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Abstract

Leishmaniasis is a vector-borne neglected tropical disease endemic in over 100 countries around the world. Available con-
trol measures are not always successful, therapeutic options are limited, and there is no vaccine available against human
leishmaniasis, although several candidate antigens have been evaluated over the last decades. Plenty of studies have aimed
to evaluate the immune response development and a diverse range of host immune factors have been described to be associ-
ated with protection or disease progression in leishmaniasis; however, to date, no comprehensive biomarker(s) have been
identified as surrogate marker of protection or exacerbation, and lack of enough information remains a barrier for vaccine
development. Most of the current understanding of the role of different markers of immune response in leishmaniasis has
been collected from experimental animal models. Although the data generated from the animal models are crucial, it might
not always be extrapolated to humans. Here, we briefly review the events during Leishmania invasion of host cells and the
immune responses induced against Leishmania in animal models and humans and their potential role as a biomarker of

protection against human leishmaniasis.
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Introduction

Leishmaniasis is a vector-borne neglected tropical disease
endemic in over 100 countries around the world. Clinical
manifestations of the disease are mainly cutaneous (CL),
mucocutaneous (MCL) and visceral (VL) and post kala-azar
dermal (PKDL) leishmaniasis [1, 2]. The pathogenesis of
leishmaniasis is influenced by elements from the triad of
parasite—host—vector interplay. At least in murine model
of leishmaniasis, the type of immune response generated
upon infection with Leishmania plays a crucial role in the
outcome of the disease either cure and protection or progres-
sion and even death. Although plenty of data concerning
the factors involved in pathogenesis of Leishmania infection
and the effector mechanisms of the host immune response
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are collected in animal models and patients during the last
decades, but yet the immune biomarkers of cure/protection
or exacerbation in human leishmaniasis are not well defined.

It is well known that CL caused by natural infection or
leishmanization induces strong protection against further
CL lesion development, which justifies to develop vaccine
against leishmaniasis [3]. Wealth of information which is
accumulated over the past years on the biology of intracel-
lular parasites, map of Leishmania genome, and numerous
experimental studies on the immunology of leishmaniasis,
supported search to develop an effective vaccine (reviewed
in [4, 5]). In the last decades, numerous Leishmania vac-
cine candidates have been introduced as vaccine candidate
including whole live, attenuated, genetically modified,
killed parasites, and subunits or fusion proteins, but only a
few have been tested in clinical trials [4]. The absence of a
vaccine against leishmaniasis is primarily attributed to the
absence of clear understanding of correlates of protection
[6]. Moreover, animal models of leishmaniasis do not always
mimic human leishmaniasis [7], and extrapolating results
of protection assays obtained with the experimental murine
models to humans is doubtful.
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Methods

A literature search using the PubMed, Scopus and Google
Scholar databases has been conducted for publications
with full text or abstract in English language over the last
45 years. Relevant additional articles identified during
review by authors were also included.

Search terms included were “Leishmania* AND
(immune response OR immunology OR protection)” or
“leishmaniasis AND biomarker”. The initial search strat-
egy identified more than 10,000 results. To limit search
hits, other fields such as title [Ti], title abstract [Tiab],
English [lang] and publication year [dp] were used which
decreased the number of results to 7897 articles. Based on
the title and the abstract, 523 articles including 46 review
papers and 477 original papers were carefully analysed and
finally 280 were cited.

Macrophages and initiation of Leishmania infection

Macrophages (M®) are known as the primary antigen
presenting cells (APCs), other phagocytic cells includ-
ing monocytes, dendritic cells and neutrophils are also
recruited to the site of infection and play important roles
(reviewed in [8]). It has been proposed that Leishmania
parasites use neutrophil polymorphonuclear leukocytes
(PMN5s) as temporary host cells to silently enter mac-
rophages without activation of defence mechanisms (Tro-
jan horse hypothesis) [9]. Subsequently, macrophages
phagocytose free parasites and apoptotic PMNs infected
with Leishmania parasites and serve as the definitive host
cells and permit parasite growth. However, macrophages
are naturally responsible for killing of invading para-
sites by activation of effective microbicidal mechanisms
(reviewed in [10]). The effective elimination of parasites
by macrophages and development of protective immune
response against Leishmania require involvement of den-
dritic cells (DCs) [10].

Leishmania parasites are able to engage different cell
surface receptors including complement receptors [11, 12],
fibronectin receptor [13], Toll-like receptors 2, 3 [14] and
4 [15] and mannose receptor [16] to enter into the host
cells. The leishmanial membrane protease gp63 cleaves
C3b attached to its surface, converts it to C3bi inactive
form which binds to CR3 receptor, and mediate entry of
opsonized promastigotes into macrophages. This strategy
protects the parasites from lysis by complement activity
[17].

Leishmania parasites are engulfed by macrophages and
are eliminated by production of interferon gamma (IFN-
vY), reactive oxygen species (ROS) and nitric oxide (NO)
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derivatives inside phagolysosome; however, intracellular
amastigotes modulate various antimicrobial defense path-
ways and interfere with a number of critical macrophage
functions to sustain and multiply inside the cell (reviewed
in [18]). Macrophages successfully phagocytose Leishma-
nia parasites, but the production of IL-12 is inhibited by
the intracellular parasites [19]. It was shown that internali-
zation of L. major through CR3 receptor, which is a mech-
anism of silent entry into macrophages, leads to blockade
signaling cascade and synthesis of interleukin 12 (IL-12)
[20, 21]. IL-12 is necessary for the killing of Leishmania
parasites by macrophages, as it allows for upregulation
of inducible nitric oxide synthase (iNOS or NOS2) and
NO synthesis and subsequent parasite elimination [22, 23]
by promoting the development of CD4" T cells and pro-
duction of IFN-y (basic findings on the role of Th1/Th2
cytokines in reference [24]). Leishmania infection also
leads to induction of other regulatory cytokines such as
IL-10 and transforming growth factor § (TGF-p) which
interfere with macrophage effector functions in favor of
parasite survival and disease progression [25].

