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ABSTRACT

The Himalaya is one of the youngest and the loftiest mountain chains of the world;
it is also referred to as the water tower of Asia. The Himalayan region harbors nearly
10,000 plant species constituting approximately 2.5% of the global angiosperm diversity
of which over 4,000 are endemics. The present-day Himalayan flora consists of an
admixture of immigrant taxa and diversified species over the last 40 million years.
The interesting questions about the Himalayan flora discussed here are: how did the
Himalaya achieve high endemic plant diversity starting with immigrant taxa and what
were the main drivers of this diversity? This contribution aims to answer these questions
and raise some more. We review and analyze existing information from diverse areas
of earth and climate sciences, palacobiology and phytogeography to evolve a bio-
chronological record of plant species divergence and evolution in the Himalaya. From
the analysis we infer the effects of major environmental upheavals on plant diversity in
the region. The understanding developed in the following discussion is based on the idea
that Himalaya experienced at least five phases of major geophysical upheavals, namely:
(i) mega-collision between India and Eurasian plates, (ii) tectonic uplift in phases and
progressive landform elevation, (iii) onset of southwest (SW) Indian monsoon, (iv)
spurring of arid conditions in Central Asia, and (v) cyclic phases of cooling and warming
in the Quaternary. The geophysical upheavals that were potentially disrupting for the
ecosystem stability had a key role in providing impetus for biological diversification. The
upheavals produced new geophysical environments, new ecological niches, imposed
physical and physiological isolation barriers, acted as natural selection sieves and led
to the formation of new species. This contribution aims to develop a comprehensive
understanding of the plant biodiversity profile of the Himalaya in the context of
complex, interconnected and dynamic relationship between earth system processes,
climate and plant diversity.

Subjects Biodiversity, Biogeography, Ecology, Evolutionary Studies, Plant Science
Keywords Biodiversity, Environmental upheavals, Endemics, Himalaya, Species diversification

INTRODUCTION

Mountain regions comprise the large majority of the global biodiversity hotspots and it is
argued that species diversification is associated with mountain building through changes
in landscape and climate followed by formation of varied and heterogeneous habitats
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along the elevational gradients (Hoorn et al., 2013). It is equally well established that nearly
all the mountains on the Earth have experienced a variety of geophysical upheavals in
the geological past (Owen, 2004). For relatively younger mountain systems such as the
Himalaya and Mount Kinabalu, their progress as biodiverse landscapes has also been
shown to be the result of various geophysical upheavals (Pandit, Manish ¢ Koh, 2014;
Merckx et al., 2015). Formation of the Himalaya started in early Cenozoic Era around
55-50 million years ago (Mya) with the collision of the Indian and the Eurasian plates
(Van Hinsbergen et al., 2012; Favre et al., 2015), an event considered as one of the greatest
geophysical episodes in the Earth’s history (Harrison et al., 1992; Che et al., 2010; Wang
et al., 2012). The periodic orogenic events led to physiographic and environmental changes
(e.g., formation of land bridges, development of monsoon, formation of glaciers and
establishment of an elaborate perennial river drainage system) and served as key drivers
of the newly evolving ecosystems resulting in geographical isolation of taxa, vicariance,
and evolutionary divergence of life forms (Pandit, 2017). Thus, the interconnectedness
between geophysical and biological components of the Himalayan ecosystems needs to be
unraveled to develop insights into understanding of the build-up of its biodiversity.

The Himalaya encompasses a geographical area of nearly 3.4 million km? and is spread
across nations of Afghanistan, Pakistan, India, Nepal, China (Tibetan Autonomous Region),
Bhutan, and Myanmar (Pandit, Manish ¢ Koh, 2014; Fig. 1). Geographically, the Himalaya
extends from Namcha Barwa mountain range in India’s east to Nanga Parbat massif in the
west forming an arc of about 2,400 km (Fig. 1). Geologically, Himalaya is divided into four
distinct litho-tectonic and physiographic units from north to south, namely Outer Himalaya
or Siwaliks, Lesser Himalaya, Greater Himalaya, and Trans-Himalaya (Valdiya, 2002). The
average elevational range of Siwaliks is 900-1,500 m, followed by the Lesser Himalaya
with an average elevational range of 500-2,500 m. The Greater Himalayan elevations
range from 6,000-7,000 m and the northernmost Trans-Himalaya (Hedin, 1909) mostly
comprises plateau areas to the north of the Indus and Brahmaputra rivers with average
elevation of 5,000-6,000 m (Valdiya, 2002; Pandit, 2017). Eco-climatically, the Himalaya
is broadly classified into Eastern and Western Himalaya. The Eastern Himalaya (EH)
stretches from 21°-25°N latitudes across the east of Kali Gandaki valley encompassing
eastern Nepal, north-eastern Indian states of Sikkim, Arunachal Pradesh and the hill
areas of North Bengal, Bhutan, and northern Myanmar. The Western Himalaya (WH)
extends from 30°—40°N latitudes across the west of Kali Gandaki valley encompassing
western Nepal, Indian states of Uttarakhand, Himachal Pradesh, Jammu and Kashmir and
areas of northern Pakistan and Afghanistan (Fig. 1). The EH region experiences heavy
annual average rainfall of 3,800-4,000 mm while the WH is comparatively drier with an
annual average rainfall of 75-150 mm (see Pandit, 2017). The rainfall plays a major role
in determining the east—west bioclimatic gradient of the Himalaya. Some authors have
designated a part of the mountain range as the Central Himalaya (Singh ¢ Singh, 1987;
Singh, Adhikari & Zobel, 1994; Vetaas, 2000). CH extends from river Kali in the east to
river Tons (largest tributary of Yamuna river) in the west encompassing central Nepal and
central Uttarakhand (India).
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Figure 1 Spatial spread of the Himalayan mountain system across seven nations. The elevational gra-
dient of the Himalaya represents the longest bioclimatic gradient of the Earth (0-8,500 m) and encom-
passes a myriad of ecosystems ranging from tropical, temperate and alpine. The base map was prepared
using Digital Elevation Models (DEM) in Arc GIS 9.3 sofware (Environmental Systems Research Institute
(ESRI), Redlands, CA, USA).

