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form 24 different heterodimers [reviewed by  1 ]. Large ex-
tracellular domains of integrins mediate interactions 
with extracellular ligands, while the cytoplasmic do-
mains mediate communications with the cytoskeleton 
and signaling molecules [reviewed by  2 ]. Based on the 
crystal structure resolution of the  � v � 3 integrin extracel-
lular domain, ligand recognition is mainly mediated by a 
cationic binding site on the  �  subunit adjacent to the ex-
posed  �  subunit  [3, 4] . In addition, half of the 18  �  sub-
units contain a 200-amino acid inserted (I) domain which 
contributes to ligand recognition and specificity  [2, 5] . 

  During the last decade, the role of integrins in interac-
tions of various cells with their microenvironment has 
become a focus of intensive research. Recent studies on 
monocytes, neutrophils, platelets, fibroblasts, endotheli-
al, and pulmonary as well as intestinal epithelial cells 
(EC) demonstrated integrin involvement in regulation of 
virtually all vital cellular functions, including cell sur-
vival, proliferation, differentiation, migration, and cyto-
kine production [reviewed by  1, 6, 7 ]. Upon binding their 
extracellular ligands, integrins transmit outside-in sig-
nals that regulate various cellular functions. In addition, 
integrins are able to provide inside-out signaling regulat-
ing the affinity of integrin binding to its ligand, and such 
signaling can be induced by cellular activation with che-
mokines or cytokines. Hence, integrins act as bidirec-
tional signaling molecules  [1] . Several signaling pathways 
activated by integrin engagement were identified, such as 
mitogen-activated protein kinase (MAPK) and phospha-
tidylinositol 3-kinase (PI3-K) pathways  [8, 9] . Integrins 
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 Abstract 

 Integrins are a large family of heterodimeric transmembrane 
cell adhesion receptors. During the last decade, it has be-
come clear that integrins significantly participate in various 
host-pathogen interactions involving pathogenic bacteria, 
fungi, and viruses. Many bacteria possess adhesins that can 
bind either directly or indirectly to integrins. However, there 
appears to be an emerging role for integrins beyond simply 
adhesion molecules. Given the conserved nature of integrin 
structure and function, and the diversity of the pathogens 
which use integrins, it appears that they may act as pattern 
recognition receptors important for the innate immune re-
sponse. Several clinically significant bacterial pathogens tar-
get lung epithelial integrins, and this review will focus on 
exploring various structures and mechanisms involved in 
these interactions.  Copyright © 2008 S. Karger AG, Basel 

 Introduction 

 Integrins are a large family of  �  �  heterodimeric trans-
membrane receptors that interact with components of 
the extracellular matrix (ECM) and some cell-surface re-
ceptors. In humans there are 18  �  and 8  �  subunits which 
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are involved in focal adhesion complexes comprising 
over 20 signaling and adaptor proteins, regulating actin 
cytoskeleton rearrangement and cell motility  [10] . Bind-
ing of an integrin receptor to its ligand results in large-
scale conformational changes such as separation of the 
cytoplasmic domains of the  �  and  �  subunits which 
causes cytoskeletal rearrangements and activation of 
downstream signaling  [11] . According to the current con-
cept, integrins act as specific sensors for dynamic chang-
es in the microenvironment that occur during tissue de-
velopment, inflammation, and tumorigenesis, and mod-
ulate cellular responses to these changes  [6, 7, 9] .

  Integrin receptors of leukocytes are vital in both in-
nate and adaptive immune responses. In particular,  � 2 
integrins, such as LFA-1 ( � L � 2) and Mac-1 ( � M � 2), are 
essential for the activation of lymphocytes and for leuko-
cyte migration during inflammatory responses. Congen-
ital deficiency in  � 2 integrins (i.e. the leukocyte adhesion 
deficiency) is characterized by recurrent, severe bacterial 
infections that are eventually fatal  [12] . Recent studies 
have emphasized the importance of leukocyte integrins 
in the cross talk with immunoreceptors, including T cell 
receptor and Fc receptors, for immune responses  [13] . 
However, the role of epithelial integrins in innate im-
mune and inflammatory responses in mucosal tissues, 
such as pulmonary epithelium, remains poorly under-
stood.

  Integrin Receptors in the Lung 

 EC are currently recognized as primary elements gen-
erating inflammatory signals to activate other cells in the 
lung  [14] . Pulmonary EC express an array of innate im-
mune receptors, such as Toll-like receptors (TLR), as well 
as cytokine, growth factor and histamine receptors, in-
volved in the regulation of dynamic interactions of the 
epithelium with the environment. Integrin receptors are 
significantly represented in pulmonary epithelium. Eight 
different integrin heterodimers are expressed in airway 
EC, i.e.  � 2 � 1,  � 3 � 1,  � 6 � 4,  � 9 � 1,  � 5 � 1,  � v � 5,  � v � 6, 
 � v � 8  [7] . These heterodimers recognize a range of ECM 
proteins: collagen I, tenascin C, laminins 5, 10, 11, osteo-
pontin, fibronectin (Fn), vitronectin (Vn), and others  [7] . 
It is known that lung epithelial integrins are critical for 
maintaining epithelial integrity, repair of damaged cells, 
and regulation of cell differentiation and proliferation  [7, 
15] . The expression of integrin receptors in the respira-
tory epithelium is tightly regulated, and rapid increase in 
 � 5 � 1 integrin level in response to injury has been dem-

onstrated  [16] . Accordingly, integrin receptor ligands 
such as Fn, Vn, tenascin C, and osteopontin are rapidly 
induced at sites of epithelial damage or injury  [7] . 

