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ABSTRACT: The cell proliferation marker, Ki67 and the immature neuron marker, doublecortin are both 

expressed in the major human neurogenic niche, the subependymal zone (SEZ), but expression progressively 

decreases across the adult lifespan (PMID: 27932973). In contrast, transcript levels of several mitogens 

(transforming growth factor α, epidermal growth factor and fibroblast growth factor 2) do not decline with age 

in the human SEZ, suggesting that other growth factors may contribute to the reduced neurogenic potential. 

While insulin like growth factor 1 (IGF1) regulates neurogenesis throughout aging in the mouse brain, the extent 

to which IGF1 and IGF family members change with age and relate to adult neurogenesis markers in the human 

SEZ has not yet been determined. We used quantitative polymerase chain reaction to examine gene expression 

of seven IGF family members [IGF1, IGF1 receptor, insulin receptor and high-affinity IGF binding proteins 

(IGFBPs) 2, 3, 4 and 5] in the human SEZ across the adult lifespan (n=50, 21-103 years). We found that only 

IGF1 expression significantly decreased with increasing age. IGFBP2 and IGFBP4 expression positively 

correlated with Ki67 mRNA. IGF1 expression positively correlated with doublecortin mRNA, whereas IGFBP2 

expression negatively correlated with doublecortin mRNA. Our results suggest IGF family members are local 

regulators of neurogenesis and indicate that the age-related reduction in IGF1 mRNA may limit new neuron 

production by restricting neuronal differentiation in the human SEZ. 
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The human brain retains the ability to generate new 

neurons throughout postnatal life with the largest 

reservoir of newly-born cells in the subependymal zone 

(SEZ, also subventricular zone) [1]. Neurogenesis in the 

human SEZ after infancy has been called into question [2, 

3] despite evidence supporting the existence of cells in 

different stages of neurogenesis throughout adulthood 

from both our laboratory and other groups [4-8]. Although 

the functional significance of neurogenesis in the human 

SEZ remains to be established, the putative integration of 

newly-generated interneurons into subcortical and 

cortical brain regions may contribute to synaptic plasticity 

and cognitive flexibility [9-12]. Cell culture experiments 

have advanced our understanding of the molecular control 

of neurogenesis by identifying growth factors as key 

regulators of proliferation and cell fate decision. 
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However, the extent to which growth factors and their 

receptors are altered with age in the human SEZ in parallel 

with the decline in cell proliferation and neuronal 

differentiation markers is only partially characterized [5, 

7, 13]. Transcript levels of transforming growth factor α, 

epidermal growth factor, fibroblast growth factor 2 and 

cognate receptors do not decrease during aging [7, 14] and 

point to the involvement of other mitogens such as insulin 

like growth factor (IGF) 1 and 2. 

IGF1 and 2 transcripts decrease in most regions of the 

rodent nervous system during postnatal life but levels 

remain elevated in adult neurogenic regions [15, 16]. 

IGF1 is expressed by neurons [17], astrocytes [18] and 

oligodendrocytes [19], whereas IGF2 is produced by the 

leptomeninges and choroidal epithelial cells [20]. IGF1 

signals predominantly through the IGF1 receptor (IGF1R) 

but can also bind with low affinity to the insulin receptor 

(INSR). IGF1R expression predominates in neuronal 

precursor cells, whereas INSR is abundantly expressed by 

neural stem cells in the adult SEZ [21]. IGF1 

bioavailability is regulated by high- and low-affinity IGF 

binding proteins (IGFBPs), which are expressed by 

endothelial cells, neurons and glia [22, 23]. IGFBP3 and 

IGFBP4 modulate neural precursor proliferation, 

differentiation and survival [24, 25]. 

IGF1 and IGFBPs are expressed in the peripheral 

blood and cerebrospinal fluid and show distinct age-

related alterations [26-29]. The entrance of peripheral 

IGF1 and insulin into the brain parenchyma is controlled 

by IGF1R, INSR, IGFBPs and low-density lipoprotein 

receptor-related proteins [30], and influences 

neurogenesis and cognition [31-33]. Werry and 

colleagues did not detect a change in IGF1 protein levels 

in the SEZ from adulthood into aging [14]; however, the 

amount of IGF1 available to signal could be impacted by 

age-related alterations in IGFBPs without a change in 

IGF1 itself. Since brain IGF1 protein levels can also be 

derived from the peripheral blood and cerebrospinal fluid, 

we hypothesized that local production of IGF1 and IGF 

family members would be reduced in the human SEZ and 

would correlate with expression of cell proliferation and 

neuronal differentiation markers.  

