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Abstract
Quasi-static ultrasound elastography (USE) is an imagingmodality thatmeasures deformation (i.e.
strain) of tissue in response to an appliedmechanical force. InUSE, the strainmodulus is traditionally
obtained by deriving the displacement field estimated between a pair of radio-frequency data. In this
workwe propose a recurrent network architecture with convolutional long-short-termmemory
decoder blocks to improve displacement estimation and spatio-temporal continuity between time
series ultrasound frames. The network is trained in an unsupervisedway, by optimising a similarity
metric between the reference and compressed image. Our training loss is also composed of a
regularisation term that preserves displacement continuity by directly optimising the strain
smoothness, and a temporal continuity term that enforces consistency between successive strain
predictions. In addition, we propose an open-access in vivo database for quasi-static USE, which
consists of radio-frequency data sequences captured on the armof a human volunteer. Our results
fromnumerical simulation and in vivo data suggest that our recurrent neural network can account for
larger deformations, as comparedwith two other feed-forward neural networks. In all experiments,
our recurrent network outperformed the state-of-the-art for both learning-based and optimisation-
basedmethods, in terms of elastographic signal-to-noise ratio, strain consistency, and image
similarity. Finally, our open-source code provides a 3D-slicer visualisationmodule that can be used to
process ultrasoundRF frames in real-time, at a rate of up to 20 frames per second, using a
standardGPU.

1. Introduction

1.1. Background
Ultrasound elastography (USE) is an imagingmodality that enables the characterisation of the elastic properties
of tissue (Sigrist et al 2017).Mapping tissue elasticity is particularly useful in diagnostic applications, where the
presence of pathology can causemodifications in tissue stiffness. It includes the characterisation of lesions in
different organs, such as the liver (Ferraioli et al 2015) or prostate (Moradi et al 2007), but also differentiation
between benign andmalignant tumours, such as those found in the thyroid (Hong et al 2009) and breast (Hall
et al 2003). USE has also shown promising results in image-guided interventions, including liver resection (Kato
et al 2008, Otesteanu et al 2018) and brain tumour surgery (Chakraborty et al 2012).

This work focuses on quasi-static, free-hand palpation elastography, where a time-varying axial
compression is applied to the target tissue, using a handheld ultrasound probe (Ophir et al 1991, Varghese 2009).
In quasi-static elastography, themechanical behaviour of a tissue is determined bymapping the relative
deformation (i.e. strain) induced bymanual compression (i.e. stress). The strain is generally obtained by deriving
the displacement between a pair of ultrasound radio-frequency data before and after applying a quasi-static
deformation on the tissue. Even though quasi-static elastography does not provide a quantitativemeasure of
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tissue elasticity (e.g. the Young’smodulus), the strain information can be a useful adjunct to conventional
ultrasound, because the echogenic properties of tissues and their stiffness are not necessarily correlated. In
addition, there are no specific hardware requirements for generating themechanical excitation inUSE, unlike
dynamicUSEmethods, such as shear wave elastography or acoustic radiation force imaging (Sigrist et al 2017).
Therefore, USE can be usedwithmost clinical ultrasound scanners,making it highly portable and relatively cost
effective.

1.2. Relatedwork
Strain information is obtained by computing the spatial gradient of the displacement field,making speckle
tracking a key processing step in quasi-static elastography. Variousmethods of displacement estimation have
been proposed over the years. Historically, it has been performed bymaximising a correlation function between
local framewindows, either in the time or phase domain (Ophir et al 1996, Varghese et al 2000, Azar et al 2010,
Alessandrini et al 2014). Althoughwindows-basedmethods have shown good performance in displacement
estimation, workingwith local windows prevents the accurate prediction of large deformation and decreases
robustness to global decorrelation, i.e. the change of speckle appearance due to out-of-planemotion. A different
strategy, which can be referred to as optimisation-basedmethods, involvesminimising a cost function that
combines image similarity and displacement regularity (Pellot-Barakat et al 2004, Kuzmin et al 2015,Hashemi
andRivaz 2017). Thesemethods assume the displacement throughout the tissue to be smooth and, therefore,
justify the use of a regularisation parameter that penalises the correlation function to prevent displacement
discontinuity. However, this type of approach can be computationally expensive and is not suitable for real-time
application.