  Despite the significant advances in the understanding 
the functions of pulmonary integrins, signaling path-
ways regulated by these receptors in the lung are still in-
completely characterized. Lung epithelial integrins are 
known to provide co-stimulatory signals towards growth 
factor receptors, regulating cell survival and proliferation 
[reviewed by  7 ]. However, the co-stimulatory functions of 
pulmonary integrins appear to be wider and involve the 
cross talk with other receptors. We have recently found 
that  � 1 integrins in human bronchial EC provide co-
stimulatory signals that increase TNF-induced proin-
flammatory responses  [17] . Interestingly, integrin-medi-
ated responses in these cells involved activation of the 
nonreceptor protein tyrosine kinase (PTK) Syk recently 
discovered in the respiratory epithelium  [17] .

  The Role of Integrin Receptors in Recognition of 

Pathogenic Microorganisms 

 Several significant human pathogens are known to 
utilize integrins and exploit integrin-mediated signaling 
to invade various types of host cells. Such mechanisms 
can be advantageous to the microorganisms, because the 
invasion of host cells often confers protection against the 
immune response, and may facilitate microbial growth 
and spreading to other cells. On the other hand, the re-
sulting integrin-mediated signaling is potentially impor-
tant for innate immune and inflammatory responses to 
the pathogen. As a variety of pathogens (bacteria, viruses, 
and fungi) bind integrins and elicit integrin-mediated 
signaling, it seems likely that integrins may serve as 
pathogen recognition receptors. 

  Several pathogenic bacteria are able to bind integrin 
receptors directly, via some specific adhesins. These are 
typically not respiratory pathogens but ones that rather 
invade other mucosal tissues such as the gastrointestinal 
epithelium ( Yersinia enterocolitica, Y. pseudotuberculosis  
 [18–21]  and  Helicobacter pylori   [22] ), or urethral epithe-
lium ( Neisseria gonorrhoeae   [23] ). The best-studied ex-
ample of bacteria directly binding and exploiting integ-
rin-mediated signaling mechanisms is the enteric patho-
gen  Y. pseudotuberculosis  [reviewed by  24 ]. These bacteria 
possess an outer membrane protein (OMP) invasin that 
binds to the  � 1 subunit of five integrin heterodimers 
( � 3 � 1,  � 4 � 1,  � 5 � 1,  � 6 � 1 and  � v � 1) expressed on micro-
fold (M) cells in Peyer’s patches of the small intestine  [18] . 
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Binding of invasin to integrin receptors leads to forma-
tion of focal adhesion complexes and subsequent activa-
tion of intracellular signaling  [20] . The resulting activa-
tion of the guanosine triphosphatase (GTPase) Rac1 
causes cytoskeletal rearrangement, mediating bacterial 
internalization [reviewed by  25 ]. 

  Some bacteria have the ability to bind integrins both 
directly and indirectly through an ECM ligand. For ex-
ample,  Borrelia burgdorferi , the causative agent of Lyme 
disease, possesses an Fn-binding protein (FnBP) BBK32 
 [26] . In addition,  B. burgdorferi  has an  � 3 � 1 integrin-
binding protein BBB07 which directly activates proin-
flammatory responses in human chondrocytes  [27, 28] , 
as well as an  � v � 3-binding OMP P66 which mediates 
bacterial adhesion to host cells  [29] .

  However, the majority of integrin-binding microor-
ganisms interact with integrins indirectly using ECM-
binding proteins as a molecular bridge to engage these 
receptors. In these cases, integrin receptors recognize the 
common arginine-glycine-aspartate (RGD) sequence 
that is present in ECM proteins, such as Fn or Vn  [30] . 
The resulting integrin-mediated signaling does not seem 
to depend on the type of the interactions, as both direct 
and indirect binding to integrins lead to tyrosine kinase 
phosphorylation, recruitment of adaptor molecules, and 
cytoskeletal rearrangement required for bacterial engulf-

ment, as well as induction of proinflammatory cellular 
responses. However, the number of known microbial 
ECM-binding adhesins greatly outweighs those that bind 
integrins directly. 

  Several clinically significant bacterial pathogens tar-
get lung epithelial integrins, and this review will focus on 
exploring various structures and mechanisms involved 
in these interactions (summarized in  table 1 ). 

   Staphylococcus aureus  

  S. aureus  is an important pathogen causing nosoco-
mial pneumonia as well as an initial lung infection in 
cystic fibrosis (CF) patients frequently followed by  Pseu-
domonas aeruginosa   [31] . The exploitation of ECM prod-
ucts and integrins by  S. aureus  during the infectious pro-
cess was recently discussed in an excellent review by 
Hauck and Ohlsen  [32] . 