 

MATERIALS AND METHODS 

 

Human post-mortem brain samples 

 

Tissue from the anterior caudate of 50 healthy individuals 

was obtained from the Stanley Medical Research Institute 

and New South Wales Brain Tissue Resource Centre 

(Sydney, Australia; HREC 12435, HC16442). Cases had 

no known history of psychiatric symptoms or substance 

abuse and showed no significant neuropathology on post-

mortem examination. The brain cohort consisted of 9 

females and 41 males, with an average age of 52 years 

(±16.76, range 21-103 years), average pH of 6.59 (±0.25, 

range 5.95-7.03) and average post-mortem interval (PMI) 

of 29 hours (±10.75, range 9-58 hours). Demographic 

details of each individual have been described previously 

[7]. 

 

Processing of brain tissue 

 

Fresh-frozen caudate tissue was sectioned on a Leica 

CM3050 S cryostat, taking 20 x 60 µm sections 

interspersed with 10 x 14 µm sections. SEZ tissue was 

dissected from the caudate nucleus while frozen over dry 

ice from 60 µm thick sections, ~2 mm deep to the surface 

of the lateral ventricle. For each case, tissue was dissected 

from 3 sets of 3-4 adjacent 60 µm sections spaced ~1340 

µm to give 10 sections per case (~40 mg tissue total).  

 

RNA extraction and cDNA synthesis 

 

Total RNA was extracted for all cases using Trizol (Life 

Technologies). RNA quality and concentration were 

assessed with Agilent Technologies 2100 Bioanalyzer and 

Nanodrop ND-1000 spectrophotometer. The average 

RNA integrity number (RIN) was 7. cDNA was 

synthesized from 3 µg total RNA per case using 

SuperScript® First-Strand Synthesis kit and random 

hexamers (Life Technologies). 

 

Assessment of mRNA expression of IGF family 

members using quantitative reverse transcription 

polymerase chain reaction 

 

mRNA levels were measured by TaqMan Gene 

Expression Assays (Applied Biosystems; IGF1, 

Hs01547656_m1; IGF1R, Hs00609566_m1; IGFBP2, 

Hs01040719_m1; IGFBP3, Hs00181211_m1; IGFBP4, 

Hs01057900_m1; IGFBP5, Hs00181213_m1; INSR, 

Hs00961557_m1) using an ABI Prism 7900HT fast real-

time PCR system and a 384-well format. All 

measurements from each subject were performed in 

duplicate and relative quantities were determined from a 

seven-point standard curve of pooled cDNA. The no 

template controls did not produce a signal for any mRNA 

examined. Expression of two housekeeping genes, 

TATA-box binding protein (Hs00427620_m1) and 

ubiquitin C (Hs00824723_m1), was used to calculate the 

normalizing factor for gene expression (geometric mean), 

and neither of these mRNAs nor the geometric mean 

correlated significantly with age (all p>0.05, data not 

shown). Quantitative reverse transcription polymerase 

chain reaction data were captured with sequence detector 



 Weissleder C., et al                                                                                             IGF1 in human adult neurogenesis 

Aging and Disease • Volume 10, Number 1, February 2019                                                                           199 

 

software (SDS version 2.4, Applied Biosystems). SDS 

software plotted real-time fluorescence intensity and the 

threshold was set within the linear phase of the 

amplification profiles.  

 

Statistics 

 

Statistical analyses were performed using IBM SPSS 

Statistics Version 24 and GraphPad Prism Version 7.0 B. 

Results were considered as significant at an α level of 

p<0.05. Population outliers were defined as points lying 

outside of a 95% prediction interval from the linear 

regression line (1-3 individuals per target gene). Data 

were tested for normality using the Shapiro-Wilk test. 

Pearson’s product-moment correlations were used to 

investigate the relationships of brain cohort characteristics 

(age, pH, PMI and RIN) to each other and target gene 

expression. Pearson’s product-moment or semi-partial 

correlations were used to analyze age-related changes in 

target gene expression and their relationships to markers 

of cell proliferation and neuronal differentiation. When 

semi-partial correlations were performed, the semi-partial 

correlation coefficient sr is reported. Independent t-tests 

or analysis of variance co-varying for brain cohort 

characteristics were used as appropriate to detect sex-

related differences in gene expression, and sex did not 

show a significant effect on gene expression (p>0.05). 

 

RESULTS 

Expression of IGF family members in the human SEZ 

from young adulthood into aging 

 

Gene expression of seven out of ten IGF family members 

was reliably detected by quantitative polymerase chain 

reaction in the adult human SEZ from 21-103 years. 