Recentmethods have adopted the use of deep neural networks forUSE, and have demonstrated high
accuracy and robustness in displacement estimation.Most of thesemethods share the same general training
strategy, whichminimises a supervised loss function between the network’s displacement estimates and their
respective ground truth labels, generated fromnumerical ultrasound phantoms via finite elementmethods
(FEM) (Kibria andRivaz 2018,Wu et al 2018, Gao et al 2019, Peng et al 2020, Tehrani andRivaz 2020). This
learning strategy prevents themodel from training on real-world ultrasound data because ground truth
displacementfields are not possible to obtainwhen themagnitude of applied stress is unknown.Moreover,
learning from real-world ultrasound data can improve themodel’s generalisation ability because this data often
exhibits complex speckle patterns and echogenic features, which can be quite challenging to replicate in
ultrasound simulation.

Alternative approaches adopted networks trainedwith unsupervised algorithms, which allow amodel to be
fine-tuned directly on any given radio-frequency ultrasound data and dispense the need to use ground truth
labels. Learning displacement estimation in an unsupervisedway has been successfully applied tomedical image
registration techniques (deVos et al 2017, Balakrishnan et al 2019). The basic principle consists in using a loss
functionwhich captures the image similarity between the reference and thewarpedmoving image, and the
displacement continuity; rather than computing the difference between the output and some ground truth. In
the case of quasi-static elastography, a semi-supervisedmethodwas proposed (Tehrani et al 2020) thatfine-
tuned a pre-trained optical flownetwork (LiteFlowNet) on ultrasound phantomdata, using an unsupervised
training scheme. In previouswork, we also introduced an end-to-end unsupervised approach, where amodel
was directly trainedwith in vivo data by using ultrasound images of the armof human volunteers (Delaunay et al
2020).

Another research direction in quasi-static elastography aims tofind themost suitable pair of images to be
used for strain estimation. Quasi-static elastography only requires two image frames to estimate the strain
modulus, but the resulting information is not always relevant. A non-uniformor small axial compression
occurring between an image pair can greatly affect the signal-to-noise ratio (SNRe) and result in a strainmap
that does not effectively characterise the tissue stiffness. A common solution to this problem is to compute the
strain between all image pairs and associate each resulting strainwith a confidence score based on image
similarity (Jiang et al 2006, Treece et al 2011) and/or tracking information (Foroughi et al 2013). In Zayed and
Rivaz (2020), the frame selection is performed before displacement estimation by using a classifier that gives a
binary decision on the suitability of the image pair for strain computation.

Finding the best image pair alsomeans searching for the optimal interframe interval, i.e. the time interval
between successive ultrasound frames, which greatly impacts the displacement estimation. A high interframe
interval exacerbates decorrelation noise due to physiologicmotion, such as blood flow andmusclemovement,
which can greatly affect the performance of displacement estimationmethods and reduce the quality of the
resulting strainmap. Therefore, this limits the range of possible image pairs in the temporal dimension for
frame-pairingmethods (Chandrasekhar et al 2006). Furthermore, commercial scanners can acquire images at a
high-frame-rate and frame-pairing strategies discard a large proportion of the available data. The strain image
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quality can also be improved by accumulating successive displacement fields (Varghese andOphir 1996,
Lubinski et al 1999) or by normalising strain images with an estimate of the applied stress (Lindop et al 2008).

1.3. Contributions
In this paper, we present an end-to-end unsupervised learning-basedmethod for quasi-static elastography that
allows a neural network to be trained directly on readily-available clinical data. Our training procedure does not
use ground truth labels and allows amodel to befine-tuned only using RF ultrasound data as input. The network
weights are optimised byminimising a dissimilarity function between the pre-compression andwarped
compressed images.