  The ability of  S. aureus  to bind Fn is mediated by the 
FnBP that exists as two variants, A and B, encoded on two 
closely related genes  [33] .  S. aureus  FnBP adheres strong-
ly to the N-terminal of Fn  [34] , specifically to the five type 
I-module amino terminal repeat motif of Fn  [35] , exploit-
ing the modular structure of Fn by forming a tandem
 � -zipper attachment site  [36] .

Table 1. Respiratory bacterial pathogens that exploit integrins or their ECM ligands during infection

Bacteria Bacterial structures
interacting with integrins

Integrins involved Results of bacterial interactions with integrins Ref. No.

S. aureus FnBP A or B �5�1 Adhesion/invasion 39–41
Activation of FAK and Src signaling
ILK-dependent internalization

46–48
49

S. pyogenes M1 protein
PrtF1/SfbI

�5�1 Adhesion/invasion of lung EC
ILK activation
Paxillin phosphorylation-dependent internalization

49, 57, 60

Scl1 �2�1 Adhesion/invasion of lung EC 64

Mycobacterium
species

FAP
Antigen 85B

�5, �v, �1, �3 Adhesion to and invasion of lung EC 66, 73

P. aeruginosa Putative 50 kDa OMP �5�1 or �v�5 Adhesion to and invasion of lung EC 76, 78, 79

B. pertussis FHA �5�1 (lung EC) Activation of lung EC inflammatory response 83, 87, 88
�M�2 (alveolar
macrophages)

Invasion of alveolar macrophages and induction of
inflammation

81, 86

H. influenzae Hap �5�1, potentially
�3�1, �v�6

Involved with TLR-4 and platelet-activating factor
receptor-dependent uptake by M cells

92, 93

S. pneumoniae PavA FnBP �5�1? Unclear, associated with adherence and invasion of EC 93, 94
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   S. aureus  exploit the adhesion to Fn by using the latter 
as a molecular bridge between bacteria and host integ-
rins, allowing the bacteria adhere to the cell surface and 
also to invade the host cells by becoming internalized [re-
viewed by  37, 38 ]. The use of Fn to bind to  � 5 � 1 integrins 
on host cells was originally proposed by Sinha et al.  [39]  
based on the ability of  � 1 antibody to inhibit  S. aureus  
invasion of human embryonic kidney cells, and these 
findings were supported by similar studies using HeLa 
EC and endothelial cells  [40, 41] . 

   S. aureus   � -toxin is secreted by the bacterium during 
later stages of infection, and can interact with  � 1 integ-
rins resulting in decreased adhesion and invasion of the 
pathogen. The interaction of  � -toxin with  � 1 integrin in-
hibits bacterial adhesion via the Fn bridge, thus eliminat-
ing cell signaling activation that would cause the inter-
nalization. This is an elegant example of a bacterial inter-
ference with the adhesion/invasion cell machinery during 
the later stages of infection, when it may be advantageous 
for the pathogen to seek out new infectious targets  [42] . 
Although the molecular mechanisms of interactions be-
tween  S. aureus   � -toxin and integrin receptors remain 
undefined, a recent study suggests a possibility of a direct 
binding of the  � -toxin to  � 5 � 1 integrin in lung EC  [43] . 
Such interactions can be potentially involved in the 
pathogenesis of staphylococcal pneumonia as the  � -tox-
in-induced death of EC was found to be partially medi-
ated by  � 5 � 1 integrin  [43] .

  A number of studies suggest that the internalization of 
 S. aureus  depends on cellular events initiated by integrin 
receptors following bacterial adhesion  [39, 44] . PTKs, 
which can be found in integrin-associated signaling com-
plexes, are activated by the engagement of  � 1 integrins and 
involved in  S. aureus  internalization  [45] . More specifi-
cally, it is the signaling via the Src family of PTKs that is 
necessary, since Src inhibitors and certain Src-deficient 
cell lines show decreased  S. aureus  uptake  [46, 47] . Focal 
adhesion kinase (FAK) is another PTK whose inhibition 
results in decreased  S. aureus  invasion, suggesting a role 
of FAK as a signaling intermediate between integrins and 
Src  [48] . The serine-threonine protein kinase integrin-
linked kinase (ILK) is attached to the actin cytoskeleton, 
and is also necessary for  S. aureus  uptake, emphasizing the 
importance of actin remodeling for the internalization of 
bacteria  [49] . In addition,  S. aureus  binding to integrins 
via FnBP can activate actin remodeling that results in in-
creased bacterial motility on the cell surface preceding the 
internalization  [50] . Hence, binding of  S. aureus  to  � 5 � 1 
integrin via FnBP activates signaling pathways that can 
mediate host responses to the pathogen. 

  Although interactions of  S. aureus  with airway EC are 
incompletely understood,  S. aureus  adhesion to these 
cells has been shown to be significantly dependent on the 
presence of a functional FnBP, suggesting the involve-
ment of integrins in this process  [51] . However, the role 
of integrins in the internalization of  S. aureus  by pulmo-
nary EC has not been directly addressed. 

