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A kagome map of spin liquids from XXZ to
Dzyaloshinskii–Moriya ferromagnet
Karim Essafi1, Owen Benton1 & L.D.C. Jaubert1

Despite its deceptive simplicity, few concepts have more fundamental implications than

chirality, from the therapeutic activity of drugs to the fundamental forces of nature.

In magnetic materials, chirality gives rise to unconventional phenomena such as the

anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called

spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of

these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the

progresses in optical-lattice experiments, we bring together an entire network of spin liquids

with anisotropic and Dzyaloshinskii–Moriya interactions. This network revolves around the

Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously

broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now

belongs to a triad of equivalently disordered phases. The present work provides a unifying

theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians.
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I
n condensed matter, competing interactions have proven able
to stabilize extended phases where chirality could be encoded
in the spin texture, that is, coming from the collective

behaviour of spins. This spin-chirality is responsible for
phenomena as varied as the anomalous Hall effect1–3,
multiferroicity4 and possibly high transition temperature
superconductivity5. In this context, kagome systems are fertile
soil for exotic spin textures. Motivated by a growing number of
materials6–13, the kagome lattice, whose name comes from a
traditional Japanese woven bamboo pattern, has attracted the
attention of chemists, experimentalists and theorists alike. The
classical Heisenberg antiferromagnet (HAF) is a canonical
example of order-by-disorder14, a counter-intuitive mechanism
where order is induced by fluctuations. As for its quantum
counterpart, it is one of the few models that has been confirmed
to be a quantum spin liquid by a gamut of complementary
approaches15–19. Recently, the kagome lattice has also been
shown to support examples of the long-sought Kalmeyer–
Laughlin chiral spin liquid20–26, a bosonic analogue of the
fractional quantum Hall effect with anyonic excitations27.

Our present work sits at the frontier of these ideas of
unconventional phenomena, spin liquids and chiral phases. We
unveil a threefold mapping between kagome spin liquids, which is
exact both at the classical and quantum level. This mapping
brings into a general framework the well-known Heisenberg and
XXZ antiferromagnets, together with a continuously connected
network of models with Dzyaloshinskii–Moriya (DM) and
anisotropic ferromagnetic (FM) couplings. All interactions are
time-reversal Tð Þ invariant and between nearest neighbours. For
the end points of this connected network, T symmetry can be
spontaneously broken in the classical ground state, giving rise to
finite scalar chirality. The HAF maps onto a pair of systems
characterized by FM pinch points in their structure factors, a
signature of algebraic correlations constrained by an effective
local flux conservation. Interestingly for quantum spin-1/2, the
present work puts the Ising antiferromagnet at the centre of this
connected network of quantum spin liquids, shedding a new light
on the reluctance of this model to order28. On the experimental
front, our phase diagram includes the Herbertsmithite compound
ZnCu3(OH)6Cl2, which sits at the tip of an extended region of
quantum disorder within linear spin wave theory. Our work is
also motivated by the experimental possibility to explore a broad
range of anisotropic interactions in the recently synthesized
rare-earth kagome materials Dy3Ru4Al12 (ref. 12) and Yb3Ru4Al12

(ref. 13) and in optical lattices29,30.

Results
The model. We focus on the nearest-neighbour Hamiltonian with
anisotropic XXZ and DM interactions:

H ¼
X

ijh i
J?S?i � S?j þ JzSz

i Sz
j þDz � Si�Sj

� �
ð1Þ

with in-plane components S?i ¼ Sx
i ; Sy

i

� �
for a total number of N

spins. We shall first consider classical Heisenberg spins of unit
length Sij j ¼ 1, before considering the consequences of our the-
ory onto quantum spins at the end of the Results section. The
sublattice indices and Cartesian bases are given in Fig. 1.
For perfect kagome symmetry, the DM vector is restricted along
the unit vector z, orthogonal to the kagome plane31, using the
clockwise convention for choosing the pairs of spins around the
triangles.

To build a unifying picture of kagome spin liquids, one will
take advantage of the rather precise understanding of the HAF
(J>¼ Jz¼ J40 and D¼ 0) that has been developed over the
years. Among other points, its extensively degenerate classical

ground-state manifold is locally constrained by a magnetization
flux conservation. This constraint appears clearly if the
Hamiltonian is re-written as

HHAF ¼ J
X

ijh i
Si � Sj ¼

J
2

X
D

X2

i¼0

Si

 !2

�NJ; ð2Þ

where the flux conservation takes the form of a null magnetiza-
tion on all triangles D:

P2
i¼0 Si ¼ 0.

Exact threefold mapping. The peculiarity of the HAF lies in the
form of its Hamiltonian given in equation (2). The idea of this
paper is to find a one-to-one mapping (automorphism) of the
spin degrees-of-freedom, which gives a Hamiltonian that can be
re-written in the same form, while conserving the kagome
symmetry and the spin unit-length, without imposing any
spurious constraints.