In addition, we propose a novel network architecture based on convolutional long-short-termmemory
units (convLSTM) (Xingjian et al 2015) to improve displacement estimation accuracy for image pairs that are
temporally distant, bymaking use of all the intermediate frames. The use of intermediate ultrasound frames
improved the displacement estimation of our recurrent network for large range deformations, as well as the
consistency between consecutive strain predictions.We called ourmethodReUSENet, which stands for
recurrent ultrasound strain elastography network. At inference, ReUSENet takes a temporal sequence of RF
ultrasound data as input and predicts the displacement and strainmaps of consecutive image pairs bymaking
use of thememory state of the convLSTMunits captured fromprevious predictions. An overview of ReUSENet
is presented infigure 1.

We compare the performance of ReUSENetwith a standard feed-forward neural network architecture,
named here unsupervised strain elastography network (USENet).We validated our twomodels on numerical
simulation and in vivo data, and compared our results to state-of-the-art deep learning-based and optimisation-
based algorithms (Hashemi andRivaz 2017, Tehrani andRivaz 2020). Both networks can be run in real-time at a
speed of about 20 frames per secondwith a standard 12 GBGPU. The contribution of our paper can be
summarised as follow:

• Wepropose an end-to-end unsupervisedmethod, which allowsmodels to be trained directly on in vivo data.

• Wepropose thefirst recurrent neural network applied to quasi-static elastography to improve both
displacement estimation accuracy and strain image quality between temporally distant ultrasound frames.

• Weprovide an open-access, publicly available in vivo databasewhich consists in 17 271RF data of blood
vessels from the armof a human volunteer.3

• Weprovide an open-source 3D-slicer extension calledDeepUSE, which has been designed to perform real-
time inferencewith the networks introduced in the paper, for bothUSENet andReUSENet.4

Figure 1.Overview of the proposed recurrentmodel for ultrasound strain elastography (ReUSENet). At each time step t, the network
takes as inputs a pair of radio-frequency data frames ( -Im ,Imt t1 ) and outputs the dense displacement fieldUt between the inputs
images. The displacement field is then spatially derived to the strainfield, by using the least-squares strain estimator (LSQSE).

3
Open-access database available on https://synapse.org/InVivoDataForUSE

4
SlicerDeepUSEmodule available at https://github.com/RemiDelaunay/SlicerDeepUSE
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2.Methods

2.1. Network architectures
2.1.1. USENet
The architecture of our feed-forward network is based on theU-Net (Ronneberger et al 2015), which consists of
an encoder–decoder convolutional neural networkwith skip connections. The use of this type of architecture
has been demonstrated successfully for opticalflow estimation (Dosovitskiy et al 2015), but also formany
medical image registration tasks (Hu et al 2018 Balakrishnan et al 2019).

The encoder part is composed of four down-sampling ResNet blocks (He et al 2016), which capture the
hierarchical features necessary to establish correspondence between the pair of images. Each block corresponds
to a residual unit composed of two sequential convolutional layers with a batch normalisation layer and leaky
rectified linear unit.Max pooling is performed after eachResNet block to reduce the dimension of the extracted
features.

Symmetrically, the decoder part is composed of four up-sampling blocks that consists of an additive up-
sampling layer summed over a transpose convolutional layer. Finally, each up-sampling block outputs a
displacementfield that is convolved and resized to the input size, then summed to output the predicted
displacementfield.

2.1.2. ReUSENet
The network architecture of ReUSENet is presented infigure 2. The encoder part of the recurrent network is the
same asUSENet. In the decoder part, the up-sampling blocks fromUSENet are replaced by convLSTMunits
(Xingjian et al 2015). LSTMs are a type of neural network that have been designed to learn long-term
dependencies and process temporal sequences of data (Hochreiter and Schmidhuber 1997). A standard LSTM
unit is composed of amemory cell ct, also known as the internal state, and three ‘gates’ regulating theflowof
information, i.e the input gate it, output gate ot and forget gate ft. Intuitively, thememory cell keeps track of the
dependencies between the inputs of the temporal sequence, the input gate controls the incoming input flow, the
forget gate controls the amount of information to keep in the cell and the output gate controls the amount of
information to use for the output. The output of an LSTM is called the hidden state and is noted ht.