Transcript levels of IGFBP1, IGF2 and IGF2 receptor 

were below the level of detection. IGF1 mRNA decreased 

significantly with age (sr=-0.39, p=0.006; Fig. 1A). 

IGFBP2 mRNA showed a trend towards an increase with 

age (r=0.26, p=0.06; Fig. 1B), whereas IGFBP3, IGFBP4 

and IGFBP5 mRNAs did not change across the adult 

lifespan (all p≥0.19; Fig. 1C-E). Transcript levels of 

IGFBPs did not correlate with IGF1 mRNA (all p≥0.09, 

data not shown). IGF1R and INSR mRNAs remained 

stable throughout adulthood (all p≥0.75; Figs. 1F, G).  

 

 

 

Table 1. Pearson’s product-moment correlations between gene expression of IGF family 

members and brain cohort characteristics in the human SEZ. 

 
 pH PMI RIN 

r p r p r p 

IGF1 0.518 <0.0001 -0.072 0.628 0.332 0.021 

IGFBP2 -0.361 0.012 -0.021 0.890 -0.137 0.354 

IGFBP3 -0.206 0.165 -0.229 0.122 0.185 0.214 

IGFBP4 -0.180 0.226 -0.031 0.837 -0.218 0.141 

IGFBP5 0.213 0.141 0.120 0.412 -0.085 0.561 

IGF1R -0.325 0.023 -0.198 0.172 -0.177 0.224 

INSR -0.046 0.756 0.263 0.071 -0.014 0.923 
 

PMI, post-mortem interval; r, Pearson’s product-moment correlation coefficient; RIN, RNA integrity number. Bold type = 

p≤0.05. 

Relationships of IGF family member transcripts to 

decreased expression of adult neurogenesis markers 

 

We analyzed the relationships between expression of IGF 

family members and expression of the cell proliferation 

marker Ki67 and of the immature neuron marker 

doublecortin (DCX) (Fig. 1H), which we have previously 

shown to progressively decline with age in the SEZ [7]. 

Ki67 mRNA positively correlated with IGFBP2 (r=0.30, 

p=0.04) and IGFBP4 mRNAs (r=0.40, p=0.006). IGF1 

mRNA was strongly positively correlated with DCX 

mRNA (sr=0.73, p<0.0001), whereas IGFBP2 mRNA 

showed a negative relationship with DCX mRNA (sr= -

0.36, p=0.01). 
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Figure 1. Gene expression of IGF family members and their relationships to neurogenesis markers in the human SEZ from 

young adulthood into aging. IGF1 mRNA significantly decreased in the aging SEZ (A). IGFBP2 mRNA showed a trend increase with 

age (B), while expression of IGFBPs 3-5, IGF1R and INSR remained stable throughout adulthood (C-G). Pearson’s product-moment 

and semi-partial correlations demonstrated different relationships between IGF family member expression and cell proliferation (Ki67) 

and immature neuron markers (DCX). Confounding brain cohort characteristics (in brackets) were considered as covariates in semi-

partial correlation analyses (H). RIN, RNA integrity number; sr, semi-partial correlation coefficient. Bold type = p≤0.05. 

 

 

Correlations between brain cohort characteristics and 

target gene expression 

 

Detailed statistical data for the relationships between 

brain cohort characteristics and target gene expression are 

presented in Table 1. Brain pH correlated with IGF1 

(r=0.51, p<0.0001), IGF1R (r=-0.32, p=0.02) and 

IGFBP2 mRNAs (r=-0.36, p=0.01). RIN positively 

correlated with IGF1 mRNA (r=0.33, p=0.02). No other 

significant relationships were detected between brain 

cohort characteristics and target gene expression. The 

relationships between age and other brain cohort 

characteristics (pH, PMI and RIN) have been described 

previously [7]. Briefly, age negatively correlated with pH 

(r=-0.43, p=0.002). No other significant relationships 

were detected between age, PMI, pH and RIN (all p>0.05, 

data not shown). Brain pH was excluded as a covariate 

during statistical analyses since aging is commonly 

associated with brain acidosis and thus dependent on the 

variable of interest. 
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DISCUSSION 

This study provides the first molecular evidence for an 

age-related reduction in local IGF1 expression in the 

human SEZ from adulthood into aging and lends 

translational support for the fundamental work in rodents. 

Our results suggest that subependymal cells remain 

responsive to IGF1 as indicated by stable expression of 

cognate receptors IGF1R and INSR. We found that 

IGFBP2 and IGFBP4 may be important in the regulation 

of cell proliferation, while IGF1 may promote neuronal 

differentiation. This study only allows evaluation of 

transcriptional alterations in the human SEZ at one time 

point; however, it is of high value considering the 

pronounced interspecies differences in neurogenesis and 

migration between rodents and humans [3, 9-11, 34]. 