Full-size & DOI: 10.7717/peer;j.5919/fig-1

The total number of higher plant species in the Himalaya varies from 8,000-10,000
with about 40% of these taxa as endemics (Pandit, Manish ¢ Koh, 2014). It is well known
that majority of the Himalayan flora consists of immigrated plant taxa that have evolved
and diversified over millions of years following the Himalayan formation (Singh ¢ Singh,
1987; Pandit ¢ Kumar, 2013; Pandit, Manish ¢ Koh, 2014; Manish, 2017). It is, therefore,
of significant interest to evolutionary biologists as to how starting with an immigrant
flora, the Himalaya now harbors such a high number of plant endemics. This question,
though fascinating, has not been much investigated or discussed in ecological literature.
To address this knowledge gap, we need to develop an understanding of the intricate
relationship between geodynamic processes of the Himalayan mountain building and its
varied biodiversity gradients. To the best of our knowledge, there are only limited studies
that have attempted to understand this relationship in an integrated manner (Pandit
& Kumar, 2013; Pandit, Manish ¢ Koh, 2014; Favre et al., 2015; Pandit, 2017). The large
majority of studies on the Himalaya have mostly focused on the evolutionary consequences
of a specific geological period (Miao et al., 2012) or concentrated on a specific geographic
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region (Wen et al., 2014; Favre et al., 2015). Hence, a broader and a more comprehensive
understanding of the evolutionary diversification of Himalayan flora is warranted. In this
contribution, we seek to address this knowledge gap by evolving a sequence of plant species
divergence episodes during major geological periods in the Himalaya and identifying their
relationship with the environmental changes in the region. An overarching goal of this
study was to analyze the existing published information on Himalayan plant diversity
and understand the intricate relationship between the build-up of plant diversity and
physical-climatological variations produced by the geophysical changes during various
phases of the Himalaya’s formation.

SURVEY METHODOLOGY

We used four standard databases, namely Web of Science (http://www.webofknowledge.
com), Google Scholar (https://scholar.google.co.in/schhp?hl=en), Science Direct
(http://www.sciencedirect.com), and PubMed (http://www.ncbi.nlm.nih.gov/pubmed)
to systematically identify peer-reviewed journal and book articles using a combination
of controlled vocabulary and free text terms based on the following keywords and
terms: “Himalaya” AND “Arid”, “Himalaya” AND “Biogeography”, “Himalaya”
AND “Ecology”, “Himalaya” AND “Evolution”, “Himalaya” AND “Formation”,
“Himalaya” AND “Fossil”, “Himalaya” AND “Glacier”, “Himalaya” AND “Gondwana”,
“Himalaya” AND “Ice Age”, “Himalaya” AND “Monsoon”, “Himalaya” AND “Paleo”,
“Himalaya” AND “Plants”, “Himalaya” AND “Refugia”, “Himalaya” AND “Tectonic”
and “Himalaya” AND “Uplift”. All search fields were considered in the database while
searching. Articles were searched for all periods up to, and including, December 2017
in English language irrespective of the number of citations. We ensured that we covered
all the peer-reviewed articles that included the term “Himalaya” anywhere in the text,
instead of just in the title, abstract or keywords. The resulting list of articles was then
screened for whether the study included plant or animal species and the studies dealing
with the latter (animal species) were largely excluded from further consideration (unless
critical to the discussion). Additionally, we also excluded studies that were not published in
peer-reviewed scientific conferences and conference proceedings. To increase the scope and
coverage of the present review, we also applied a snowball search technique (Greenhalgh
¢ Peacock, 2005) where we made a manual search for published peer-reviewed studies in
the respective references of the selected publications and then included all studies in the
present review that matched the above keywords and terms. For each selected publication,
we retrieved the following information: author name (s), title, year of publication, journal
title, sampling area and studied species.

GEOLOGICAL BACKDROP OF THE HIMALAYA

Indian continent was once a part of Gondwanaland—a supercontinent formed nearly
600 Mya (Murphy et al., 2008). Gondwanaland covered much of the Southern Hemisphere
comprising the present day South America, Africa, Madagascar, Seychelles, India, Australia,
and Antarctica. Gondwanaland split around 180 Mya as a result of sea-floor spreading
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and development of a series of oceanic deep-seated mantle plumes resulting in Western
Gondwana (comprising Africa and South America) and Eastern Gondwana (comprising
Madagascar, India, Seychelles, Australia and Antarctica). Around 120 Mya, the split

of Western Gondwana led to separation of South America from Africa, and another
fragment containing India-Madagascar-Seychelles (IMS) separated from Antarctica

and Australia (Chatterjee ¢ Scotese, 1999). The newly separated IMS fragment migrated
northward across the Tethys ocean towards the Eurasian continent at varying speeds
ranging between 5-40 cm/year (Jagoutz et al., 2015). The drifting IMS fragment carried
along a host of primitive flora of Gondwanan origin such as seed ferns (Glossopteris,
Dicroidium, Sphenobaiera, Linguifolium), conifers (Heidiphyllum, Voltziopsis, araucarians
and podocarps) and lycopods (Cyclomeia) (McLoughlin, 2001). Widespread seafloor
spreading around 80-90 Mya further widened the central Indian Ocean and resulted in
detachment of the Madagascar block from the IMS fragment (Plummer ¢ Belle, 1995).
The Indian-Seychelles plate that drifted at ~5 cm/year suddenly tripled its speed to ~15
cm/year, the fastest recorded migration speed for any tectonic drift in the geological
history (Jagoutz et al., 2015). During its northward traverse around 65 Mya, the Deccan
flood basalts erupted and repositioning of the western Indian Ocean spreading ridge
occurred that led to the separation of Seychelles from the Indian plate (Duncan ¢ Pyle,
1988; McLoughlin, 2001). Subsequently, the Seychelles block stationed close to Africa while
India continued migrating northward. Around 55-50 Mya (Early Eocene), the drifting
Indian plate collided with Eurasia along the northeastern corner of Greater India with
the collision progressing westwards until 40 Mya (Van Hinsbergen et al., 2012; Bouilhol
et al., 2013; Favre et al., 2015). The India-Eurasia collision led to extensive deformation of
the northern margin of Indian plate and a major portion of the Indian plate subducted
underneath the Asian plate. The collision also led to the draining of the Tethys Sea and
upliftment of the long settled Tethyan geosyncline coastal sediments as meta-sedimentary
formations. The continental collision also laid the foundation of the youngest and loftiest
mountain system of the world—the Himalaya.