Figure 2.Network architecture of ReUSENet. Each blue rectangle constitutes the encoder part of the network and corresponds to a
ResNet unit (illustrated bellow)with different channel size printed underneath. The decoder is composed of successive convLSTM
units which are represented in orange and described in details at the bottomof the figure. The output of each convLSTMunit is then
convolved and resized to the input size before being summed to output the displacement field.
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A convLSTMcell differs from a standard LSTMunit by takingmulti-dimensional data as input, such as
videos. This is done by replacing the fully-connected layer of each gate by a convolution operation to capture the
image spatial features. The updated equations can bewritten as follow:
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where * ande correspond respectively to a convolution operation and element-wise product.σg andσc are the
logistic sigmoid and hyperbolic tangent functions. c̃t denotes the cell input activation vector.W** and b*
correspond to theweightmatrices and bias vector parameters, which are learned during training.

Inspired by Salvador et al, the encoded features alongwith the previous hidden state are fed to a convLSTM
layer, which is then followed by four up-sampling convLSTMblocks (Salvador et al 2017). For a time step t, a
convLSTMblock i takes as input its temporal hidden state hi,t−1 as well as the previous spatial hidden state hi−1,t,
which is up-sampled by a bilinear additive layer (Wojna et al 2019) and a transpose-convolution layer that are
then added to the output of the symmetric encoding block output via a skip layer. Finally, each convLSTMblock
outputs a displacement field that is convolved and resized to the input size, then summed to output the predicted
displacementfield.

2.2. Training
The encoder of both ReUSENet andUSENet takes a pair of pre- and post-compression 2DRF frames as input,
here namedPre andPost, and predicts a dense displacement field. The parameters of our network are estimated
byminimising aweighted loss function over the training set. The loss function is composed of an image
similarity term, a displacement regularisation term and a temporal consistency termwhich can bewritten as
follow:

( )a b= + +L L L L . 2total sim reg cons

For any given training pair, the Lsim term is chosen as a negative local normalised cross-correlation (LNCC)
functionwhich averages theNCC score between slidingwindows sampled from the pre-compression image and
the post-compression image resampledwith the predicted displacement field u. TheNCCbetween two local
imagewindows,W1 andW2, with i, j pixel components can bewritten as:
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whereN is the number of pixels indexed by location (i, j) andμ andσ correspond to themean and standard
deviation of the images, respectively.

Given the LNCC, the similarity loss Lsim can be expressed as:

( ◦ ) ( )=L LNCC Pre Post T, , 4sim

whereT corresponds to the spatial transformation predicted by the network and applied to the post-
compression image tomap it in the pre-compression image space.

The regularisation term corresponds to the L1-normof the strain spatial gradient. Given that the strain
modulus is defined as the displacement gradient, the strain field gradient corresponds to the second-order
derivative of the predicted displacement and can bewritten as follows:
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,

2
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where u is the predicted axial displacementfield and ¶ ux
2 ,∂x∂yu, ¶ uy

2 and∂y∂xu are the second-order partial
derivatives of u.

After displacement estimation, the axial strainmap is computed directly during training. InUSE, the strain
estimates are obtained by computing the displacement field gradient.However, direct differentiation of the
displacementfield is rarely used because gradient operations generate a significant amount of noise in the
resulting strainmap.We used the least-squares strain estimator (LSQSE) to improve the elastogram SNRe
(Kallel andOphir 1997).

Similar to our similarity loss, the strain consistency term computes the negative LNCC score between
successive strain fields computed from a temporal sequence. It compares the current strainfield Stwith the
previously computed strainfield St−1mapped into the coordinate systemof the currentfield. Since the strain
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image is formed at the physical grid of the post-compression image, the same spatial transformation is used to
perform the strain imagemapping

( ◦ ) ( )= -L LNCC S S T, . 6cons t t1

Our consistency term is inspired by previous work, where it has been used as ametric to estimate the
consistency between consecutive strain frames (Jiang et al 2006). Jiang et almotivated the use of this consistency
metric by assuming that noise in the strain image is uncorrelatedwith its underlying signal. Therefore, they
suggest that a high correlation score between consecutivemotion-compensated strain images indicates a
relatively lownoise level and consequently an improved image quality. This term is used only for the recurrent
network, which deals with consecutive image pairs. Therefore,β is set to zerowhen training theUSENet.