Macrophage: arginine metabolisms
and NO production

Among the most important players are arginine-derived
metabolites which significantly influence the parasite sur-
vival in macrophage (reviewed in [26]). Polyamines are
essential metabolites in trypanosomatid protozoa and play
a role in the synthesis of thiol trypanothione. Polyamines
are synthesized by a metabolic process involving arginase 1
enzyme (argl) which catalyzes the hydrolysis of L-arginine
to L-ornithine. Animal studies showed that induction of argl
enzyme promotes Leishmania growth and dissemination
in vivo, and induction of non-healing leishmaniasis [27]. In
contrast, inhibition of arg] activity is associated with limited
pathology, the lower parasites burden and delays in disease
outcome in BALB/c mice [28]. Spleen macrophages isolated
from L. donovani-infected hamster showed low iNOS but
high argl enzyme along with increased polyamine synthesis
[29].

In human leishmaniasis, higher levels of argl, TGF-p,
ornithine decarboxylase (ODC), and prostaglandin E2 in
plasma and higher expression of argl and ODC in lesion
biopsies have been shown in L. amazonensis-infected
patients with diffuse CL (DCL) compared with patients with
localized CL (LCL), indicating a role for argl/polyamines in
DCL development [30]. It was shown that the level of argl
activity is higher in blood PMNs of patients with chronic
CL than that of acute CL, suggesting a possible role of argl
in chronicity of CL lesions caused by L. major/l. tropica
[31]. A high argl activity was shown in peripheral blood
mononuclear cells (PBMCs) and plasma of VL and VL-HIV
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co-infected patients and as such an increase level of argl is
suggested as a marker of VL severity [32].

Polarising signals activate macrophages leading to their
development into functionally distinct subsets which influ-
ence intracellular Leishmania survival and determine dis-
ease outcomes. Thl type of cytokines particularly IFN-vy,
induce classically activated (M 1) macrophages which pro-
duce a significant amount of NO and initiate parasite kill-
ing. Classically activated macrophages may contain lower
concentrations of arginine, as a result of NO production.
In contrast, by activation of Th2 type of cytokines such as
IL-4 and IL-13, alternatively activated macrophages (M2)
are developed which characterized by increased expression
of argl and polyamine biosynthesis, favouring amastigote
growth in macrophages and disease progression [33, 34].
Genetic disruption of amastigote arginase resulted in reduc-
tion of parasite replication [35] and significantly attenuated
infection in murine model [36], an indication of amastigotes
reliance on de novo synthesis of polyamines.

Mononuclear cells produce two major anti-Leishmania
components; ROS which is generated by respiratory burst
during phagocytosis, and NO, which is produced by iNOS
in response to IFN-y (reviewed in [37, 38]). T cells are the
main source of IFN-y production, an initial macrophage
activation through IFN-y is necessary for parasite killing
through oxidative-burst mechanisms [39]. In addition to
IFN-y, there are a number of other inflammatory cytokines,
such as IL-1, tumor necrosis factor (TNF), interferon alpha
(IFN-a), and interferon beta (IFN-P) which are also involved
in macrophage activation and induction of iNOS expression
and NO production (reviewed in [40]).

Production of ROS showed to be an important part of
host cell immune response to induce anti-parasitic effector
mechanisms, albeit the role of ROS in Leishmania infection
control in murine model varies and depends on the parasite
species and mouse strains. Unlike what observed in L. major
infection, NADPH oxidase, which is required to generate
ROS, showed no impact on the course of L. braziliensis
infection in mouse model [41]. In human, however, produc-
tion of ROS is shown to be an important part of control
mechanisms of L. braziliensis infection [42].

Similarly, NO is an essential factor in control of Leish-
mania infection in mouse model, genetic deletion or func-
tional inactivation of iNOS in L. major infected mice on a
resistant background at early stage of infection, abolished
IFN-y release by NK cells and increased TGFp expression,
resulted in a progressive parasite dissemination throughout
the infected mouse. Furthermore, induction of iNOS was
dependent on IFNo/p production [43, 44]. The function of
iNOS and NO in human leishmaniasis is less known, while
production of ROS is shown to be involved in killing of L.
braziliensis by human macrophages, NO alone was found
not to be sufficient to control the infection of monocytes

from CL patients in vitro [42]. It was reported that NO
production is not traceable in supernatants of human mac-
rophages infected with L. chagasi, but in vitro blockade of
NO affected parasite growth in human macrophages [45].
iNOS gene expression in the lesions of CL patients due to
L. braziliensis was comparable to that of normal skin [39].
However, anti-Leishmania activity is shown for iNOS in skin
biopsies collected from American CL patients where the
frequency of iNOS-positive cells had a reverse correlation
with parasite burden in L. mexicana CL lesions and the most
prominent expression of iNOS was seen in lesions with the
lower number of parasites [46].

Briefly, infected macrophages through production of res-
piratory burst-mediated ROS derivatives and IFN-y medi-
ated NO are involved in parasite killing. On the other hand,
there is evidence showing a protective role for NO or ROS
in human leishmaniasis which might be used as a basis for
future investigations on the role of NO/iNOS in human and
an application as a biomarker.