THE DRIFTING INDIAN PLATE: RAFT OR AN ISLAND?

From the above account, it is reasonable to guess that post separation from Gondwanaland,
the Indian plate may have been an isolated island continent for nearly 45 million years,
which could have created conditions for the evolution of a high endemic biodiversity.
The fossil record of India, however, provides equivocal evidence on the extent of pre-
Himalayan biotic endemism (see Pandit, 2017). Fossil records belonging to the Upper
Cretaceous to Lower Tertiary in the Deccan Intertrappean beds of Southern India reveal
a mixed flora with wide geographical affinities ranging from disparate regions, namely
Africa (Palmocaulon hyphaeneoides, Palmoxylon hyphaenoides), Australia (Eucalyptus
dharmendrae, Tristania confertoides), Madagascar (Palmoxylon ghughuense), and South
America (Rodietes, Cyclanthodendron) (see Srivastava, 2011; Pandit, 2017). Presence of
fossil taxa with such varied geographical affinities indicates the likelihood of biotic
exchanges between these disjunct landmasses and also that India may not have been
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isolated in strict sense to induce high endemism (Pandit, 2017). Isolated or connected,
some researchers have reported presence of high endemic biodiversity on the Indian
plate that likely developed during 45 million years of its isolation (see Srivastava, 2011).
As such, much of the diversity of Indian plate was decimated due to eruption of Deccan
volcanoes around the Cretaceous-Tertiary boundary with bulk of these eruptions occurring
in the early Paleocene between 67-65 Mya (Officer et al., 1987; Khosla & Sahni, 2003).
Notwithstanding these catastrophic events, many ancient Gondwanan lineages did manage
to survive and disperse into Asia when India collided with Eurasia (Bossuyt ¢~ Milinkovitch,
2001). The proponents of “out-of-India” hypothesis have referred to the Indian plate as
a ‘raft’ for ferrying a number of taxa from Gondwanaland to mainland Asia (Bossuyt ¢
Milinkovitch, 2001; Karanth, 2006). The “out-of-India” hypothesis has received support
from investigations of the plant family Crypteroniaceae suggesting that the family originated
in west Gondwanaland and subsequently reached Asia by rafting on the Indian plate (Conti
et al., 2002). Recent fossil leaf impression data from genus Alphonsea (Annonaceae) from
the Tertiary sediment deposits of Assam suggests that the genus originated in India during
Late Oligocene and migrated to South East Asia via Myanmar during Early Miocene
(Srivastava & Mehrotra, 2013).

THE FIRST MIGRATION WAVE

An immediate consequence of the collision of the Indian and Eurasian plates was the
establishment of a contiguous landmass connecting Indian Peninsula with the Sino-
Japanese regions in the north and the Malayan Archipelago in the southeast (Pandit,
Manish ¢ Koh, 2014). This landmass connectivity was the result of cessation of marine
deposition and the beginning of terrestrial sedimentation in the suture zone of India-Eurasia
collision (Mehrotra et al., 2005). A biological vacuum was created in the erstwhile nascent
Himalayan ecosystems as a result of extinctions caused by Cretaceous-Tertiary volcanism
event. This vacuum was gradually filled by large-scale floral migrations from the adjacent
connected regions in the east, north and south (Singh ¢ Singh, 1987). Thus, the newly
evolved Himalayan landscape started to serve as a ‘intercontinental biological highway’ for
migrating flora from all directions (Pandit ¢» Kumar, 2013; Pandit, Manish ¢ Koh, 2014).
The first taxa to colonize the Himalayan landforms were the ones with tropical affinities
such as Alangiaceae, Dipterocarpaceae, Ebenaceae, Ericaceae, Gleichneaceae, Rhamnaceae,
Malvaceae and Sapotaceae since climatic conditions in the region were essentially tropical
in nature at the time of collision (Mehrotra et al., 2005). Faced with no dispersal barriers,
either oceanic or climatic, these taxa found novel opportunities to colonize and intermingle
in the newly formed Himalayan landmasses with numerous unoccupied niches. Majority
of the early migrants which first crossed through the northeastern route (via present day
Arunachal Pradesh) were the ones with largely Sino-Japanese and Malayan affinities such
as Dalbergia, Dipterocarpus, Lagerstroemia, Myristica, Pittosporum, Shorea, and Terminalia
(Singh & Singh, 1987). Fossil records of genera such as Anisoptera, Dipterocarpus, Hopea
and Shorea (Dipterocarpaceae), Zizyphus (Rhamnaceae), and Diospyros (Ebenaceae) are
abundant in the deposits of northeast India belonging to the Middle Miocene epoch (see
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Srivastava & Mehrotra, 2010 and references therein). More importantly, no fossil records of
these taxa appear anywhere in India during the entire Paleogene Period, but are reported to
dominate the fossil deposits found from Middle Miocene onwards. This first phase of plant
migration lasted for almost 30 million years and it gradually stopped when connections
were lost due to the uplift of Himalaya with a dissected topography as a result of climatic
and morpho-tectonic changes in the subsequent epochs (Pandit, 2017).