2.3. Implementation details
The presentedmethodwas implemented in PyTorch5 and the following experiments were performed using a
12 GBNVIDIAGTX-1080ti GPU. The network’s weights for bothUSENet andReUSENet werefine-tuned
independently for the numerical and in vivo databases. During training, the learning ratewas initialised to 1e-3
andwas reduced by a factor of 0.8when the validation loss stagnated for 10 epochs. The trainingwas stopped
when the difference between the new and previous learning rate was smaller than 1e-8. The regularisation loss
weight was empirically set toα= 5, while the consistencyweight was set toβ= 0.2 for ReUSENet. In inference,
the strainmap prediction rate reached a total of 20 images per second.

3. Experiments

3.1. Experiments on numerical phantoms
Wefirst performed a quantitative comparison on numerical simulation of bothUSENet andReUSENet together
with two state-of-the-art elastographymethods, namely RFmodified pyramid, warping and cost volume
network (RFMPWC-Net) (Tehrani andRivaz 2020) and global ultrasound elastography (GLUE) (Hashemi and
Rivaz 2017). GLUE is an optimisation-based approach that relies on a regularised cost function to perform
displacement estimation.We used the publicMatlab implementation ofGLUE to compute our results.
RFMPWC-Net corresponds to amodified version of thewell-known optical flownetwork PWC-Net (Sun et al
2018).We used the publicly available demo code and trainedweights of the RFMPWC-Net for comparison. The
network’s weights have been fine-tuned in a supervisedway using an ultrasound simulation database the authors
made publicly available, ‘ultrasound simulation database for deep learning’ (Tehrani andRivaz 2020)6.

For reproducibility, we used the same ultrasound simulation database to train bothUSENet andReUSENet.
The database consists of 24 different phantomswith 10 different average strain values (from0.5% to 4.5% ) and
10 different simulationswith different scatterer positions, which results in a total of 2400 simulated images. The
displacements were obtained by FEMusing the ABAQUS software. The ultrasound imageswere simulatedwith
a centre frequency of 5 MHzby using the publicly availablefield-IIMatlab toolbox. Each digital phantom
contains one or two inclusions with randompositions andYoung’smodulus (from40 to 60 kPa). Thefirst 20
numerical phantomswere used for training, whereas the last fourwere used for testing. Tomimic a temporal
stack of ultrasound imaging data, the testing dataset consisted in sequences composed of 10 ultrasound images
with an increasing axial compression, i.e with average strain value ranging from0.5% to 4.5%. All the numerical
phantoms contained 10 different ultrasound simulations with different scatterer positions except for the last
one, which only had 6. Therefore, the testing dataset consisted of 36 sequences of 10 images.

During training, the entire sequence was fed to ReUSENet at each iteration, while the interframe interval was
randomly assigned forUSENet. Strain image quality was assessed in terms of normalised rootmean squared
error (NRMSE) and elastographic SNRe (Islam et al 2018). Both similarity and consistency scores are also
displayed infigure 4. NRMSE corresponds to:
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where Predicted and Label are the axial displacement from the evaluatedmethod and ground truth label,
respectively. In addition, the SNRe can bewritten as:

( )m
s

=SNRe , 8

whereμ andσ are themean and standard deviation of the strain image.

5
Fine-tuning code and pre-trainedmodels are available at https://github.com/RemiDelaunay/DeepUSE

6
The ultrasound simulation database, GLUE andRFMPWC-Net are available at https://users.encs.concordia.ca/~impact/
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An example strain image of a simulated phantomwith 1.5%of average strain computed by the compared
methods is shown infigure 3. Figure 4 shows the differentmetric score values plotted against the relative
deformation (in%of strain) for the differentmethods. The shaded plots correspond to the average scores (in
bold)with 25th percentiles (shaded). Both feed-forward neural networks (RFMPWCNet andUSENet) failed to
compute an accurate displacement field for large compression. TheNRMSE, SNRe, similarity and consistency
scores drops significantly after an average axial strain of 3.5% forUSENet and 1.5% for RFMPWCNet. In
contrast, both ReUSENet andGLUEprovide consistent and accurate results for all compression levels.
AlthoughGLUEhas the lowest variance, average scores for ReUSENet (similarity= 0.98± 0.001,
consistency= 0.98± 0.003,NRMSE= 1.02± 0.05, SNRe= 9.19± 1.10) are similar or slightly better than
GLUE (similarity= 0.98± 0.001, consistency= 0.98± 0.001,NRMSE= 1.10± 0.035, SNRe= 8.87± 1.046).
Finally, an example of a temporal axial strain estimation sequence (from0.5% to 4.5% strain) computedwith