Dendritic cells and interactions with Leishmania

Macrophages and DCs are both professional APC, but in
regard to Leishmania infection, they use different strategies
for parasite uptake, internalization and antigen presenta-
tion. DCs preferentially uptake Leishmania amastigotes
opsonized with IgG through surface FcyRI or FcyRIII recep-
tors [47]. Although the phagocytosis capacity of DCs is not
completely comparable with that of macrophages [48], but
antigen presentation and IL-12 production by DC is critical
in CD4+Thl and CD8+T cells development to mediate
protective immune response against Leishmania infection
[22, 49], In contrast to L. major and L. donovani parasites
which promote production of IL-12 by murine DCs, infec-
tion with L. mexicana and L. amazonensis amastigotes failed
to activate DCs or to induce IL-12 production [50, 51].
Several subtypes of DCs have been identified in both
humans and mice that have distinct functions and molecu-
lar features (reviewed in [52]). Plasmacytoid DCs (pDCs)
are considered resident DCs which specially produce type
I interferon, and classical DCs (cDCs), mediate antigen
processing and presentation to T cells [53]. cDCs express
the integrin CD11c and MHC class II, cDCs can be fur-
ther divided into two major subsets cDC1s and ¢cDC2s. A
transcription factor Zbtb46 (BTBD4) was identified which
specifically expresses by all cDCs in both human and mouse
but not by pDCs, monocytes, and macrophages [54].
Langerhans cells (LCs) are seen in human skin epidermis
and mucosal tissues similar to murine langerhans cells which
are identified by the presence of a transmembrane lectin with
mannose binding specificity called langerin. LCs are differ
markedly from other migratory DCs in their ontogeny and
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may have a protective or suppressive function in skin pathol-
ogy (reviewed in [55]).

During inflammation, monocytes recruit to the site of
inflammation and differentiate into “inflammatory DCs”
which present DC markers (CD11c and zbtb46) and DC
functions [56].

During recent years, numerous mouse models for the spe-
cific depletion of DC subsets have been generated which are
used for elucidating specific functions of DCs (reviewed in
[57]). In one approach, mouse models are developed that
express diphtheria toxin (DT) receptor (DTR) under the con-
trol of a cell type-specific promoter, and subsequent admin-
istration of DT mediates selective depletion of the DTR-
expressing cells. DT disrupts protein translation by involving
elongation factor 2 which eventually leads to cell death.

Several DTR mouse strains have been generated for
depletion of specific DC subsets, such as Zbth46-DTR strain
for specific depletion of cDCs, Cd207-DTR strain for deple-
tion of LCs as well as ¢cDCls in skin-draining LNs, Ly75-
DTR strain for depletion of CD205+ cDCs (the majority are
CD8a+cDCls), Clec9a-DTR BAC strain for depletion of
cDCls, Xcri-DTRvenus and Karma strains for complete
depletion of cDCl1s, and Clec4a4-DTR strain that allows
for ablation of cDC2s [57]. Similarly, several DTR mouse
strains have been generated for depletion of pDCs, mono-
cytes and macrophages, allowing functional study of specific
cell subsets (reviewed in [58]).

In the early phase of murine Leishmania infection, three
types of DCs including epidermal LCs, dermal DCs (dDC)
and inflammatory DCs, are localized at the site of infection
and mediate APC function. DCs take up parasites at the site
of infection and then migrate to the dLN to present antigens
to T lymphocytes, initiating an adaptive immune response
[59], but there is a discrepancy about the extent to which
each subset of DCs is involved in the immune response gen-
eration against Leishmania [60]. This discrepancy seems to
be mainly due to differences in the parasite species, the dos-
age, and the route of administration [61]. A timing sched-
ule is proposed in establishment of a protective immune
response to L. major infection in murine model, in which
dDCs and LCs play a role early in infection, but later the
cells are replaced by inflammatory monocyte-derived DCs
and lymph node-resident DCs (reviewed in [61]).

Another study showed that CD8alpha-Langerin—-DCs
migrate to dLNs to present antigens to specific T cells to
induce protective immune response against L. major infec-
tion [62], later a functional dichotomy has been suggested
for two subsets of dDCs, where Langerin—-dDC population
mediates a CD4+ T-cell response, but Langerin + dDC sub-
set is involved in early priming of CD8+ T cells [63].

Experimental data indicate a suppressive role for skin
LCs in low dose L. major infection by expansion of parasite-
specific regulatory T cells, whereas both murine and human
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data suggest that dermal inflammatory DC is associated with
enhanced induction of Th1 response and promoting protec-
tion [61, 64].

Leishmania persistent infection and immune
evasion mechanisms

Leishmania parasite uses several immune evading strategies
[65—67] which might need involvement of cell surface mol-
ecules, particularly gp63 and LPG [68]. Metacyclic Leish-
mania promastigotes avoid complement-mediated lysis via
surface LPG by deactivation of the classical and alternative
pathways [69].

Leishmania amastigotes inhibit the assembly of NADPH
complex which generates ROS [70], and interfere with sev-
eral phosphorylation signaling pathways of the cells [71-73].
Down-regulation of Toll-like receptors (TLR) and the Janus
kinase (JAK)-signal transducer and activator of transcription
(STAT) signaling pathways genes are suggested in NK cells
from DCL patients caused by L. mexicana [74]. Similarly, L.
donovani infected macrophages are defective in the ability
to phosphorylate downstream molecules of JAK2/STAT1
signaling pathways including STAT-1, JAK1, and JAK2 in
response to IFN-y [71, 75].

It was shown that inhibition of PKC-dependent activ-
ity contributes to the survival of L. donovani inside the
macrophages [76] and inhibition of a mitogen-activated
protein kinase (MAP kinase) of host cells following Leish-
mania infection is confirmed by several studies [77, 78].
Induction of ceramide synthesis in L. donovani-infected
murine macrophages mediate inactivation of ERK1/2 MAP
kinases which results in inhibition of transcription factors
AP-1 and NF-kB, NO generation, and a lower parasite bur-
den [79].

Leishmania also activates various molecules that inhibit
intracellular signaling cascades. An important negative regu-
latory molecule is PTP SHP-1 which is involved in limit-
ing the activation of the JAK/STAT pathways following L.
donovani infection [75]. Induction of SHP-1 is vital for inhi-
bition of NO generation which occurs through the inactiva-
tion of JAK2 and ERK1/2, and transcription factors NF-kB
and AP-1 [80]. Another survival strategy used by Leishma-
nia parasites is detoxification of important antimicrobial
molecules that are secreted into the phagolysosome includ-
ing superoxide radicals and nitrite derivatives, such as per-
oxidoxins LcPxn1/2 [81] and a superoxide dismutase [82].