UPLIFT OF THE HIMALAYA

Formation of the Himalaya and other mountain ranges in Tibet and farther north, such
as Qinling, Taihang, Hengduan, and Tianshan started around 45 Mya and continues
till now (see Wadia, 1957; Pandit, 2017). There are two contrasting views in literature
regarding the timing and sequence of the uplift of the Himalaya. The first one holds that
the Himalaya started to rise against a pre-existing proto-Tibetan highland that was already
as high as 4,500 m since at least 45 Mya (Ding et al., 2017; Spicer, 2017). The Himalaya
have continued to rise in a phased manner against this proto-Tibetan highland, attaining
elevations of 1,000 m around 56 Mya, 2,500 m around 23 Mya, 4,000 m around 19 Mya and
5,000 m around 15 Mya (Ding et al., 2017; Spicer, 2017). It was around 15 Mya that Mount
Everest came into existence and the average height of the Himalaya became greater than the
height of the Tibetan Plateau (Spicer, 2017). Subsequently, the Himalaya continued to rise
another 3,000 m due to renewed and considerable tectonic activity in Pleistocene around
3-2.5 and 0.98 Mya (Spicer et al., 2003; Spicer, 2017). The second view of the Himalayan
mountain building proposes that the Himalaya along with Tibet rose as one block in

a phased manner (Harrison et al., 1992; Molnar, England ¢ Martinod, 1993; Favre et al.,
2015). According to this view, four major episodes or windows of uplift have been reported
for the Himalaya, namely 45-35 Mya, 35-20 Mya, 20-10 Mya, and 8-6 Mya (Wen et al.,
2014; Favre et al., 2015). Notably, the phased elevation episodes were characterized by
distinct sets of geophysical developments: 45-35 Mya was characterized by the subduction
of Indian plate under the Eurasian plate; 35-20 Mya represented the period during which
the Himalaya attained average elevation of 4,000 m and the modern-day southwest (SW)
Indian monsoon began to take shape; 20-10 Mya period was accompanied by arrival of
wet summer period south of the Himalaya and gradual aridification of the central Asian
region to the north; 8—-6 Mya represented the period of the major Himalayan uplift at its
eastern edge (mostly Tibetan plateau) followed by intensification of monsoon (Zhisheng
et al., 2001; Spicer et al., 2003; Wen et al., 2014; Favre et al., 2015).

Despite the equivocal evidence on the phased mode of the Himalaya’s elevation, it is
certain that the Himalayan uplift caused three major environmental changes in the region:
(i) land connections formed in the preceding epochs between the adjacent landmasses of
India, Sino-Japanese and Southeast Asia were lost, (ii) the range of elevational climatic
gradient in the Himalaya extended from tropical to temperate and alpine, and (iii) an
orographic barrier was formed resulting in the formation of the SW monsoon system
(Pandit, 2017). With the development of a cooler temperate environment towards higher
elevations, new opportunities arose for the immigration of a number of temperate elements
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from the Sino-Japanese, European, and Mediterranean regions. Thus, started a second wave
of immigration into the Himalaya in which many temperate taxa such as Acer, Alnus, Betula,
Desmodium, Meliosma, and Quercus (Sino-Japanese affinities) found their way into the
Himalaya from the northwestern end (via present day Jammu & Kashmir) (Mehrotra

et al., 2005). Other examples of the immigrant taxa into the Himalaya from different
regions include: Anemone, Caltha, Clematis, Ranunculus and Viola (European, Russian,
and north Asian), Fagonia (Egyptian), Melilotus (European and Siberian), Seseli (Russian
and Siberian), and Trifolium (European, Siberian, and North African) (Mani, 1974). Some
researchers have suggested the formation of a “Himalayan corridor” to the south of Great
Himalaya and its essentially temperate nature (Kitamura, 1955). It was through this corridor
that numerous plant taxa of Sino-Japanese origin migrated westwards and southwards into
the Himalaya (see Pandit, 2017). The formation of the “Himalayan corridor” has been
confirmed in a number of later studies (Wang, 1992; Sun, 2002; Tabata, 2004).

ONSET OF MONSOON AND MIOCENE BIODIVERSITY

The onset of SW monsoon system triggered when the average elevation of the Himalaya
reached about 4,000 m by the end of Oligocene (28-23 Mya) (Rowley, Pierrehumbert ¢
Currie, 2001; Favre et al., 2015). However, the exact timing of the initiation of monsoon is a
matter of much debate. Some researchers argue that the monsoon system originated as early
as in Eocene (Srivastava et al., 2012; Shukla et al., 2014; Renner, 2016) or Paleocene epoch
when Indian plate reached the Tropic of Capricorn (Patnaik et al., 2012). Trrespective of
the timing of its initiation, it is certain that the monsoon system assumed its present-day
form (with respect to seasonality and intensity) only by the end of Oligocene and beginning
of Miocene when the elevated Himalaya began to act as an orographic barrier to the flow
of regional winds in the west-east direction (Favre et al., 2015; Pandit, 2017). Around 8-6
Mya, an extensive uplift of the Tibetan plateau occurred which apparently intensified
the monsoonal system (Burbank, Derry ¢» France-Lanord, 1993). Sedimentological records
available from the Siwalik foredeep corroborate the intensification of Asian monsoon at
6 Mya, with a prominent peak at 5.4 Mya (Sanyal et al., 2004).