Figure 3. Strain images of two numerical phantomswith one inclusion (top row) and two inclusions (bottom row).

Figure 4. Similarity, consistency, SNRe andNRMSE scores with 25th percentiles of the comparedmethods for the testing simulation
dataset (N = 36) according to strain (in%).
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USENet andReUSENet is compared to ground truth simulations infigure 5 to illustrate the degradation of
performance ofUSENetwith increasing compression.

3.2. Experiments on in vivohumandata
The dataset we used in the following experiment consisted of image sequences acquired from the armof a
human volunteer. Data collectionwas approved by theKing’s College LondonResearch EthicsManagement
Application System, refHR-18/19-8881. The datawas acquired by imaging the volunteer’s armwhile slowly
applying an axial compressionwith the handheld ultrasound probe.We acquired raw channel ultrasound data
from aCicada 128PX system equippedwith a 7.5 MHz linear probe fromCephasonics (Cephasonics Inc., USA).
The imageswere generated using the delay-and-sumbeamformer fromSUPRA (Göbl et al 2018).

The in vivo dataset included 310 sequences of variable length, i.e. from19 to 127 images, for a total of 17 271
images. The large variance in the image sequence size can be explained by the frame-rate, which varied from10
to 20 frame-per second, and the time it took to perform the axial compression. Not all sequences exhibit a
specific targeted regionwith a notable difference of stiffness. For instance, a sequence can only show longitudinal
musclefibres of the forearmbeing compressed.We also decided to keep sequenceswith a large amount of lateral
displacement or decorrelation noise for training our networks.However, each sequence selected for testing
targeted at least one blood vessel. The in vivo dataset generally exhibits higher displacement and decorrelation
noise between each frame as comparedwith the simulated dataset. Therefore, the temporal sequences used as
input for ReUSENet during training and inference corresponded to 6 successive frames. A total of 20 sequences
of 6 images were used for testing, sampled from13 different acquisition sequences.

The quality of the strain estimates were assessed in terms of consistency, similarity and SNRe. Since ground
truth labels were not available, we further investigated the registration accuracy by computing a target
registration error (TRE) on each cases from the in vivo dataset.Wemanually identified 8 pairs of different
corresponding landmarks between the first and last ultrasound frames in each temporal sequence. The TREwas
then computed before and after resampling the last ultrasound frames of the sequence into the first one, by using
the output displacementfield predicted byUSENet, GLUE andReUSENet. ThemeanTRE for each cases,
measured in pixels, is summarised in table 1. In order to avoid unfair comparison, RFMPWCNetwas not
included in this performance comparison because the network’s weights were notfine-tuned on the in vivo
dataset, unlikeUSENet andReUSENet.

Figures 6 shows an example of strain estimations of a temporal sequence computed byUSENet, GLUE and
ReUSENet. Thewhite arrows indicate a blood vessel that is also visible in the B-mode image. The similarity,
consistency and SNRe scores are represented infigure 7. Figure 8 displays an additional example of temporal
strain estimation. Similar to the numerical phantom experiment, the consistency, similarity and SNRe scores for
theUSENet gradually decreases as the interframe interval increments. Average scores for ReUSENet
(Similarity= 0.92± 0.03, Consistency= 0.96± 0.04, SNRe= 0.96± 0.2) are better thanGLUE
(Similarity= 0.77± 0.07, Consistency= 0.92± 0.10, SNRe= 0.88± 0.25). Themean TREs for individual
cases,measured in pixels, are summarised in table 1. The average TRE and standard deviation for the entire
testing dataset are the lowest for ReUSENet (2.87± 1.31), as comparedwithGLUE (3.80± 1.44) andUSENet
(4.37± 2.03).

