H2O2 significantly reduced the
percentage of viable cells (Figure 7A).

The modification of cell shape gives important clues concerning the role of surface chemistry and
morphology on cell−substrate interactions. For this reason, it is worth considering what the shapes of
osteoblast-like cells look like when they are grown on differently coated substrates. To react to different
surfaces, cells sense shape through different cell structures (stress fiber formation, lamellipodia and
filopodia), which are responsible for initializing and transmitting the effect of the surface throughout
the cell, influencing cell functions. Filopodia, cytoplasmic protrusions that are extended by cells at
their leading edges, are involved in gathering special information, are crucial in cell migration and
serve as topographical sensors to detect the immediate surrounding environment [35].

Cytoskeletal fluorescence detection, depicted in Figure 7, compares how cells adhere to the
titanium coatings with (PEGDA-AA/Arb AE Ann.) or without (PEGDA-AA Ann.) arbutin after
48 h. The images clearly show the presence of actin stress fibers and focal adhesions in the spread
PDPCs on the analyzed coatings. As far as semiquantitative analysis is concerned (Figure 7B), PDPCs
cultured both on PEGDA-AA Ann. and PEGDA-AA/Arb AE Ann. displayed a high spreading,
with spindle-shaped cells containing well-defined cytoskeletal organization and many stress fibers
(scores 3.7 ± 0.7 and 3.9 ± 0.8, respectively). Due to the high dimension of cells, cell–cell contacts were
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also present. Overall, this reflects a strong influence of primary adhesion conditions on the future cell
fate, which seems to be unaffected by the presence of arbutin. The addition of H2O2 for 24 h in cell
cultured on PEGDA-AA Ann. evidenced the presence of cells larger in dimension and an increase in
stress fiber formation (score 4.3 ± 0.3), features suggesting cell suffering. On the contrary, cells cultured
on PEGDA-AA/Arb AE Ann. showed no significant modifications in cell dimension and cytoskeletal
organization (score 3.5 ± 0.7) in comparison with unstressed cells, suggesting a beneficial effect of the
presence of arbutin, even if a slight reduction in cell number was detected.

Figure 7. (A) MTT viability test in PDPCs cultured on PEGDA-AA Ann. and PEGDA-AA/Arb AE Ann.
and exposed to oxidative stress. Data are expressed as a percentage of PDPCs cultured on PEGDA-AA
Ann. 48 h = 24 h after stress induction, 72 h = 48 h after stress induction, * p < 0.05 vs. PEGDA-AA Ann.
(B) Histogram depicts the semiquantitative analysis of the actin cytoskeleton. (C–F) Representative
images of actin cytoskeleton immunofluorescence detection in PDPCs cultured on PEGDA-AA Ann.
without (C) or with (D) oxidative stress, and PEGDA-AA/Arb AE Ann. without (E) or with (F) oxidative
stress. Scale bars = 50 µm.

MTT viability tests on the different titanium coatings after 7 days confirmed that the presence of
arbutin on the coatings was capable of hampering the oxidative stress induced by the presence of H2O2,
enhancing cell viability. This effect was also maintained in osteogenic conditions (Figure 8A). As for the
effect of the PEGDA-AA/Arb AE Ann. on PDPC early differentiation towards an osteoblastic phenotype,
the presence of arbutin seemed to support the expression of some osteoblastic differentiation markers,
as suggested by the upregulation of runx-2, and the downregulation of alp mRNAs concomitant with
the production of the ALP protein fragments (Figure 8). In agreement with the previous experiment,
the qRT-PCR mRNA changes were examined using the ∆∆Ct method [25] to better point out the
possible interference of arbutin (Figure 8B) or H2O2 (Figure 8C) on PDPC differentiation potential.
Relative expression data are summarized in Supplementary Materials Table S3. Interestingly, the ALP
protein expression seemed to be enhanced by the presence of H2O2 (Figure 8D,E). ALP is one of the
early osteoblastic markers that occurs in mature osteoblast progenitors and is upregulated until the
differentiation is well progressed and the proliferation ceases [36,37].
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Figure 8. (A) MTT viability of PDPCs cultured on PEGDA-AA Ann. and PEGDA-AA/Arb AE Ann.
and exposed to oxidative stress for up to 7 days of culture. Data are expressed as a percentage of
PEGDA-AA Ann.; * p < 0.05 vs. all conditions. (B) Histogram depicting changes in bmp2, runx-2, alp
and sparc mRNAs in PDPCs on PEGDA-AA/Arb AE Ann. cultured in complete (CM) or differentiating
(DM) medium for 7 days. Data are expressed as fold change (2−∆∆Ct) over PEGDA-AA Ann. The axes
intersect at 1, which indicates the range of mRNA expression in cells cultured on PEGDA-AA Ann.
(C) Histogram depicting changes in bmp2, runx-2, alp and sparc mRNAs in PDPCs on PEGDA-AA/Arb
AE Ann. cultured in complete (CM) or differentiating (DM) medium both in the presence of H2O2