The monsoon played a decisive role in the landscape evolution of the Himalaya. The
ensuing heavy rainfall along the frontal ranges of the Himalaya gave rise to numerous
streams and rivers which transported vast quantities of sediments and regularly denuded
the exposed rock surfaces leading to the formation of deeply incised valleys (Pandit, 2017).
The landscape incision was more prominent in the EH than the WH because of its tropical
latitudes ensuring prolonged and more intense period of rainfall (Bookhagen, Thiede ¢
Strecker, 2005). As a result, the EH region was transformed into a “region of extreme relief”
due to closely clustered high, steep mountains that were dissected by numerous river divides
and deep valleys (Irving ¢ Hebda, 1993). The monsoon, therefore, was key to transforming
the Himalaya into a highly dissected landscape aided by the tectonic processes that
accelerated weathering, denudation and sediment transport driven mainly by precipitation
(Pandit, 2017). Differentiated into numerous valleys dissected by rivers, the fragmented
Himalayan landscape after the uplift provided novel physical and physiological barriers for
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gene flow between once continuous plant populations (Favre et al., 2015; Zhao et al., 2016).
The combined result of these geographic events and formation of geographic barriers to
gene flow culminated in large-scale allopatric speciation and evolutionary diversifications
of the Himalayan flora (Pandit, Manish ¢ Koh, 2014; Favre et al., 2015). Various molecular
phylogenetic studies provide evidence that many plant species complexes (Caragana,
Cyananthus, Koenigia, Meconopsis, Rheum and Rhodiola) originated and diversified in the
period after the onset and intensification of modern-day monsoon system in the Himalaya
(see Table 1). However, Renner (2016) argued that most of the time-calibrated molecular
phylogenetic studies that link clade age of species between 15-0.5 Mya with specific uplift
phases of the Tibetan plateau and its associated environmental effects assume that the
Tibetan plateau underwent most major uplift during the Miocene, whereas the Tibetan
Plateau had already reached the height of 4,000-5,000 m in Paleogene (~40 Mya). Extensive
weathering, erosion and detritus transport along the Himalayan slopes due to monsoon
also aided in the formation of a foreland basin and transformation of the vegetation
profile of the Himalayan from tropical wet evergreen forests of C3 plants to tall grassland
ecosystems comprising predominantly of C4 plants around 8—6 Mya (Hoorn, Ohja &
Quade, 2000). This shift from C3 to C4 dominated ecosystem was due to widespread global
environmental changes in the Late Cenozoic Era such as global cooling and significant
drop in global carbon dioxide (CO,) levels due to increased rates of chemical weathering
and trapping of CO; in the ocean sediments (Raymo & Ruddiman, 1992; Quade ¢ Cerling,
1995). It has, however, been reported that the predominance of C4 plants in the Himalayan
ecosystems has declined since the Last Glacial Maximum due to increased CO, and
humidity levels in the atmosphere (Galy et al., 2008).

Megafossil evidences including leaf impressions, wood elements, flowers and fruits
indicate that until the end of the Oligocene and beginning of Miocene epochs, the uplifting
Himalayan landforms were dominated by tropical Indian peninsular flora such as Ficus
sp., Mesua ferrea, Mallotus philippensis, Kayea floribunda, Chukrasia tabularis, etc. (see
Srivastava et al., 2014). Presence of tropical and humid conditions during Early Miocene
epoch has also been confirmed by the discovery of Ficus palaeoracemosa from the Kasauli
geological formation (age: 23—10 Mya) in WH (Srivastava, Srivastava & Mehrotra, 2011).
During Mid-Miocene when the Himalaya attained an average elevation of 2,200-2,400
m, many sub-tropical and temperate floral elements migrated into the Himalaya. This
was revealed by the discovery of Trachycarpus and Prunus from the Miocene sediments
of the Ladakh-Karakoram region (Guleria et al., 1983; Lakhanpal et al., 1984; Srivastava
et al., 2014). Forests around this time (Mid-Miocene) at higher elevations had numerous
temperate taxa such as Alnus, Picea, Pinus and Betula (Singh ¢ Singh, 1987; Phadtare,
2000). The palynological records from the Surai Khola region of Central Nepal reveal that
grasslands with predominantly C4 plants dominated the Himalayan foothills from Late
Miocene to Pliocene and Early Pleistocene (Hoorn, Ohja ¢ Quade, 2000).

Climate-driven landscape changes resulted in alterations in plant physiology, and
geographic isolation and speciation through vicariance. Once these species complexes
originated and diversified in the Himalaya, these subsequently dispersed into the
neighboring regions of Asia Minor, Central Asia, Mongolian plateau and Europe producing
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Table 1 Molecular phylogenetic studies that have related plant species diversifications and evolution to specific phases of the Himalayan
mountain formation and its uplift. The studies have been listed in an alphabetical order according to the author names and year of publication.

Clade (Family)

Crown age of
clade (Mya)

Methodology

Principal Findings

Source

Koenigia (Polygonaceae)

Hippophae tibetana
(Elaeagnaceae)

Spiraea alpina (Rosaceae)

Nannoglottis (Asteraceae)

Ligularia-Cremanthodium-
Parasenecio (Asteraceae)

Taxus wallichiana
(Taxaceae)

Ostryopsis intermedia
(Betulaceae)

Dasiphora (Rosaceae)

Rheum (Polygonaceae)

Fagopyrum tibeticum

(Polygonaceae)

Rheum (Polygonaceae)

Dolomiaea (Asteraceae)

13.72-4.91

1.2-0.6

1.94-1.02

13-8

6.5-2.0

1.2-0.5

3.25-0.32

4.2-3.6

14.8-6.4

13.6-12.2

MD and DT

MD and DT

MD and DT

MD and DT

MD and DT

MP and SDM

DT and ENM

DT and DET

MD and DT

MD and DT

MD and DT

MD and DT

Uplift of the Himalaya promoted species
diversification in Koenigia; Himalaya
acts as a primary evolutionary centre of
Koenigia

Strong allopatric divergence was pro-
moted in Hippophae tibetana during the
Last Interglacial period (0.13-0.115 Mya)

by orogenic processes and climate oscilla-

tions during the Quaternary

Uplift of the Tibetan Plateau and severe
climatic oscillations during Quaternary
promoted intraspecific divergence of Spi-
raea alpina

Uplift of the Tibetan Plateau and se-
vere climatic oscillations during Qua-
ternary led to origin of several species of
Nannoglottis

Uplift of the Tibetan Plateau between
Early Miocene to Pleistocene promoted
rapid and continuous allopatric speci-
ation in the Ligularia-Cremanthodium-
Parasenecio complex

Diversification and evolution of Taxus
wallichiana in the Himalaya was pro-
moted by Miocene/Pliocene geological
and climatic events, uplift of the Tibetan
Plateau and Late Quaternary climatic os-
cillations

Climatic oscillations during Quaternary
and uplift of the Tibetan Plateau caused

hybrid speciation of Ostryopsis intermedia

Uplift of the Tibetan Plateau and severe
climatic oscillations during Quaternary
caused deep divergences in Dasiphora
Extensive uplifts of the Tibetan Plateau
promoted diversification of species in
Rheum

Uplift of the Tibetan Plateau led to
species radiation and development of
woodiness in Fagopyrum tibeticum
Uplift of the Tibetan Plateau coupled
with climatic oscillations in the Quater-
nary led to adaptive radiation in Rheum
Uplift of the Tibetan Plateau since
Miocene led to the evolution of endemic
Himalayan flora