Figure 5. Strain images of a numerical phantom temporal sequencewith increasing deformation (from0.5% to 4.5%of strain).
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3.3.Open-source real-time visualisationmodule
As part of the open-source implementation of ourmethod, we also introduce a real-time visualisationmodule,
namedDeepUSE, by using 3D-slicer, an open-source software platformdedicated tomedical image processing
and visualisation (Fedorov et al 2012). 3D-slicer is cross-platform, e.g. available forWindows,MacOSX and
Linux operating systems, and is built on thewell-knownVTK and ITK libraries. In addition, the platform is built
to facilitate customisation and is used by a large and active international community. 3D-slicer also provides a
Python interpreter which allows the use of python libraries and open-sourcemachine learning framework such
as PyTorch andTensorflow.

DeepUSE is written in Python using the ScriptedLoadableModule base class provided by 3D-slicer. The
module is fully integratedwith the PyTorch implementation of bothReUSENet andUSENet. DeepUSE’s
features include the loading of a trainedmodel via a configuration file, the offline inference of a loadedRF data
sequence and the real-time inference of a streamof RF data sent using theOpenIGTLink protocol (Tokuda et al
2009). In terms of visualisation, the strain image nodes are automatically displayed alongside the RF data
converted into B-mode to facilitate data interpretation.

4.Discussion

In this paper, two different neural networks were presented—USENet andReUSENet. The former is a feed-
forward encoder–decoder, which takes a pair of images as input, while the latter has a recurrent architecture with
decoding convLSTMunits that allows a temporal RF data sequence to be used as input. Both networks were
trained in an unsupervisedway, which allowsfine-tuning on in vivo data. The twonetworks were comparedwith
a supervised network (RFMPWCNet) and a state-of-the-art optimisation-basedmethod (GLUE).

Our results suggest that incorporating temporal continuity by using convLSTMunits improves
displacement accuracy, especially for larger deformations. Experiments on numerical phantoms have
highlighted the poor performances of standard feed-forward networks, such asUSENet andRFMPWCNet, to
estimate large range deformations. Indeed, they failed to estimate accurate displacement fields for strain level
higher than 1.5% for RFPWCNet and 3.5% forUSENet. On the other hand, ReUSENet utilises previous
predictions to accurately estimate larger deformation (up to 4.5%). To the best of our knowledge, this is thefirst
learning-basedmethod to quantitatively reach the reported performance on such a large displacement search
range.

Our results from the in vivo dataset showed that ReUSENet exhibited higher scores thanUSENet andGLUE
in terms of SNRe, similarity and consistency.Most interestingly, the performance gap increasedwith the

Table 1.Registration accuracy ofUSENet, GLUE and
ReUSENet. ThemeanTRE is calculated in pixels for all cases (8
landmark pairs per cases) from the in vivo testing dataset.

Case Initial USENet GLUE ReUSENet

1 6.98 5.02 4.05 3.29

2 6.48 4.08 3.12 2.57

3 10.00 4.21 3.05 1.05

4 8.62 4.15 4.42 2.48

5 3.22 4.82 2.91 3.44

6 7.65 3.09 3.07 2.18

7 3.92 3.50 3.33 4.03

8 9.91 5.05 4.91 2.61

9 9.17 4.62 3.64 3.92

10 7.50 3.39 3.24 2.80

11 8.80 3.89 2.83 1.77

12 9.90 4.88 3.61 3.55

13 8.18 2.58 2.32 2.35

14 6.83 4.64 4.68 3.62

15 8.00 2.62 4.24 1.20

16 10.45 9.16 9.00 7.45

17 4.05 2.59 2.28 2.32

18 5.58 2.15 2.66 1.85

19 5.92 2.49 3.57 2.37

20 18.06 10.40 5.12 2.94

Mean 7.96 4.37 3.80 2.87

Stddev 3.09 2.03 1.44 1.31
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interframe interval, whichmay suggest that the recurrent network didmake use of previousmemory state to
predict the current displacement. The TRE results also suggest that ReUSENet performs better thanGLUE and
USENet in terms of registration accuracy.Most interestingly, the performance gap increases with the interframe
interval, which suggest that the sequential information enabled by the recurrent network improved the
displacement estimation. It is important to note that the results fromGLUE, RFPWCNet andUSENet could

Figure 6.Temporal strain image sequence from the testing in vivo dataset.