The role of IGF1 signalling during aging remains 

unclear in many aspects [35]. Our results support studies 

in mice showing that IGF1 is important for neuronal 

differentiation in the hippocampus [36] and neuronal 

migration to the olfactory bulb [37]. Thus, the function of 

IGF1 in adult neurogenesis may be conserved across 

species and neurogenic regions. IGF1 restoration rescues 

the age-related decline in hippocampal neurogenesis and 

cognitive impairments in rodents [31, 32, 38] and 

represents a putative therapeutic target for 

neurodegenerative and neurodevelopmental disorders 

[39, 40]. In contrast, downregulation of peripheral IGF1 

signalling by genetic mutations delays aging and 

increases longevity [41-43]. IGF1R suppression in neural 

stem cells in the rodent SEZ prevents the age-related 

decrease in neurogenesis and olfactory deficits. This 

proliferation-promoting effect of reduced IGF1 signalling 

may prematurely deplete the neural stem cell pool; 

however, in silico modelling predicts that the number of 

stem cells is preserved until late adulthood [44] and 

accords with findings in the aged human SEZ [6, 7]. 

Long-lived Ames dwarf mice deficient in peripheral IGF1 

show increased levels of hippocampal IGF1, suggesting 

that peripheral levels may negatively feedback on local 

IGF1 synthesis. Ames dwarf mice have increased 

neurogenesis and maintain normal cognitive function 

until advanced age [45]. These opposing reports highlight 

the need for further studies to discern the complex role of 

IGF1 signalling during aging in the mammalian brain. 

The age-related decrease in IGF1 mRNA in the SEZ 

was not unexpected, although important to document in 

humans; however, it was unexpected that none of the 

other IGF family members declined with age. Since IGF1 

was the only transcript to change significantly throughout 

adulthood, there may be an age-related alteration in 

control of gene expression specific to IGF1, such as 

methylation, histone modifications or loss of 

transcriptional activators. Age-related changes in local 

and peripheral neurogenesis-regulating factors may act in 

concert to decrease Ki67 and DCX expression in the SEZ 

across the human lifespan [5, 7, 13, 46]. Ki67 relates to 

proliferation of cell types other than neural stem cells such 

as astrocytes and microglia but displays a more robust 

expression in canonical and non-canonical neurogenic 

niches in the human brain [47]. Significant correlations of 

Ki67 with IGFBP2 and IGFBP4 as well as DCX with 

IGF1 and IGFBP2 suggest that IGF family members may 

work together to regulate adult neurogenesis in the human 

SEZ. IGFBP4 impairs proliferation and enhances 

neuronal differentiation of progenitor cells [25], whereas 

our results indicate that IGFBP4 may promote cell 

proliferation in conjunction with IGFBP2. We suggest 

that other mitogen signalling pathways in addition to 

IGF1 signalling may act independently or synergistically 

to stimulate cell proliferation as fibroblast growth factor 

receptor 1 expression also positively correlates with Ki67 

mRNA [7]. IGF1 may act in concert with brain-derived 

neurotrophic factor and neuregulin signalling to promote 

neuronal differentiation as full-length tyrosine kinase 

receptor B and Erb-B2 receptor tyrosine kinase 4 

expression positively correlate with DCX mRNA [7, 13]. 

In contrast, IGFBP2 may negatively regulate neuronal 

differentiation. It is unlikely that IGFBP2 acts in isolation 

as epidermal growth factor and truncated tyrosine kinase 

receptor B expression also negatively correlate with DCX 

mRNA [7, 13]. 

In summary, our results support that IGF family 

members impact the age-related decline in cell 

proliferation and neuronal differentiation markers in the 

human SEZ, though specific factors involved may depend 

on the stage of neurogenesis. We suggest that IGF family 

members only partially contribute to the complex local 

milieu available to regulate neurogenesis in the adult 

brain. This study is limited by the homogenate-based 

experimental approach and further cell-type specific 

analysis would shed light on whether proliferating cells 

and immature neurons maintain responsiveness to IGF1 

during human aging. Gene expression studies also only 

provide clues as to whether protein levels may be altered 

and cannot ascertain if differences in brain protein levels 

may be of functional significance; however, several 

studies demonstrate that transcription changes in IGF 

family members significantly contribute to protein levels 

and to biological function [48-50]. We suggest that loss of 

local IGF1 function may impair neuronal differentiation 

and future work needs to establish if IGF1 restoration 

could rescue deficits in neurogenesis in the adult SEZ in 

the human brain. 
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