Within macrophages, Leishmania promastigotes trans-
form into amastigotes and replicate continuously until
causing cell death and rupture. Microbicidal mechanisms
of macrophages later on infection eliminate the intra-
cellular parasites through NO production [83]. The fate
of Leishmania parasites within DC is less clear, in both
human CL and murine Leishmania infection, parasites
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persistence has been reported [84-86], but the main host
cells for long-term persistence is not clearly defined. In
the lymph nodes of mouse after cure of L. major infec-
tion, both macrophages and dendritic cells which derived
from the skin, showed to harbour viable parasites [84].
LCs containing parasite are also detected in the skin lesion
infiltrate from L. major-infected mouse [87].

Bogdan et al. showed that fibroblasts are responsible for
about 40% of the persisting parasites in the draining lymph
nodes of mouse after healing of cutaneous lesion due to L.
major infection. The infected fibroblasts did not eliminate
the parasites comparable to the infected macrophages, thus
fibroblasts are proposed as safe host cells for the parasites
in latent infection [88].

Owing to limited capability of de novo synthesize,
Leishmania amastigotes require essential nutritional ele-
ments, such as amino acids, purines, lipids, and other
metabolites which must be available within the parasito-
phorous vacuole (PV) to support amastigotes growth (met-
abolic pathways reviewed in [89]). Upon phagocytosis,
metacyclic promastigotes transform into amastigotes in
the host cell where they encounter a limitation in the avail-
ability of several nutrients (reviewed in [89, 90]). Leish-
mania parasites constitutively express genes involved in
core pathways of carbon metabolism throughout the life
cycle [91]. Oligosaccharides such as mannose and galac-
tose are integrated into the structure of LPG [92] which
play a significant role in survival of the parasites within
phagolysosomes by involvement in macrophage oxida-
tive responses [93]. Additionally, lipid bodies are orga-
nelles in the macrophage consist of neutral lipids mainly
triacylglycerol and sterol esters which partially support
parasite’s nutrient requirements and are involved in phago-
some maturation and production of eicosanoids molecules
which regulate immunity by either promoting or modulat-
ing inflammatory responses [94].

On the other hand, parasite ferric iron reductase
(LFR1), ferrous iron transporter (LIT1) and heme trans-
porter (LHR1) contribute to provide iron sources for Leish-
mania parasites and as such these molecules are essential
for Leishmania viability and intracellular survival [95]. Up
regulation of iron exporters including natural resistance-
associated macrophage protein (NRAMP-1) and Ferropor-
tin (Fpn-1) which restrict the availability of iron to the
parasite are recently shown in monocytes isolated from
PKDL patients [96]. A secretory peroxidase of L. dono-
vani down regulates NRAMP1 expression in peritoneal
macrophages and allows iron access to Leishmania inside
PV [97] and another iron regulator, hepcidin, facilitates
iron sequestration within macrophages by mediating cell
surface degradation of the iron exporter ferroportin [98].
For more detailed survival factors see reference [99].

Interleukin 12 (IL-12) production

Leishmania induces IL-12 production at early hours of infec-
tion which leads to NK cell activation and IFN-y production
[100, 101]. A central role is assumed for both IL-12 and
IFN-y to drive CD4 + T-cell differentiation and subsequent
induction of protective immune response to L. major infec-
tion in mouse [102]. In normally resistant mouse strains,
in vivo neutralization of IL-12 results in inhibition of IFN-y
production by NK cells in lymph nodes [101], IL-12 is also
necessary for down-regulation of Th2 type responses dur-
ing L. major infection in vivo [103]. Nevertheless, there is
evidence showing that the early IFN-y production following
L. major infection is IL-12 independent [104].

In vitro and ex vivo studies showed that IL.-12 deficient
mice from resistant strain mount a strong Th2 type response
with a high level of IL-4 and a low level of IFN-y expres-
sions and develop progressive uncontrolled lesions similar
to genetically susceptible BALB/c mice [105]. The role of
IL-12 in the development of protective CD4+ T-cell-medi-
ated immunity in Leishmania infection has been shown in
several other studies through neutralization of IL-12 using
monoclonal antibody or deletion of IL-12 gene in resistant
mice strains [106, 107] or through rIL-12 treatment in sus-
ceptible mice strains [100, 108, 109]. These findings impli-
cate that IL-12 is essential for the development of effective
Th1 type of response in leishmaniasis [110].

As mentioned in the previous sections, L. major has the
ability to block IL-12 production in macrophages [19, 111]
and DCs remain the major source of IL-12 in Leishmania
infection. IL-1a acts in conjunction with IL-12 and promotes
Thl differentiation and prevents disease progression in L.
major susceptible BALB/c mice [48, 112]. Experimental
studies suggested that sustained IL-12 is required for the
maintenance of Th1 response in Leishmania infection [106,
109, 113].

Although, IL-12 seems to be essential in the dichotomy
of immune responses to L. major infection in susceptible
vs. resistant mice strains [107, 110], the role of IL-12 in
human leishmaniasis is not fully clear. PBMCs culture
from CL patients of Old World indicates a higher level of
IFN-y and IL-12 expression and a lower level of IL-4 and
IL-10 expression in the healing compared to non-healing
CL patients [114]. In contrast, in CL caused by L. mexicana,
in situ expression of IL-12 mRNA was found to be higher in
non-healing lesions coincide with high expression of IL-10,
indicating that IL-12 alone could not induce lesion healing
[115, 116]. Unresponsiveness of T cells to IL-12 activation
is associated with persistence of parasite and active lesion
due to L. guyanensis [117].