Fan et al. (2013)

Jia et al. (2011)

Khan et al. (2014)

Liu et al. (2002)

Liu et al. (2006)

Liuetal. (2013)

Liu et al. (2014)

Ma et al. (2014)

Sunetal. (2012)

Tian et al. (2011)

Wang, Yang ¢ Liu (2005)

Wang, Liu & Miehe (2007)

(continued on next page)
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Table 1 (continued)

Clade (Family) Crown age of Methodology Principal Findings Source
clade (Mya)
Hippophae tibetana 3.15-1.04 MD and DT Rapid uplift of the Tibetan Plateau af- Wang et al. (2010)
(Elaeagnaceae) fected the dispersal potential and species
differentiation of Hippophae tibetana
Pomatosace filicula 2.66-0.73 MD and DT Divergence in Pomatosace filicula over- Wang et al. (2014)
(Primulaceae) laps with the Quaternary glaciation his-

Meconopsis (Papaveraceae)

Meconopsis integrifolia
(Papaveraceae)

Isodon (Lamiaceae)

Caragana (Fabaceae)

Stellera chamaejasme

(Thymelaeaceae)

Soroseris-Stebbinsia-
Syncalathium (Asteraceae)

Phyllolobium (Fabaceae)

Rhodiola (Crassulaceae)

Cyananthus (Campanu-
laceae)

tory in the Tibetan Plateau in the Early

and Middle Pleistocene

15-11 MD and DT Divergence of Meconopsis was driven by Xie et al. (2014)
the uplift of the Tibetan Plateau

7.86-3.45 MD and DT Uplift of the Tibetan Plateau and associ- Yang et al. (2012)

ated climatic changes triggered the initial
divergence of Meconopsis integrifolia

26.44-14.66 MD and DT Uplift of the Tibetan Plateau and associ- Yu et al. (2014)
ated climatic changes led to rapid radia-
tion of Isodon

16-14 MD and DT Uplift of the Tibetan Plateau and onset of Zhang & Fritsch (2010)
the Himalayan motion led to high evolu-
tion and diversification of Caragana

6.5892 MD and DT Uplift of the Tibetan Plateau and associ- Zhang, Volis & Sun (2010)
ated climatic changes led to the origin of
Stellera chamaejasme

8.44-1.56 MD and DT Uplift of the Tibetan Plateau and asso- Zhang et al. (2011)
ciated changes in climate and habitat
fragmentation led to rapid diversifica-
tion and radiation of Soroseris-Stebbinsia-
Syncalathium

3.96-3.48 MD and DT Uplift of the Tibetan Plateau in the Late Zhang et al. (2012)
Pliocene and Early-to-Mid Pleistocene
along with Late Pleistocene Glaciation led
to rapid diversification of Phyllolobium

21 MD and DT Uplift of the Himalaya and onset of Zhang et al. (2014)
Himalayan motion led to origin of
Rhodiola

23-12 MD and DT Onset of the Himalayan motion led to Zhou et al. (2013)

the origin of Cyananthus

Notes.

Mya, million years ago; MD, Molecular dating; DT, Divergence time analysis; MP, Molecular phylogeography; SDM, Species distribution modelling; ENM, Ecological
niche modelling; DET, Demographic test analysis.

derivative species therein (Jia et al., 2012; Nie et al., 2013). Ohba (1988) proposed the term
“Central Asiatic highland corridor” through which the flora originating in the Himalaya
migrated northward to the Central Asian highlands. Examples of such emigrant taxa from
the Himalaya are: Anaphalis (migrated to eastern Asia, South East Asia and North America)
(Nie et al., 2013), Hippophae rhamnoides (migrated to Central Asia and Asia Minor) (Jia
et al., 2012), Lagotis (migrated to Central Asia and Arctic highlands) (Li et al., 2014),
Leontopodium (migrated to European mountain ranges) (Bloch et al., 2010), Rhodiola
(migrated to Northern Hemisphere regions such as Europe and Central Asia) (Zhang et al.,
2014) and Solms-laubachia (migrated to Hengduan Mts) (Yue et al., 2009). The advent of
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the monsoon system is believed to have led to the formation of a mesic corridor in the
Indian sub-continental region through which plant species such as Begonia migrated from
Africa to Southeast Asia via the Himalaya (Rajbhandary et al., 2011).

ARIDIFICATION OF CENTRAL ASIA

Following the development of SW monsoon system, aridity in the Central Asian region
increased due to blockage of moisture laden winds by the uplift of the Himalaya and
the Tibetan Plateau (Miao et al., 2012). The aridification triggered the diversification of
many plant species with xerophytic adaptation and colonization of the Tibetan Plateau.
Specific examples of species divergence include split of arid palmate Frutescentes section
from its sister clades in the Caragana species complex around 8-7 Mya (Zhang ¢ Fritsch,
2010). Similarly, Phyllolobium, a genus diversified as a result of intense uplift, cold climate,
and ensuing aridity in the Tibetan Plateau (Table 1; Zhang et al., 2012). Central Asian
aridification is also reported to have triggered the divergences of three lineages of Ephedra
(eastern Tibetan Plateau, southern Tibetan Plateau, and northern China) (Qin et al., 2013).
Likewise, the dominance of Arfemisia in the present day vegetation of southwest and
southeast regions of Tibetan Plateau is the result of rapid uplift of Tibetan Plateau and
consequent prevalence of dry climate during and after the Late Miocene (Yunfa et al., 2011).

QUATERNARY CLIMATE AND THE HIMALAYAN
BIODIVERSITY

The Quaternary Period starting 2.6 Mya was characterized by expansive climatic
fluctuations including repeated advance and retreat of glaciers with intermittent warming
stages (Owen, Finkel ¢ Caffee, 2002; Owen, 2009). Almost the entire Northern Hemisphere
including Europe, North America and North-west Asia witnessed widespread glaciations
with ice sheets descending as far south as to 40°N latitude (Carlson & Winsor, 2012).
However, in the Himalaya, glaciations were confined to mountain peaks and high elevations
(Owen, 2009). More importantly, unlike other regions of the world, there is no evidence
of a uniform ice sheet covering the entire Himalayan range during the Quaternary glacial
stages (Owen, 2009). In fact, most of the glaciers are reported to have advanced up to 10
km from their present-day ice margins during various stages of glaciation (Owen, Finkel ¢
Caffee, 2002; Owen, 2009). Thus, the extent of glaciations in the Himalaya has been rather
restricted as compared to the other mountain systems such as Alps and Andes, most likely
due to the tropical location of the mountain range (Pandit, 2017).