   Streptococcus pyogenes  

  S. pyogenes  is an important pathogen that primarily 
infects the skin and epithelium of the upper respiratory 
tract.  S. pyogenes  can cause severe pneumonia, as well as 
wound infections, septicemia, and endocarditis  [52] . It 
has been known since the 1980s that  S. pyogenes  is ca-
pable of binding Fn, and that the attachment to ECM pro-
teins may be important in invasion of the epithelium  [53, 
54] . This is now understood to be due to numerous
FnBPs present on the surface of  S. pyogenes , particularly 
M1 protein and PrtF1/SfbI  [55] . Cue et al.  [56]  found that
 S. pyogenes  binding of Fn via M1 protein was critical for 
invasion of EC, and that this process was abrogated by 
antibodies to  � 5 � 1 integrin. Using integrin inhibitors, it 
was demonstrated that the invasion of EC by streptococ-
ci was mediated by formation of integrin  � 5 � 1-Fn-M1 
protein complexes  [57] . However, M1–/SfbI+ strains of
 S. pyogenes  are also capable of invading EC in an integrin-
mediated fashion suggesting the redundancy in the 
mechanisms of bacterial pathogenesis  [58, 59] . More re-
cent studies have demonstrated that blocking of ILK, a 
key molecule in integrin-mediated signaling, abolished 
 S. pyogenes  uptake  [49] . Downstream of ILK, phosphory-
lation of the adaptor protein paxillin has been shown to 
be crucial in M1+  S. pyogenes  internalization  [60] . These 
findings provide clear evidence that  S. pyogenes  utilize 
integrins as receptors during EC invasion. 

  It has been suggested that streptococci may induce up-
regulation of integrins in EC to allow for increased bacte-
rial adhesion and internalization. Indeed, during infec-
tion of lung EC with  S. pyogenes , gene transcription of  � 5 
integrin and Fn greatly increased and was followed by an 
increase in both  � 5 integrin and Fn protein expression by 
EC  [61] . Moreover,  S. pyogenes  are able to induce active 
transforming growth factor (TGF)- �  1  production in hu-
man tonsil fibroblasts, and TGF- �  1  in turn upregulates 
the expression of both  � 5 integrin and Fn  [62] . As a result 
of an increased  � 5 � 1 integrin expression, a subsequent 
increase in streptococcal invasion occurred, this time in 
an FnBP-dependent manner  [62] . The latter study also 
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suggested that  S. pyogenes -infected fibroblasts can repre-
sent chronic sources of TGF- �  1  in vivo, causing upregula-
tion of integrins in the surrounding epithelium. Interest-
ingly, there appears to be a reciprocal interaction between 
TGF- �  and integrin receptors, as  � v � 6 integrin can bind 
TGF- �  latency-associated peptide and activate TGF- �  
 [63] . This study suggested that the complex interplay in-
volving TGF- �  and integrin  � v � 6 in lung EC initiated by 
microbial compounds is critical in lung innate immune 
defense  [63] . 

  In addition to the well-known process of streptococcal 
internalization mediated by the FnBP, there is a possibil-
ity of direct interactions of these pathogens with integrin 
receptors. A recent study demonstrated that  S. pyogenes  
can adhere to and become internalized by human pha-
ryngeal EC via a direct interaction between the collagen-
like bacterial protein Scl1 and the epithelial collagen re-
ceptor,  � 2 � 1 integrin  [64] . The authors suggested that 
this novel molecular mechanism can contribute to the 
bacterial pathogenesis as it enhances streptococcal intra-
cellular survival and reemergence from infected cells 
 [64] .

  Mycobacteria 

 Pathogenic mycobacteria, including the cause of the 
most significant infectious disease worldwide  Mycobac-
terium tuberculosis , possess remarkable abilities to evade 
the immune system of the infected host. Interaction of
 M. tuberculosis  with alveolar macrophages allowing these 
bacteria to survive and even replicate within the phago-
cytic cells is a hallmark of pulmonary tuberculosis, and 
has been studied extensively  [65] . However, the mycobac-
teria also invade EC in the respiratory mucosa, and this 
may represent the site of primary uptake of bacteria dur-
ing the infection process  [66] . Although the molecular 
mechanisms behind mycobacterial invasion of pulmo-
nary EC remain largely undefined, some data indicate 
that integrin receptors as well as their ECM protein li-
gands can be significantly involved. Fn was first impli-
cated in  M. bovis  adherence to bladder epithelium  [67, 
68] , and later it appeared that both attachment and inter-
nalization via Fn binding were highly conserved in my-
cobacteria  [69] . Middleton et al.  [70]  demonstrated that 
 M. tuberculosis  adheres to ECM components at least in 
part via an Fn attachment protein (FAP) and antigen 85B 
protein, the latter also being involved in Fn binding  [71] . 
Similarly,  M. avium  adheres to Fn via FAP in areas of 
epithelial damage  [72] . 