IL-12 was initially used as an adjuvant with soluble
Leishmania antigen (SLA) against L. major challenge in
murine model [118], recombinant human IL-12 was used

@ Springer



86

Medical Microbiology and Immunology (2021) 210:81-100

as adjuvant with alum plus heat-killed L. amazonensis anti-
gen [119] or killed L. major in primate models [120] how-
ever, the use of rhIL-12 in human leishmaniasis has not been
verified, mainly due to safety issues and significant toxicity
explored during clinical trials on other diseases (reviewed
in [121]).

Neutralization of IL-12, both at early or late stage of L.
donovani infection caused increased parasite load, reduced
IFN-y, IL-4, TNF and iNOS production, resulting in inhibi-
tion of tissue granuloma formation in the liver of susceptible
BALB/c mice [122, 123]. IL-12 is crucial for induction of
IFN-y producing T cells and protective host responses in
the liver. Although in experimental model of L. donovani
infection, IL-12 has an anti-Leishmania activity even in the
absence of IFN-y, which appears to be dependent on TNF
production [124]. DCs in the spleen are the critical source of
early IL-12 production following L. donovani infection and
activation of DCs is crucial for optimal induction of immu-
nity in the liver during the early phase of VL infection [122,
125, 126]. Study on L. infantum infected mice demonstrated
that myeloid DCs, TLR9Y, and IL-12 are functionally linked
to the activation of NK cells to produce IFN-y [127].

In human VL, CD4+T cells mediate a protective immune
response by production of various cytokines and chemokines
that contribute in granuloma formation and parasite killing,
such as IL-2, IL-12, IFN-y, TNF, lymphotoxin (LT) and
granulocyte/macrophage colony-stimulating factor (GM-
CSF), which have been measured in serum samples [128,
129]. PBMCs from active VL patients failed to produce
IL-12 or IFN-y in response to in vitro stimulation with L.
donovani antigens, however, the addition of exogenous rhlL-
12 to PBMCs from the same patients resulted in the expan-
sion of IFN-y production [130]. Similarly, addition of IL-12
to the PBMC:s cultures from American VL patients restored
cellular immune responses showed by proliferative response
and IFN-y production [131].

Cytokines of Th1/Th2 types

It is well known that L. major infection in susceptible
BALB/c mice is associated with generation of Th2 response
with a high level of IL-4, progression of the disease and
death, whereas almost in all other strains of mice, resist-
ance is associated with generation of Thl type of response
with production of high IFN-y level that induce healing
lesion and protection against further lesion development [83,
132-134]. Although there are well established explanation
in regard to immune response in murine model of leish-
maniasis, but regardless of tremendous studies on Th1/Th2
cytokine responses (as reviewed in [135]), the mechanisms
of cure and protection in human leishmaniasis is not well
defined yet [4, 136].
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In anthroponotic CL (ACL) caused by L. tropica, cor-
relation of a high expression level of Th2 cytokines includ-
ing IL-4 and IL-10 with antimonial unresponsiveness,
and upregulation of Thl cytokines including IL-1f, IL-12
P40 and IFN-y genes with response to treatment is shown
[137]. In New World, individuals cured from CL showed
a significant increase in the frequency of cells expressing
Th1-type cytotoxic production profile IFN-y*/granzyme
B*/perforin®) which is an indicative of imbalance toward a
cytotoxic response [138]. In some clinical forms of human
leishmaniasis such as American CL, non-healing ACL and
PKDL a mixed Th1/Th2 response is seen in vitro and in situ
[139-142]. Furthermore, it is well established that human
VL displays a Th2 response at early stage of the disease
which shifts toward a mixed Th1/Th2 patterns, with high
levels of IFN-y as well as IL-4/IL-13 secretion [143—145].

Several studies have been completed over the last decades
to explore the role of Th1/Th2 responses in human leishma-
niasis [146—149] and phenotype of Th1/Th2 cells or their
polarised cytokines in lesion, cell culture or plasma have
been characterized in leishmaniasis patients [136, 150-154].
However, several Leishmania antigens predominantly stimu-
late Th1 responses in vitro, that are not necessarily associ-
ated with protection [155]. In some cases, antigens which are
associated with an early Th2 response such as Leishmania-
Activated C-Kinase Antigen (LACK) or cysteine protease
CPB2.8 are found to be protective if administered with an
appropriate adjuvant [155-158].

Interferon-y (IFN-y)

At early stage of Leishmania infection, IFN-y participates
in the control parasite growth and lesion development.
IFN-y activates effector mechanisms/signaling pathways of
macrophages to eliminate intracellular pathogens primar-
ily through NO production. Characterization of immune
response in CL patients shows an upregulation of IFN-y
production around the lesions [114, 159—-161] and produc-
tion of a significant high level of IFN-y but a low level of
IL-10 from T cells in culture after healing [147, 148, 162],
indicating the possible involvement of IFN-y in healing pro-
cess of CL lesions. In L. braziliensis infection a long-lasting
Th1 response with elevated level of IFN-y and down regu-
lation of IL-4 and IL-10 production is shown in vitro and
in situ which is apparently associated with healing of the
skin lesion(s) [140, 141, 163].

In our studies on CL patients, a role for both CD4 + and
CD8 + T lymphocytes as the main source of IFN-y produc-
tion is shown [151, 152, 164], but prior to the development
of adaptive immune response, IFN-y is primarily produced
by NK cells [165], the role for NK cells in innate immune
response is shown in different forms of human leishmaniasis
[163, 166] (reviewed in [167]).
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It should be noted that exacerbated Thl-cell-mediated
immune response during CL, accompanies with excessive
secretion of pro-inflammatory cytokines including IFN-y,
could cause tissue damage and contribute to the lesion pro-
gress [168].