for 7 days. Data are expressed as fold change (2−∆∆Ct) over PEGDA-AA Ann. in the presence of
H2O2. The axes intersect at 1, which indicates the range of mRNA expression in untreated cells;
# indicates significant differences (p < 0.05) in comparison to controls without arbutin and square
brackets indicate significant differences between cells cultured in CM and DM. (D) Western blot analysis
protein expression. (E) Histograms depicting the densitometric quantitation of RUNX-2 and ALP of
the blots presented in D. Since BMP-2 and ON were not expressed, they were not considered for the
histogram. (F) FoxO and β-catenin variations in PEGDA-AA Ann. and PEGDA-AA/Arb AE Ann. in
cells undergoing stress induction. Data are expressed as fold change (2−∆∆Ct) of H2O2 untreated cells;
the axes intersect at 1, which indicates the range of mRNA expression in untreated cells.

Arbutin is a chain-breaking antioxidant able to eliminate reactive radicals whose protective role
against H2O2-induced injury in vitro was already investigated [8,38]. Following the abovementioned
results, we can hypothesize that arbutin can both combat the H2O2 oxidant effect and stimulate
osteoblastic differentiation, promoting the expression of osteoblastic markers, such as ALP. In line with
the behavior of ALP, the differences observed in the mRNA expression of the other genes involved
in osteoblastogenesis in cells cultured under different stimulating conditions (i.e., CM vs. DM) are
suggestive of a speeding up of differentiation in the presence of arbutin (Figure 8B). Comparing
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these observations with the data obtained with arbutin alone after 7 days, we observed differences
concerning bmp2 mRNA and protein expression, which was downregulated and undetectable in cells
cultured on the PEGDA-AA/Arb AE Ann. coating. As stated above, osteoblastic differentiation is a
sequentially triggered phenomenon that starts from bmp2. It can be speculated that the presence of
polyacrylates may play a role in modulating the differentiation of PDPCs, providing a further stimulus
towards osteoblastic commitment [39].

To get insights into the possible modulation of PDPC behavior under oxidative stress, the mRNA
expression of FoxO and β-catenin was also analyzed.

FoxO promotes cell survival, by cell cycle arrest in the G1 phase, inducing quiescence and
regulating longevity in model organisms. FoxO-mediated transcription requires the binding of
β-catenin, a scaffold protein that is also involved in osteoblastogenesis by the Wnt/β-catenin/TCF
pathway [40]. The presence of ROS could antagonize the differentiation process, allowing the formation
of a FoxO/βcatenin complex, thus reducing the capability of TCF-β-catenin binding, an essential step
for the β-catenin nuclear translocation and the consequent runx-2 transcription [41].