  As the ECM proteins are natural ligands for integrins, 
such bacteria-ECM interactions may serve to bridge my-
cobacteria to integrin receptors. Indeed, a study by Ber-
mudez and Goodman  [66]  demonstrated that  M. tuber-
culosis  invasion of A549 type II alveolar pneumocytes 
was greatly inhibited by treating cells with anti- � v or 
anti- � 1 integrin antibodies, and nearly abolished when 
treating them with both. Secott et al.  [73]  showed similar 
inhibition of  M. paratuberculosis  adhesion to and inva-
sion of bovine intestinal EC following treatment with 
blocking peptides or neutralizing antibodies to  � 5,  � v, 
 � 1, and  � 3 integrins. These studies indicate that various 
ECM components can serve as a molecular bridge be-
tween mycobacteria and integrins, and that multiple in-
tegrins can potentially mediate mycobacterial invasion of 
epithelium. Interestingly, a recent study implicated  � 1 in-
tegrins, along with TLR-2 and ADAM9, in macrophage 
fusion during formation of tuberculous granulomas, rep-
resenting a critical event in the pathogenesis of pulmo-
nary tuberculosis, although the precise mechanisms of 
integrin involvement in this process remain unknown 
 [74] .

   Pseudomonas aeruginosa  

 The opportunistic Gram-negative pathogen  P. aerugi-
nosa  causes acute life-threatening infections in immu-
nocompromised patients. It is also the leading cause of 
ventilator-associated pneumonia in intensive care units 
and of burn wound infections with high mortality rates. 
 P. aeruginosa  is the major cause of chronic pulmonary 
infection in CF patients  [75] . Both integrin receptors and 
their ligands have been implicated in adhesion and inter-
nalization of  P. aeruginosa  in the lung epithelia. A num-
ber of studies demonstrated the ability of  P. aeruginosa  to 
bind Fn  [76, 77]  and Vn  [78] , the  � 5 � 1 and  � v � 5 integrin 
ligands, respectively. Some papers suggest that  � v � 5 and 
 � 5 � 1 integrins can also directly mediate  P. aeruginosa  
adherence to and invasion of respiratory EC  [76, 78, 79] . 
The molecular mechanisms of such interactions have not 
yet been defined, although a 50-kDa OMP of  P. aerugi-
nosa  was found associated with  � 5 � 1 integrins in respira-
tory EC  [79] . 

  In the process of epithelial injury and repair, the ex-
pression of  � 5 � 1 receptors is increased with their redis-
tribution from basolateral to apical sides, and respiratory 
EC synthesize large amounts of Fn potentially providing 
a basis for an enhanced adherence of  P. aeruginosa   [79] . 
Adherence of  P. aeruginosa  to laminin, another compo-
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nent of the ECM and the  � 3 � 1 integrin ligand, unmasked 
following epithelial injury, was also implicated in bacte-
rial colonization of injured tissues  [80] .

  Our recent observations have demonstrated that  P. ae-
ruginosa  infection caused a rapid upregulation of integ-
rins  � 5,  � v,  � 1, and  � 4 in A549 type II pneumocytes 
[Gravelle et al., unpubl. data]. Interestingly, this effect re-
quired live bacteria possessing intact pili and lipopoly-
saccharide (LPS), because heat-killed, pili-deficient, or 
outer-core oligosaccharide-deficient  P. aeruginosa  mu-
tants did not alter the expression of integrins [Gravelle et 
al., unpubl. data]. These findings imply that pulmonary 
epithelial integrins can be involved in recognition of spe-
cific microbial products of  P. aeruginosa  and hence be 
important in innate immune responses to this patho-
gen.

   Bordetella pertussis  

 The Gram-negative coccobacillus  B. pertussis  is the 
causative agent of whooping cough. The bacteria possess 
a number of virulence factors that are capable of exploit-
ing integrin receptors of both pulmonary EC and mono-
cytes/macrophages in the process of microbial pathogen-
esis. The major  B. pertussis  adhesin, filamentous hemag-
glutinin (FHA), contains an RGD sequence which allows 
the bacterium to invade alveolar macrophages by binding 
to  � M � 2 integrin  [81, 82] , as well as airway EC by bind-
ing to  � 5 � 1 integrin  [83] . 

  The interactions of FHA with  � M � 2 integrin are es-
sential for  B. pertussis  internalization into macrophages 
and intracellular survival  [82] .  B. pertussis  binding to 
 � M � 2 integrin activates cell signaling pathways which 
lead to upregulation of  � 3-containing integrins and the 
integrin-associated protein CD47, which in turn upregu-
lates  � M � 2  [84] . The bacterium is thus able to exploit 
integrins using a positive feedback loop, resulting in in-
creased survival and persistence at the site of infection. 
In addition,  B. pertussis  produces a repeat in toxin (RTX) 
adenylate cyclase toxin called CyaA, which further ex-
ploits  � M � 2 integrins in macrophages by binding them 
and subsequently converting cellular ATP to cAMP, sup-
pressing the bactericidal activities of these cells [reviewed 
by  85 ]. Recent studies demonstrated that via interaction 
with  � M � 2 integrins, the adenylate cyclase toxin also in-
duces cyclooxygenase 2 (COX-2) in macrophages. The 
latter protein can then significantly contribute to the in-
flammatory responses caused by  B. pertussis   [86] .