VL is associated with T-cell suppression, which is char-
acterized by lack of proliferation and IFN-y production by
PBMCs in response to Leishmania antigens in vitro [169,
170]. While it is assumed that this in vitro unresponsive-
ness of VL patients might be due to the defects in immune
system, whole blood cells of active VL patients maintain
the capacity to secrete significant levels of antigen specific
IFN-y and IL-10 [171] and CD4+T cells are found as the
main source of [FN-y production [172]. Individuals cured of
VL usually mount antigen-specific IFN-y response in vitro
and convert to leishmanin skin-test positive [173—175].

In experimental VL, IFN-y plays a critical role in the
early immune response leading to control of parasite bur-
den and eventual resolution of L. donovani infection which
occurs within well-formed tissue granulomas in the liver of
mice [176, 177]. Treatment of L. donovani infected nude
BALB/c mice with IFN-y activated macrophages in mice but
requires the presence of T cells for anti-Leishmania activ-
ity [178]. Experiments in mice showed that administration
of IFN-y increased the efficacy of antimony chemotherapy
[179] and IFN-y is used as an adjunct therapy for severe or
refractory cases of VL [180].

IFN-y is a key cytokine of the immune system that
involves in regulation of various cellular events through
transcriptional control over different genes [181]. Up-regu-
lation of class I and class I MHC expression [182], activa-
tion of microbicidal mechanisms including induction of the
NADPH-dependent oxidase system, priming NO production,
tryptophan depletion, up-regulation of lysosomal enzymes
[182], augmenting surface expression of FcyRI on mono-
nuclear phagocytes, thereby promoting antibody-dependent
cell-mediated cytotoxicity, and stimulation of complement-
mediated phagocytosis are among the most important func-
tions of IFN-y.

In addition, IFN-y orchestrates the trafficking of immune
cells to the sites of inflammation through regulating the
expression of adhesion molecules (e.g., [CAM-1, VCAM-
1) and chemokines (e.g., IP-10, MCP-1, MIG, MIP-1/,
RANTES) [182]. Also, IFN-y synergizes or antagonizes the
effects of many cytokines through involvement in the cell
signaling pathways. IFN-y exerts its effector anti-microbial
functions in macrophages through inducible transcription
factor Statl [183], a cytosolic latent transcription factor that
participate in regulation of target genes and transmit the
immunological effects of IFN-y [184]. Statl induces expres-
sion of iNOS and cytokines such as IL-12, TNF, and IL1p.
Findings from L. major infection in resistant C57BL/6 mice
lacking the Statl gene demonstrated that Statl-mediated

IFN-y induction is indispensable for the development of
protective immunity against Leishmania infection [185].
Furthermore, a novel function of constitutive Statl in mod-
ulation of phagosomal acidification is shown, which con-
tributes in intracellular Leishmania growth in macrophage
[186] (Table 1).

Interleukin 4 (IL-4)/interleukin 13 (IL-13)

Early evidence showed that expansion of IL-4 induces
Th2 response in murine L. major infection and results in
exacerbation of the lesion and generalization of the disease
which eventually kills the animals [187, 188], neutraliza-
tion of IL-4 using anti-IL-4 antibodies significantly but
not completely attenuated the progression of infection in
BALB/c mice [189, 190]. IL-13 plays a role in chronicity
of non-healing infection in mice [191]. Evidence provided
from experiments on the IFN-y/IL-4 genetically engineered
mice showed that IL-4 is a key player in susceptibility to
L. major infection and magnitude of IL-4 response deter-
mines the severity of the disease in BALB/c mice [192].
Down-regulation of Thl response through inhibition of
IL-12 receptor (IL-12RB2) expression is mediated by IL-4
in L. major [193-195], by IL-13 in L. amazonensis [191] or
independent of IL.-4/IL-13 in L. mexicana infection [196].

Despite these evidence, the role of IL-4 as a major factor
which contributes in susceptibility is controversial. Although
IL-4/IL-13 mediate susceptibility to Leishmania infection
in murine model [192, 197] effector Th2 immune response
is also evidenced in the absence of IL-4/IL-13 cytokines,
where IL-4 —/— and IL-4Ra —/— mice were highly suscepti-
ble to L. major parasite [198]. These data suggested the pos-
sibility of involvement of other cytokines in the development
of Th1/Th2 immune response during Leishmania infection.
Furthermore, in contrast to the general consensus, a role
for IL-4 cytokine in promoting a Th1 immune response has
also been suggested [199]. Based on this report the time at
which IL-4 is presented is determinative, during the initial
activation of DCs, IL-4 induces production of IL-12 and
promotes a Thl response which is associated with resist-
ance to L. major infection in susceptible BALB/c mice, but
later during the period of T cell priming, IL-4 induces a Th2
response associated with progressive infection in resistant
mice [199]. An experiment on the influence of recombinant
IL-4/IFN-y on murine macrophage showed that IL-4 syn-
ergizes with IFN-y to activate macrophages and provides a
strong stimulus to kill L. major amastigotes at low concen-
trations of IFN-y [200].

In human leishmaniasis, usually IL-4 level is negligible
and hard to measure on culture supernatant of stimulated
PBMC s in vitro [201, 202]. It was shown that in chronic
and destructive MCL a mix Th1/Th2 type cytokines exist,
with prominent upregulation of IL-4 mRNA expression in
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Table 1 (continued)

&

Ref.

New World

Human studies
Old World

Ref.

Mice studies

Biomarkers

Springer

[243, 244, 249, 250, 252-254]

No evidence of protective role for
humoral immunity in CL

[25, 241, 242, 255, 256] No evidence of protective role for

IgG Abs induce IL-10 production

Abs

humoral immunity in CL

through FC-g receptors on MQ,

Abs against sand fly saliva are used
as markers of exposure

Leishmania specific Abs usually
lacking in CL patients

increase susceptibility to infection.