In MSCs, a basal oxidative level is required to enhance osteogenesis and calcification, as low levels
of ROS act as second messengers on several different molecular pathways [42]. ROS and oxidative
stress may, however, decrease the procedure of osteogenic differentiation, and the addition of H2O2

reduces the in vitro osteogenic differentiation of MSCs and OB precursors (i.e., PDPCs) [43].
We observed that, after oxidative stress induction, mRNA for FoxO was downregulated in cells

cultured on PEGDA AA/Arb AE Ann. in comparison to cells on PEGDA-AA Ann. (Figure 8F), whilst
β-catenin was slightly downregulated only in PEGDA-AA Ann. FoxO is generally overexpressed when
cells must respond to the stress to safeguard their survival. Therefore, its downregulation in PDPCs
cultured on PEGDA AA/Arb AE Ann. supported the hypothesis of arbutin’s scavenger activity [38],
which created an optimal environment for the cells, providing only the basal oxidative level required
for differentiation. We can also speculate that arbutin embedded in the coating, in the presence of H2O2,
in differentiating conditions, can hamper the stress, maintaining the β-catenin signaling towards the
osteoblastic differentiation of PDPCs [44], thus also promoting implant osseointegration in an inflamed
microenvironment. Data on the osteogenic commitment of PDPCs on PEGDA AA/Arb AE Ann. under
oxidative stress conditions (Figure 8C) supported this consideration, showing the same trend of cells
in a non-oxidizing environment (Figure 8B). This assumption is also related to the fact that one of
the main targets in the oxidative stress-induced inhibition of MSCs and osteoblast differentiation is
RUNX-2 phosphorylation [45,46]. The presence of arbutin still allowed the production of the latter
molecule and, consequently, PDPC osteoblastic differentiation.

4. Conclusions

In this work, for the first time, the role of arbutin on the viability of Saos-2 and PDPCs was
demonstrated, highlighting its involvement in hampering oxidative stress and restoring cell viability,
while maintaining a correct cell morphology. Furthermore, we proved that arbutin modulates
in vitro gene and protein expression in PDPCs, playing a protective effect during their osteoblastic
differentiation. As far as arbutin-loaded PEGDA-AA Ann. coatings on titanium implants are concerned,
they were deeply characterized in terms of surface composition, loading and the release of the active
molecule. The biological results showed a good interaction of osteoblast precursor cells with the
proposed coatings and suggested high biocompatibility. Besides, the released arbutin supported the
early osteoblastic commitment of PDPCs, also under oxidative stress conditions, opening intriguing
opportunities for the development of antioxidant coatings on titanium implants.
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Abbreviations

AA Acrylic acid
ALP Alkaline phosphatase
BMP2 Bone morphogenetic protein 2
Coll1 Collagen type I
CM Complete medium, i.e., DMEM with 10% FBS

DM
Differentiating medium, i.e., DMEM supplemented with the osteogenic factors:
dexamethasone, ascorbic acid and β-glycerophosphate

DMEM Dulbecco’s modified Eagle’s medium
DPPH assay 2,2-difenil-1-picrylhydrazyl assay
FBS Fetal bovine serum
FoxO Forkhead box O
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
GUSB Beta-glucuronidase
HPLC High-performance liquid chromatography
MSCs Mesenchymal stem cells
MTT 3-dimethylthiazol-2,5-diphenyltetrazolium bromide
OB Osteoblasts
ON Osteonectin–protein
PDPCs Periosteal-derived precursor cells
PEGDA Poly(ethylene-glycol diacrylate)
PEGDA-AA Poly(acrylic acid)–poly(ethylene-glycol diacrylate) coating

PEGDA-AA/Arb AE
Poly(acrylic acid)–poly(ethylene-glycol diacrylate) coating with arbutin embedded
after electrosynthesis

PEGDA-AA/Arb DE
Poly(acrylic acid)–poly(ethylene-glycol diacrylate) coating with arbutin embedded
during electrosynthesis

RANK-L Receptor activator of nuclear factor kappa-B ligand
RSA % Radical scavenging activity percentage
ROS Reactive oxygen species
RUNX-2 Runt-related transcription factor 2
Saos-2 Human osteosarcoma cell line
SEM Scanning electron microscopy
Sparc Secreted protein, acidic, cysteine-rich–osteonectin gene
TCF T-cell factor
TGA Thermogravimetric analysis
XPS X-ray photoelectron spectroscopy
Wnt Wingless-related integration site
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