Opverall, 3—4 significant glacial advances and retreats have been documented in different
regions of the Himalaya during the Quaternary period: Tibetan Plateau (4), Zanskar ranges
(3), Swat valley (3), Kanchenjunga ranges (4) and Khumbu mountains (4) (see Owen,
Finkel ¢ Caffee, 2002 and references therein). Despite the limited extent of glaciation, the
advance and retreat of glaciers had a significant effect on the evolutionary diversification
of plant species in the Himalaya (Pandit, 2017). Some species got extinct, some dispersed
to new warmer habitats in the south while some survived in glacial refugia in non-
glaciated habitats. Habitats with patchy landscape distribution and diverse environmental
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conditions offered spaces as refugial habitats for numerous plant species. Examples of
refugial habitats include low elevation areas of Tibetan Plateau (Aconitum gymnandrum,
Juniperus tibetica, Primula secundiflora), south-eastern edge of Tibetan Plateau (Potentilla
fruticosa, Metagentiana striata), and neighbouring Hengduan Mts (Pedicularis longiflora,
Tsuga dumosa, Juniperus przewalskii, Sinopodophyllum hexandrum) (Zhang et al., 2005;
Chen et al., 2008; Wang, 2008; Yang et al., 2008; Li et al., 2009; Wang et al., 2009; Cun &
Wang, 2010; Opgenoorth et al., 2010; Li et al., 2011; Hoorn et al., 2013). Moreover, multiple
refugia for a single plant species have also been reported such as for Pomatosace filicula
(Wang et al., 2014), Hippophae neurocarpa (Kou et al., 2014), Hippophae tibetana (Jia et al.,
2011), Rhododendron simsii (Li, Yan ¢ Ge, 2012) and Aconitum gymnandrum (Wang et al.,
2009). Development of multiple refugia was facilitated by the steep elevational gradient of
the Himalaya that allowed various taxa to rapidly disperse to lower elevation habitats after
traversing short geographic distances (Wen et al., 2014). Multiple recolonization events
from numerous refugia have been reported after the glacial retreat (Cun ¢ Wang, 2010;
Wen et al., 2014; Meng et al., 2015). As a result of episodic glacial advances and retreats,
the geographic ranges of the refugial plant taxa underwent repeated contractions and
expansions. Consequently, the multiple recolonization events resulted in frequent mixing
of floral taxa from different refugia followed by periodic hybridizations, adaptive radiations
and speciation resulting in greater species diversity (Pandit, 2017). Hybridizations post
recolonization events from refugia have been cited as an important mechanism for

the colonizing success of Rhododendron (Zha, Milne & Sun, 2008; Milne et al., 2010),
Meconopsis (Yang et al., 2012), and Pinus densata (Gao et al., 2012). Earlier studies have
reported that when previously isolated populations come in contact with each other
due to large scale glacial dynamics, hybridization followed by polyploidy is a common
phenomenon resulting in species divergence (Stebbins, 1984). There is evidence of
colonization success and dominance of polyploids in post-Pleistocene plant taxa in the
Himalaya (Pandit, Manish ¢ Koh, 2014; Pandit, 2017).

Pollen data from the Pleistocene epoch of Uttarakhand region in the WH indicates
that evergreen oaks (Quercus semecarpifolia) and alder (Alnus) dominated the Himalayan
landscapes around 0.0078 Mya when climate conditions were cold and wet with moderate
monsoon and were subsequently replaced by conifers (Pinus and Abies) around 0.0066
Mya when climate became warmer (Phadtare, 2000; Pandit, 2017). This indicates that
repeated climatic oscillations in the Quaternary influenced the vegetation composition of
the Himalaya. It has also been postulated that during each glaciation phase, the temperate
and alpine flora of the Himalaya moved southwards towards the lower elevations where
warmer temperatures prevailed (Mani, 1974; Pandit, 2017). During the interglacial phases
with the retreat of glaciers, these taxa subsequently became isolated and diversified. This is
evident by the common occurrence of large number of plant species with Sino-Himalayan
plants affinities on isolated hilltops of peninsular India, Western and Eastern Ghats and
as far south as Sri Lanka. Some examples of such temperate taxa representing Pleistocene
relicts are: Anemone rivularis (Himalaya, Nilgiri and Palni Hills), Clematis wightiana
(Himalaya, Nilgiri, Shevaroy and Palni Hills), Cnicus wallichii (Himalaya, Nilgiri and Palni
Hills), Geranium nepalense (Himalaya, Khasi Hills, Nilgiri and Sri Lanka), Gymnopetalum
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Table2 Generalized vegetation profile of the Western, Central and Eastern Himalaya. Overall, Western Himalaya is characterized by conifer-
ous forests of deodar, pines and silver fir, while Eastern Himalaya shows conspicuous presence of broad-leaved forests of oaks, Rhododendrons and
maples (Source: Adapted from Pandit & Kumar, 2013; Pandit, Manish & Koh, 2014; Manish et al., 2017; Pandit, 2017).