(L.m.)
Abs against sand fly saliva are used

Abs against sand fly saliva are used Ab against GIPLs of parasite is

as markers of exposure

raised causing IL-10 production

from monocytes

as markers of exposure

[1, 2,3, 265]

A positive DTH reaction showing

A positive DTH reaction showing

LST/MST

by MST is a common feature after
recovery from leishmaniasis

by LST is a common feature after

recovery from leishmaniasis

Both LCL and MCL present posi-

tive response to MST

LST conversion may be a marker

for partial immunity to leishma-

niasis

MST is not an efficient indicative

tool to stratify protective vs. non-
protective subjects against CL

LST is not an efficient indicative

tool to stratify protective vs. non-
protective subjects against CL

the lesions [203]. In both Old World [149, 164] and New
World [204] leishmaniasis, IL-13 production in the lesions
and peripheral blood have been measured as an indicator of
Th2 response.

Tumor necrosis factor (TNF)

Existing data on the role of TNF in human leishmaniasis
development are controversial, but most of the reports impli-
cate that unregulated production of TNF contributes to the
clinical outcome of leishmaniasis at early stage of infec-
tion [205, 206]. In two sequential studies of Zoonotic CL
(ZCL) caused by L. major, we have shown that the mean
level of TNF in plasma and supernatant of stimulated cells
in culture is significantly higher in active CL patients than
in healthy volunteers and significantly reduces after treat-
ment of the lesion(s) [136, 150]. Similar reports from New
World are exist showing elevated levels of TNF produc-
tion in CL lesions of who are nonresponsive to antimonial
treatment [207]. Investigation of the immune response of
American CL patients revealed a significant upregulation of
gene expression of TNF and IFN-y cytokines within 24 h of
in vitro stimulation of the cells which shifted to a dominant
IL-10 and IL-4 production after 48 h [208], showing a pos-
sible role for pro-inflammatory cytokines in early phases of
CL lesion development.

IFN-y and TNF act synergistically in the activation of
macrophages to produce iNOS/NO during murine Leishma-
nia infection [209, 210]. In leishmaniasis, cytokine balance
is important in T-cell homeostasis and maintenance of pro-
tective immunity and imbalanced cytokines might induce
pathogenesis. TNF shows a reciprocal role in the outcome
of human leishmaniasis and an increased level of TNF cor-
relates with severity of the lesion [211].

In mice, TNF antagonizes alternative activation of mac-
rophages and dendritic cells by IL-4 and TNF has a restrict-
ing effect on argl expression leading to the production of
NO by iNOS and parasite control [212].

In experimental VL, TNF produced by Leishmania
infected Kupffer cells is essential for the granuloma forma-
tion and induction of protective immunity in liver [213].
Parasite burden is progressively increased in mice lacking
TNF which leads to death [214]. Therefore, TNF appears to
be a critical cytokine in resolution of experimental visceral
infection [215].

Interleukin 10 (IL-10)

Following resolution of Leishmania infection in mice, a
population of IL-10 producing CD25*Foxp3™ Treg cells pre-
vent sterile cure and establish a chronic infection, allowing
memory generation for a long-lasting protection (reviewed
in [216]). Similarly, a population of antigen-induced
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CD25 Foxp3~ regulatory T cells that produce IL-10 is
expanded following Leishmania infection [217] which
modulates immune response to control immunopathologi-
cal effects leading to delay in lesion healing.

The deteriorating role of IL-10 is shown in IL-10 defi-
cient BALB/c mice which were able to control the progres-
sive L. major infection with 1000-fold lower parasite burden
[25]. Function of IL-10 as an inhibitory cytokine is well
described; in vitro, IL-10 inhibits antigen-specific T-cell
proliferation and type 1 cytokine production [218, 219] and
renders macrophages refractory to activation by IFN-y for
intracellular killing [25, 220, 221]. Recombinant mouse
IL-10 showed a potent suppressing effect on the ability of
mouse peritoneal macrophages to release TNF, reactive
oxygen intermediates (ROI) and to a lesser extent reactive
nitrogen intermediates (RNI) [222]. In resistant C57BL/6
mice following Leishmania infection, a low number of para-
sites persist after the lesion resolved [223-225] and naturally
occurring CD25" Treg cells are shown to be the source of
IL-10 which is responsible for down regulation of effector
immune response and parasite persistence.

A deteriorating role of IL-10 in experimental VL is seen,
in which IL-10 overexpressed mice showed an increased par-
asite replication and impaired Th1 type responses. Despite
subsequent granuloma formation, infection persisted, and
antimony-treatment failed [226].In human leishmaniasis due
to L. braziliensis, when increased production of IFN-y and
TNF coincides with the absence of IL-10 in situ, a strong
inflammatory reaction is promoted leading to destructive
lesion development especially in ML [227-229]. Elevated
level of IL-10 has been frequently reported in clinical studies
of human VL and seems to contribute in pathogenesis of VL
[230]. IL-10 is the key immunosuppressive cytokine in VL
patients which is hard to detect in cultures of PBMCs col-
lected from VL patients [170], but antigen-driven production
of IL-10 is observed in whole blood of patients with active
disease [171].

Interleukin 17 (IL-17) and interleukin 22 (IL-22)

Th17 population homing in skin and mucosal sites, produce
cytokines such as IL-17, IL-22 and IL-23. IL-17 and IL-22
which are involved in the rapid response to infections, both
by recruiting neutrophils and inducing production of anti-
microbial peptides [231].

High levels of IL-17 have been found in BALB/c mice
following infection with L. major, and IL-17 deficiency is
associated with control of the disease [232]. In mouse model
of leishmaniasis, in the absence of IL-10 modulation, both
IFN-y and IL-17 production levels are increased and cause
more severe disease following high doses of L. major, which
is reversed by neutralization of IL-17 [233]. IFN-y and IL-17
levels correlate with the inflammatory response in the skin

of patients with CL and ML [234, 235] indicating possible
involvement of Th17 population in pathogenesis. However,
in our study on human leishmaniasis, no significant differ-
ence was seen between active and cured CL individuals in
the production of IL-17 from stimulated PBMCs [136]. Fur-
thermore, we found that the mean level of IL-22 produc-
tion in plasma and in SLA stimulated PBMCs of active VL
patients was significantly higher than healthy controls and
was significantly decreased in the same patients after healing
of VL due to L. infantum [136, 150]. The results suggested
that the level of IL-22 production is conversely related to VL
cure. It is claimed that IL-17 and IL-22 may have a syner-
gistic role with Thl cytokines in protection against human
VL due to L. donovani [236].