   B. pertussis  is also able to invade host EC through the 
interactions of FHA with  � 5 � 1 integrins  [83] . Such inter-
actions appeared to be important not only for bacterial 
invasion, but also for inflammatory responses. Indeed, in 
vitro engagement of  � 5 � 1 integrins by FHA caused RGD-
dependent activation of nuclear factor kappa B (NF- � B) 
and, as a result, up-regulation of intercellular adhesion 
molecule-1 (ICAM-1) expression in lung EC  [87, 88] .

   Haemophilus influenzae  

  H. influenzae  are Gram-negative commensal bacteria 
commonly found in the upper respiratory tract but they 
also can cause respiratory diseases such as pneumonia, as 
well as invasive systemic infections  [89] . The major viru-
lence factor of  H. influenzae  is the polysaccharide cap-
sule. Encapsulated strains of  H. influenzae  are designated 
as types a, b, c, d, e, and f according to their capsular an-
tigens, type b being the most important clinically and 
causing severe invasive diseases, i.e. meningitis, epiglot-
titis, and septicemia.  H. influenzae  that lack capsular 
polysaccharides are referred to as nontypeable and are 
less virulent. Many clinical isolates of nontypeable  H. in-
fluenzae  are able to bind ECM proteins  [90] . For example 
Hap, an ubiquitous nonpilus adhesin of  H. influenzae,  
specifically binds to Fn, laminin and collagen IV, and 
such interactions mediate bacterial adhesion to the ECM 
 [91] . These data suggest that  H. influenzae  can indirectly 
bind integrin receptors representing the natural ligands 
for these ECM proteins in the respiratory epithelium, i.e. 
 � 5 � 1,  � 3 � 1,  � v � 6  [7] . However, integrin involvement in 
adherence of  H. influenzae  to the respiratory epithelium 
has not been directly explored. Nevertheless, the uptake 
of nontypeable  H. influenzae  by M cells in the intestinal 
epithelium was mediated by  � 5 � 1 integrin along with 
TLR-4 and platelet-activating factor receptor, as demon-
strated by the blocking of translocation of bacteria into 
M cells in the presence of specific receptor inhibitors 
 [92] .

   Streptococcus pneumoniae  

 The leading cause of community-acquired pneumo-
nia,  S. pneumoniae  (pneumococcus), possesses an FnBP 
protein PavA essential for the virulence  [93] . PavA is 
structurally homologous to the FnBP of other pathogen-
ic bacteria such as  S. pyogenes  and  S. gordonii   [94] . It is 
possible that adhesion to and invasion of lung EC that is 
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critical in the pathogenesis of pneumococcal pneumonia 
can be mediated by Fn- � 5 � 1 integrin interactions, as in 
case of other infections. However, the direct role of PavA 
in pathogen-host interactions and inflammatory re-
sponses caused by  S. pneumoniae  remains to be deter-
mined.

  Other Microbes 

 Integrins are also implicated in the pathogenesis of 
some fungal and viral pulmonary infections. The fungus 
 Pneumocystis carinii , a major cause of acute pneumonia  
 in AIDS patients, uses an FnBP to adhere to  � v and  � 5 
integrins  [95, 96] . Furthermore,  P. carinii  is able to induce 
upregulation of integrins, possibly enhancing its own ad-
herence to lung EC  [97] . Interestingly, some pathogenic 
fungi, such as  Pneumocystis  species and  Candida albi-
cans , possess molecules with integrin-like features that 
mediate fungal adhesion to Fn  [98, 99] . A novel  Pneumo-
cystis  molecule PCINT1 with significant structural fea-
tures of an integrin-like adhesion receptor has been re-
cently characterized  [99] . The results of the latter study 
suggest an important role of this molecule in pathogen-
host lung EC interactions during  Pneumocystis  pneumo-
nia    [99] .

  A number of viruses that infect the respiratory epi-
thelium have been shown to use integrin receptors for 
both cell entry and induction of intracellular signaling 
important for disease pathogenesis. Some examples in-
clude members of adenovirus, herpesvirus, hantavirus , 
 picornavirus ,  Reoviridae families [reviewed by  100 ]. 
Such viruses directly bind to a variety of integrins pres-
ent in the respiratory epithelium, e.g.  � 2 � 1,  � 3 � 1,  � 5 � 1, 
 � v � 5,  � v � 6, and use them as receptors to attach to the 
cells and enter them. The mechanisms of virus interac-
tions with integrins and their significance for viral 
pathogenesis have been recently discussed in a compre-
hensive review  [100] . Several viruses, e.g. Coxsackie-
viruses, foot-and-mouth disease viruses, human par-
echoviruses, and echoviruses possess a functional RGD 
motif in one of their capsid proteins that allow viruses 
to bind integrins, i.e.  � v � 3 or  � v � 6  [101] . Interactions 
of viruses with integrin receptors are proven to be im-
portant in the pathogenesis of a variety of conditions 
ranging from acute upper respiratory tract infections 
and foot-and-mouth disease to highly lethal hantavirus 
pulmonary syndrome  [100] . Recent data implicate that 
the severe acute respiratory syndrome-related corona-
virus possesses the ability of binding to integrin I do-

mains  [102] . However, it is still unclear whether integ-
rin-mediated interactions are involved in coronavirus 
entry into lung EC.