Himalayan Climate zones
zone
Tropical and sub-tropical Temperate Sub-alpine and alpine
Western Semi-deciduous forests of Shorea ro- This zone (1,500-3,500 m) is dom-
busta, Acacia catechu, Dalbergia sissoo, inated by oaks (Quercus spp.) and
Albizia lebbeck, Garuga pinnata, Ter- Rhododendron spp. Cedrus deodara,
minalia bellirica and T. tomentosa are Abies pindrow and Picea smithiana
found up to 1,500 m; at higher eleva- dominate elevations between 2,800—
tions, Pinus roxburghii occurs 3,500 m
Central Shorea robusta, Acacia catechu and Forest vegetation is similar to Western
Dalbergia sissoo comprise principal Himalaya, albeit with lesser number
tree species of this zone up to 1,500 m of Rhododendron species and with ad-
along with Haldina cordifolia, Kydia ditional presence of Berberis spp. and
calycina and Semecarpus anacardium; Prinsepia utilis
Pinus roxburghii forests appear at This zone (3,500 m and above) show
higher elevations preponderance of herbaceous gen-
Eastern Mesua assamica, Mesua ferrea, Albizia Evergreen oak forests of Quercus era of Anemone, Geranium, Iris, Lloy-

procera, Bombax ceiba, Careya arborea,
Gmelina arborea, Oroxylum indicum,
Duabanga grandiflora dominate up to
1,800 m; at higher elevations, Quercus
lamellosa and Mesua forests are found

lamellosa and Q. cerris dominate
along with Magnolia spp., Lithocarpus
pachyphyllus and Acer spp.; between
2,800-3,600 m, Abies delavayi, Abies
densa, Tsuga dumosa, Larix griffithii
and Rhododendron dominate

dia, Potentilla, Primula etc. inter-
spersed with dry dwarf alpine scrubs
of Berberis, Cotoneaster, Juniperus and
Rhododendron

(Deccan, Chotta Nagpur plateau), Litsea (Himalaya, Western Ghats), Polygala sibirica

(Himalaya, Khasi Hills, Western Ghats and Sri Lanka), Rhamnus virgatus (Himalaya, Palni
and Tinnevelly Hills), Stellaria media (Himalaya, Nilgiri, Shevaroy, Palni and Sri Lanka),
Thalictrum (Himalaya and Anaimalai Hills), Viburnum acuminatum (Mahendragiri,
Shevaroy, Palni and Nilgiri Hills), and Viola patrinii (Himalaya, Mahendragiri, Shevaroy,
Nilgiri and Palni Hills) (see Mani, 1974).

PRESENT-DAY HIMALAYAN BIODIVERSITY

The present-day Himalayan ecosystems exhibit a pronounced post-Pleistocene biodiversity,
but retain the mixed biotic character of having immigrant elements from different
biogeographic regions. Biogeographically, the Himalaya is a transitional zone located at
the cusp of three biogeographic realms, namely Palearctic, Afrotropical and Indo-Malayan
and Oriental realms in the north, southwest and southeast, respectively (see Mani, 1974).
As a result of this unique geographic location, the Himalaya is home to numerous Austro-
Polynesian, Sino-Tibetan, Euro-Mediterranean and Malayo-Burman biotic elements. A
simplified plant biodiversity profile occupying different Himalayan zones, viz. Western,
Central and Eastern Himalaya is presented in Table 2. The elevational limits of different
vegetation zones are slightly higher by 300-400 m in the Eastern Himalaya than the
Western Himalaya (Pandit, 2017). The principal reason for such an elevational zone shift
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is the latitudinal difference of nearly 10° between the Eastern and Western Himalaya (see
Pandit, 2017).

The development of present-day plant biodiversity in the Himalaya has largely been
shaped by the climate of the region. In the tropical and sub-tropical zones (up to 1,500 m),
temperature varies from 6 °C to 35 °C in various areas while rainfall variation is from 1,500
to 3,500 mm. These climate conditions are well suited for growth of deciduous and semi-
deciduous vegetation. The temperate zone (1,500-3,500 m) experiences an average annual
rainfall of 2,400 mm while temperature varies between 5-26 °C. Thus, mainly coniferous
forests dominate the temperate zone in the Himalaya. Low temperatures characterize
the sub-alpine and alpine zones (3,500 m and above) and the precipitation takes place
mainly in the form of snowfall, except in the summer, which lasts for only three months.
Thus, only plant communities with specialized adaptations to these harsh conditions
can survive in the sub-alpine and alpine zones, such as cushion forming communities
(Arenaria polytrichoides, Anaphalis cavei), tussocks or tufts (Kobresia schoenoides, Carex
parva), solifluction acrobats (Gentiana urnula, Eriophytum wallichii), and dense woolly
forms (Saussurea graminifolia, Glechoma nivalis).

CONCLUSIONS

The geophysical upheavals associated with the formation of the Himalaya led to significant
climate changes, new geophysical environments, novel ecological niches and formation of
physical and physiological isolation barriers that acted as natural selection sieves. These
geophysical changes including onset of monsoon, glaciation and glacial advance, and
retreat brought about adaptive radiations in the plant taxa. The Himalayan landforms were
initially colonized by migrant plant taxa from the neighboring biogeographic regions and
in due course, these early taxa established gene exchanges among them and formed new
variants that were highly adaptive to the changing physiography and climate of the area.
Once the final phase of the Himalayan uplift concluded, the environmental conditions
became suitable for the migrant species and the variants to evolve and diversify into
new taxa. Disjunct taxa distributions were brought about by the fragmented landscape,
while new physical and physiological barriers limited the expansion of species ranges.
Newly formed steep gorges and valleys imposed isolation barriers on the recently migrated
species enhancing the processes and rates of evolutionary divergence. As a net result, many
endemic taxa evolved and the Himalaya became a repository of unique assemblages of
plant species. Thus, having started as a ‘sink’ and a ‘biological highway’, the Himalaya
turned into a geographical barrier, promoting vicariance, species diversification and
endemism. However, only a few studies have empirically tested the above hypotheses and
those that have are based on only specific taxa. It is well known that different patterns
of diversification may exist for different taxa. Therefore, many of the stated hypotheses
here may appear as conjectures. Many unanswered questions still remain, that include:
(i) what was the nature of early migrants in the Himalaya; (ii) what were the ancestral
distributional areas of these migrants; (iii) what were the precise time periods during which
maximum migrations and endemic diversification occurred in the Himalaya; and (iv) were
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the migrations and diversifications widespread across phylogenies? A complementary and
integrative collaboration between researchers from varied backgrounds in earth sciences,
atmospheric sciences, palacobiology, biogeography and ecology are needed to solve these
evolutionary riddles in an important global biodiversity hotspot—the Himalaya.
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