Serum antibodies

There are studies that conceive a deteriorating role for B
cells in experimental models of leishmaniasis by produc-
ing antibodies [237, 238] or cytokines such as IL-10 [226,
239, 240]. Although antibody response is induced in leish-
maniasis especially VL, but antibody response does not
play any significant role in protection. There are studies
which indicate that IgG antibodies may be crucial in sup-
pressing the host immune response by generating a high
IL-10 response. L. major amastigotes opsonized with host
IgG antibodies may ligate FcyR on murine macrophages
to induce production of IL-10 [25]. In vivo studies found
that Fc-deficient mice infected with L. mexicana produce
less IL-10 and are less susceptible to infection [241, 242].
In human or mouse infection with L. mexicana, antibodies
are raised against surface glycoinositol phospholipids of the
parasite which induce production of IL-10 from monocytes
[243].

The role of antibodies is not completely clear, humoral
immune response does not have a protective role in CL and
antibody response in CL of Old World is very low and some-
times difficult to detect (Khamesipour A, unpublished data);
therefore, antibody titration is not applicable as a marker
of cure or protection (reviewed in [244]). Nevertheless,
humoral immune responses have been measured as a diag-
nostic approach in New World CL [245] and high level of
anti-Leishmania antibodies are seen in VL patients which
is used as diagnostic tool [246, 247]. It is shown that upon
recovery of kala-azar, different antibody titers decline [248].

It is shown that human or canine reservoirs that exposed
to sand fly saliva induce a high antibody response which
is used as marker of exposure in surveillance studies [249,
250], reviewed in [251]. The yellow proteins LJM11 and
LIM17 from saliva of Lutzomyia longipalpis are recognized
by sera from humans living in VL endemic areas and animal
reservoirs [252, 253]. PpSP32 is the immunodominant target
for the serum antibody raised in humans naturally exposed
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to Phlebotomus papatasi saliva [254]. The apyrases rSPO1B
and rSPO1 and the yellow protein rSPO3B from saliva of Ph.
perniciosus, a principal vector of L. infantum in the Medi-
terranean Basin, are promising markers of canine exposure
[255, 256].

Leishmanin (LST)/Montenegro (MST) skin test

Delayed type hypersensitivity (DTH), is used to evaluate cell
mediated immune response in a few diseases, Leishmanin
(LST) or Montenegro (MST) skin test is a DTH test similar
to Mantoux test which is in use since 1929. In 1990s, at
Pasteur Institute of Iran with full support of TDR/WHO a
standard leishmanin was produced under GMP condition, in
the recent one, the same L. major which was applied to mass
leishmanization of more than 2 million people, was used.
Leishmania was harvested at early stationary phase, washed
and were killed using thimerosal (0.1%), then the parasites
were washed and treated with thimerosal, the number of
parasite adjusted to 1 x 107 Leishmania per mL, aliquoted
and then each batch goes through control measures including
toxicity, potency etc. tests. About 0.1 mL of leishmanin is
inoculated intradermally using fine needle into ventral fore-
arm [257, 258]. LST is used in epidemiological studies and
for investigation of past exposure and is almost the unique
tool to evaluate efficacy of experimental vaccine efficacy
[259]. Usually, a portion of the residents of endemic areas
are leishmanin positive. In Iran, the percentage of recovered
persons with LST-positive results (> 5 mm indurations) was
99%, 94%, and 70% for areas with ZCL, ACL, and ZVL,
respectively [260]. LST positivity is not an indication of
protection, in studies completed in Iran, LST positive indi-
viduals are as sensitive as LST negatives in regard to develop
CL lesion [261].

In New World, of healthy individuals without a history
of CL living in endemic areas, 10-15% have a positive MST
result [262, 163, 263]. Both LCL and MCL present posi-
tive response to MST, indicating a cell-mediated immunity
against the parasite and MST is reported to be positive in
more than 90% of American tegumentary leishmaniasis
[264, 265].

In relation to various clinical forms, one evidence showed
that most of the strongly positive responses are seen in
lupoid, and most of the negative LSTs are seen in sporo-
trichoid type of CL [266].

Concluding remarks

Leishmaniasis, a neglected disease with strong links with
poverty, has long been a major public health problem in
many developing countries with high morbidity and mortal-
ity rates. It seems necessary to implement effective measures
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as diagnostics, prophylactics and therapeutics to control
this infection [267]. Advances in the understanding of the
biology of Leishmania have not yet been translated into the
development of vaccine or new therapeutic measures. Dur-
ing recent years, large-scale genomic and proteomic analy-
ses have allowed characterization of the network pathways
involving in the pathogenesis of Leishmania parasite. Com-
bining these data offers a more comprehensive body of infor-
mation that could be used to identify specific biomarker(s) of
immunity against leishmaniasis. The potential biomarker(s)
would be used as new target for development of vaccine and/
or drug against leishmaniasis.

Most of our current understanding of the role of differ-
ent markers of immune response in leishmaniasis has been
obtained by works performed in experimental animal mod-
els. Although results from these studies provide important
insights into Leishmania immunity, but cannot always be
extrapolated to humans as there seem to be significant differ-
ences between human and murine immune response against
Leishmania infection. Hence, limited numbers of biomark-
ers have been investigated and so far none of which could
be used as a definitive out-standing surrogate of protection
against human leishmaniasis.
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