  Integrins as Innate Recognition Receptors 

 According to the current concept, the recognition of 
pathogen-associated molecules is critical for innate im-
munity. Among the pattern recognition receptors (PRRs), 
TLRs are key molecules that sense the invasion of patho-
gens based on their typical molecular structures, such as 
LPS, peptidoglycans, flagella, single-stranded or double-
stranded RNA, CpG DNA, etc.  [103] . Such structures are 
unique to microorganisms in contrast to metazoans, and 
therefore allow for discrimination between self and non-
self that is essential for immune defense  [103] . Upon their 
activation, TLRs induce signal transduction leading to 
inflammatory responses and eventually to elimination of 
the invader. However, microorganisms are capable of 
binding various receptors of host cells resulting in com-
plex cellular responses. It has now been recognized that 
there exists a huge diversity in innate immune receptors, 
in addition to the best-studied TLRs. The importance of 
non-TLR PRRs, such as Nod-like receptors, C-type lec-
tins, scavenger receptors, or protease-activated receptors, 
as integral components of innate immune recognition, 
has been recently discussed in several excellent reviews 
 [104–106] . The role of integrins as PRRs is still unclear, 
although leukocyte integrins serving as complement re-
ceptors, e.g. Mac-1, are recognized as PRRs for certain 
pathogens  [107] . The role of epithelial integrins in innate 
immunity is even less understood, despite the fact that 
these receptors are highly expressed in mucosal surfaces, 
such as airway EC. 

  We propose that lung epithelial integrins may act as 
PRRs based on both their significance in many host-
pathogen interactions and on common characteristics 
with other PRRs, such as TLRs ( table 2 ). Like TLR, inte-
grin receptors are germline-encoded and highly con-
served in the evolution, present in all metazoans includ-
ing invertebrates, e.g. ascidians, nematode worms and 
 Drosophila   [108] . As outlined above, integrins are able to 
bind a wide variety of microorganisms, including both 
Gram-positive and Gram-negative bacteria, viruses, and 
fungi. Moreover, it has been demonstrated that integrin 
receptors are able to sense diverse pathogen-associated 
molecular structures, although many of the specific li-
gands involved in such pathogen-host interactions are 
still unknown. Interestingly, a variety of microorgan-
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isms, i.e.  S. aureus ,  S. pyogenes , mycobacteria,  S. pneu-
moniae , possess various Fn-binding proteins allowing in-
teractions with integrin heterodimers using Fn as a mo-
lecular bridge. Remarkably, the subsequent cellular 
responses are different from those elicited by Fn alone. 
Some other pathogens bind directly to integrins, forgoing 
the use of ECM proteins. For example,  Y. pseudotubercu-
losis  invasin interacts directly with  � 1 integrins, as does 
 B. pertussis  FHA  [18, 81, 83] . Interestingly, FHA binds to 
integrins via an RGD domain like the interaction be-
tween integrin receptors and their natural ECM ligands 
( fig. 1 ). 

  As in case of other PRRs, integrin engagement by 
pathogenic microorganisms results in activation of cel-
lular responses important for innate immunity and in-
flammation. The hallmark of such responses is the acti-
vation of the transcription factor NF- � B followed by 

transcriptional regulation of proinflammatory cytokine, 
chemokine, and adhesion molecule (ICAM-1) expres-
sion. Indeed, integrin receptor engagement by some 
pathogenic bacteria, such as  B. pertussis  and  Y. pseudotu-
berculosis  caused NF- � B-mediated proinflammatory 
cellular responses  [21, 88]  ( fig. 2 ).

  It is known that PRRs, i.e. TLRs, can be upregulated 
upon their engagement enhancing host responses to in-
fection  [109–111] . Similarly, integrins can be upregulated 
during infection as demonstrated in models of  S. pyo-
genes   [62] ,  P. carinii   [97]  and  P. aeruginosa  infections 
[Gravelle et al., unpubl. data]. 

  It is recognized that TLRs as well as other PRRs are 
engaged in an integrated signaling cross talk  [105] . Sim-
ilarly, some recent studies identified integrins as impor-
tant components of signaling complexes involved in cel-
lular responses to pathogen-associated molecular pat-

Table 2. Characteristics of integrin receptors shared with other PRRs, i.e. TLRs

Characteristics Integrins TLRs

Genetic encoding Germline-encoded receptors [120] Germline-encoded receptors [103, 105, 122]

Evolutionarily conserved Present in nematode worms, insects,
ascidians and all vertebrates [108]

Present in nematode worms, insects and all vertebrates 
[123]

Recognition of broad
classes of pathogens

Gram+ bacteria [39, 57, 66]
Gram– bacteria [79, 83, 121]
Fungi [96]
Viruses [100]

Gram+ bacteria, Gram– bacteria, fungi, viruses, parasites 
[122]

Recognition of pathogen-
associated molecules

FnBP [39]
Invasin [18]
FHA [81, 83]

Bacterial lipopolysaccharide, lipoprotein, lipoarabino-
mannan, peptidoglycan, flagellin, Pseudomonas exotoxin S, 
bacterial and viral DNA, viral RNA, fungal zymosan,
parasitic phospholipids [122]