Figure 7. Similarity, consistency and SNRe scores with 25th percentiles for the in vivo testing dataset (N = 20) according to the
interframe interval.
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have also been improved by applying the intermediate displacement fields at each time steps. There is however
no published best practice on how to exploit temporal context with thesemethod.We thus considered such
possible extensions as out of scope for this work and only compared to published baselines.

We found thatGLUEwas sensitive to its regularisation parameter,α andβ, which respectively control the
displacementfield smoothness in axial and lateral directions.We used the default parameters suggested by the
authors for the simulation dataset, i.e.α= 5 andβ= 1 (Hashemi andRivaz 2017). However, those parameters
tended to over-smooth the strainfield for the in vivo dataset, which improved significantly the SNRe but also
concealed the blood vessels in our experiments. Finding the optimumparameters for each casesmay be possible,
but can be too time-consuming for real-time applications. Therefore, we selected the same parameters (α= 2
andβ= 0.1) for the entire testing dataset by visually inspecting the collection of output rather than
automatically selecting the parameters that gave the bettermetric scores. Automating this process for
optimisation-based elastographymethodswould be an interesting future research direction.

In conventional scanners, the strain elastogram is usually displayed next to, or directly overlayed, onto the
B-mode images. Therefore, processing time and real-time visualisation is of high importance in quasi-static
elastography. Both ReUSENet andUSENetwere able to achieve an inference speed of up to 20 frame-per-second
(fps) on theDeepUSE Slicer extension, with a 12 GBNVIDIAGTX-1080ti GPU. For comparison, RFMPWCNet
achieved a frame-rate of 6 fps on the sameGPU. The inference speed difference betweenReUSENet and
RFMPWC-Net can be partly explained by the input size, i.e. RFMPWCNet takes as input 3-channel images, but
also the number of parameters. ReUSENet consists of 1.5millions parameters (0.8millions forUSENet),
whereas RFMPWCNet has approximately 9million parameters. TheMatlab implementation ofGLUE
computed the strainfield between one image pair in about 2 s on an Intel Core i7-7700HQCPU.AGPU
implementation ofGLUEwould significantly decreased the reported computation time.

Finally, we have shown that the ability to incorporate temporal information in a neural network for quasi-
static elastography can increase the robustness to decorrelation noise and improve displacement estimation
between pair of images that are temporally distant.We have also shown that including intermediate frames

Figure 8.Temporal strain image sequence from the testing in vivo dataset.
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allows the recurrent network tomeasure larger deformation. Quasi-static elastography is highly user-
dependent, and the displacement between each frame can not only be significant, but also variable, especially
when the images are acquired at a high-frame-rate. The use of a recurrent network that encodes the spatio-
temporal information coupledwith a frame-selectingmethod could also improve real-time visualisation.
Addressing temporal continuity in quasi-static elastography could also be of interest when using ultrafast
ultrasound imaging technologies, i.e. planewave imaging, tomodel fast tissue deformation (Porée et al 2015).

5. Conclusion

In this work, we present a new learning-basedmethod for the estimation of strain elastograms between a pair of
ultrasoundRF data undergoing an axial compression. The proposed training scheme is unsupervised andwe
showed that it can be used to train a network directly on our open-access in vivo dataset of RF data of a human
forearm.We also demonstrated that the use of recurrent units improves displacement estimation and temporal
continuity for strain field predictions. The open-source code and 3D-slicer visualisationmodule are both
publicly available. The inference speed of both networks can reach 20 frames per second on a 12 GBNVIDIA
GTX-1080ti GPU. Therefore, it is highly suitable for real-time imaging and represents a great potential for the
use of learning-basedmethods in quasi-static elastography.
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