Inflammatory responses NF-�B activation: B. pertussis [88]

Adhesion molecule expression:
B. pertussis [87]
Proinflammatory cytokine production:
Y. enterocolitica [21]

Activation of transcription factors NF-�B, AP-1, IRF3, 
IRF7 [122]
Adhesion molecule expression [122]

Proinflammatory cytokine and chemokine production 
[122]

Upregulation upon
receptor engagement

St. pyogenes [62]
P. aeruginosa [Gravelle et al., unpubl. data]
P. carinii [97]

LPS and dsRNA cause upregulation of TLR2
[109, 110, 124, 125]

Cross talk with other PRRs With TLRs [112–114] Cross talk between TLR2 and TLR4, TLR3 and TLR9
[126–128]
With NOD1 and NOD2 [129, 130]
With dectin-1 [131, 132]
With integrins [112–114]

AP-1 = Activator protein 1; dsRNA = double-stranded RNA; IRF = interferon regulatory factor; NOD = nucleotide-binding oligo-
merization domain.
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terns. Indeed, the activation of NF- � B and MAPK 
cascade induced in macrophages and intestinal EC lines 
by LPS stimulation required simultaneous engagement 
of integrin receptors providing essential co-stimulatory 
signals  [112–114] . Although integrins appear to be criti-
cal for responses of some cell types to TLR agonists, the 
molecular interactions between integrins and signaling 
intermediates elicited by other PRRs are largely unde-
fined. 

  Conclusion 

 Integrin receptors are complex molecules that mediate 
both physiological and pathological processes, e.g. in-
flammation and tumorigenesis. During the last decade, 
it has become clear that integrins significantly participate 
in various host-pathogen interactions involving patho-
genic bacteria, fungi, and viruses. Many bacteria possess 
adhesins that can bind either directly or indirectly to in-
tegrins. However, there appears to be an emerging role for 
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  Fig. 1.  The most important bacterial interactions with epithelial integrin receptors. Microorganisms can inter-
act with lung epithelial integrins either directly via integrin-binding proteins or indirectly by using an extra-
cellular martix protein, e.g. Fn or Vn, as a molecular bridge to engage these receptors.  
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integrins beyond simply adhesion molecules. Given the 
extremely conserved nature of integrin structure and 
function, and the diversity of the pathogens which use 
integrins, it appears that they may act as PRRs, involved 
in bacterial recognition and initiation of the innate im-
mune response. 

  However, the role of integrin receptors in host defense 
still remains poorly understood. Although a number of 
studies identified integrins as receptors used by patho-
genic bacteria for their internalization by host cells, the 
significance of this process for innate immunity is not 
clearly defined. Internalization of bacteria may represent 
an important step in host defense. Indeed, internalized 
bacteria may be cleared due to inflammatory signaling 
initiated by intracellular Nod-like receptors and endo-

some-located TLRs, or as a result of apoptosis of infected 
cells. Furthermore, internalization may be critical in ac-
tivation of adaptive immunity because infected cells, in-
cluding mucosal EC, are able to present microbial anti-
gens to lymphocytes  [115, 116] . However, although the 
results from some studies suggest the role of integrins as 
innate recognition receptors important for mucosal im-
mune defense, there remain many questions to be an-
swered. 

  Understanding the role of epithelial integrins in the 
pathogenesis of pulmonary infections may be important 
for developing new therapies targeting critical mecha-
nisms of the pathogenesis of conditions such as acute bac-
terial pneumonia, chronic  P. aeruginosa  infection in CF 
patients, or fungal lung disease in immunocompromised 
patients. Of interest, aerosolized integrin inhibitors have 
been demonstrated to inhibit pulmonary inflammatory 
responses by blocking leukocyte infiltration into the lung 
using in vivo models of allergic asthma  [117–119] . Al-
though these studies did not investigate infectious pro-
cesses, they demonstrated the feasibility of employing in-
tegrin inhibitors in vivo to suppress lung inflammation. 
Would it be possible to use integrin inhibitors to interfere 
with bacteria-host interactions to alleviate potentially 
detrimental integrin-mediated cellular responses? Al-
though more studies into the mechanisms of pathogen-
integrin interactions are required before this question 
can be answered, the inhibition of integrins may repre-
sent a promising new tool to combat pulmonary infec-
tions.
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  Fig. 2.  Intracellular signaling pathways activated upon bacterial 
engagement of integrin receptors. Bacteria such as  S. aureus  or  S. 
pyogenes  bind Fn using it as a molecular bridge to bind integrins. 
Integrin receptor engagement causes activation of ILK and FAK. 
The resulting signaling cascade leads to inflammatory cellular 
responses, i.e. via phosphorylation of p38 MAPK and a subse-
quent activation and nuclear translocation of NF- � B followed by 
gene expression of various proinflammatory molecules. Integrin-
mediated signaling also leads to cytoskeletal rearrangement and 
bacterial internalization via activation of PI3-K and small
GTPases Rac1 and Cdc42. Some bacteria are also capable to bind 
integrins directly, which results in similar signaling events (not 
shown). 
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