To ensure the spin unit-length Sij j ¼ 1, we consider local
transformations C acting on each spin independently, that is,
transformations from the global basis to a local one, Bi:
SBi

i ¼ GBi Si with SBi
i

�� �� ¼ 1. Then for the transformation to be
non-trivial—that is, for Bi to be non-uniform—and to respect
translation invariance, we attach one basis Bi to each kagome
sublattice. As a result, there are only two transformations
respecting the space group symmetry of the kagome lattice.
They are made of local proper rotations as illustrated in Fig. 1.
They transform the HAF into the following models, which we
name X �

HX � ¼
J
2

X
D

X2

i¼0

SB
�
i

i

 !2

�NJ ð3Þ

¼ � J
2

X
i;jh i

S?i � S?j � 2Sz
i Sz

j �
ffiffiffi
3
p

z � Si�Sj
� �h i

ð4Þ

where J ¼ Jz ¼ � 2J? ¼ � 2D=
ffiffiffi
3
p

40. Since HHAF and
HX� have the same form (see equations (2) and (3)), spin
configurations connected by the one-to-one mappings GB

�
i

necessarily have the same energy in their respective
Hamiltonians. Hence, the HAF, X � and X þ models have the
same energy spectrum and thus the same extensive ground-state
degeneracy. However, the spin rotation confers on them very
peculiar signatures when probed magnetically.

The ground-state of the HAF, that is, the manifold of
configurations with minimum energy, supports algebraic spin
correlations32,33. In neutron scattering measurements, these
correlations take the form of anisotropic diffuse scattering
known as ‘pinch points’ (see ref. 34 for a pedagogical review by
Henley). As depicted in Fig. 2, pinch-point singularities are
clearly visible in the structure factors of the X � ground-state
manifolds. The striking similarity of the HAF and X � structure
factors is actually a quantitative illustration of their underlying
equivalence. However, because the planar spin components are,
respectively, antiferromagnetically and ferromagnetically coupled
in HHAF and HX� , their collective fluctuations induce reversed
spin correlations. This provides a noticeable example of pinch
points induced by continuous FM fluctuations.

As T-0þ , the X � models are expected to undergo the
same thermal order-by-disorder selection as the HAF14, with the
additional flavour that the nematic/octupolar order33 now bears a
finite vector chirality.

A connected family of spin liquids. Spin-chirality takes multiple
forms. The non-collinearity of spins is directly measured by the
vector chirality vij¼ Si� Sj. For triangular units, one can further
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define a scalar chirality wijk¼ Si � (Sj� Sk), which is a measure of
the solid angle formed by the three spins. Vector chirality comes
from the spin current involved in the strong magneto-electric
coupling of some multiferroics4 and the emergence of skyrmion
excitations. As for scalar chirality, it can induce anomalous Hall
effect when coupled to itinerant electrons1–3.

While vector chirality is intrinsically induced by the DM term,
we do not expect any long-range scalar-chiral order in the X �
models since the HAF spin liquid does not break T symmetry at
finite temperature. It is thus tantalizing to see if, by taking
advantage of the present threefold mapping, it were possible to
tune the Hamiltonians and induce scalar chirality spontaneously.

Since our threefold mapping does not affect the z-axis (see
Fig. 1), decreasing Jz has the same influence on the HAF and X �
Hamiltonians: it tunes the HAF into the XXZ model

HXXZ ¼ J
X

i;jh i
S?i � S?j þ d Sz

i Sz
j

h i
ð5Þ

which is mapped onto what we name the XXZ± models

HXXZ� ¼ �
J
2

X
i;jh i

S?i � S?j � 2d Sz
i Sz

j �
ffiffiffi
3
p

z � Si�Sj
� �h i

ð6Þ

with J40. This mapping is valid for all d but for � 1/2odo1,
the XXZ ground state remains a sub-ensemble of the HAF one
(d¼ 1) where all spins lie in plane (wijk¼ 0). This ground state is

equivalent to the three-colouring problem up to a global O(2)
symmetry35, whose degeneracy is countable and extensive36. As
illustrated in Fig. 3, the system is entirely paved with only two
kinds of triangular configurations, A and �A, with opposite vector
chirality35. The noticeable consequence of our mapping is that in
the XXZ� and XXZþ ground states, the A or �A configurations
are respectively replaced by a collinear state F with zero chirality;
the resulting imbalance ensures finite and opposite vector
chirality between the two XXZ± ground states, while
preserving their extensive degeneracy. From this point of view,
it is interesting to think of the XXZ ground state as coming from
the cancelation of positive and negative DM terms, once
ferromagnetism has been taken out.

Chiral spin liquids. On the other hand, for d¼ � 1/2 DM
interactions become perfectly balanced by isotropic FM coupling

HFDM� ¼ � J
2

X
i;jh i

Si � Sj �
ffiffiffi
3
p

z � Si�Sj
� �h i

: ð7Þ

We name them the FDM± models. As a consequence, for each
triangle, both the DM induced31 and FM ground-state
configurations minimize the classical energy

S‘¼ 0;1;2f g ¼ sin y cosf�‘ ; sin y sinf�‘ ; cos y
� �

;

DM : f�‘ ¼ f � 2p
3 ‘ ) w012 ¼ � 3

ffiffi
3
p

2 cos y sin y2

FM : f�‘ ¼ f ) w012 ¼ 0

(
ð8Þ
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Figure 1 | Threefold mapping of kagome spin liquids. We show the existence of an exact one-to-one mapping (a) made of local proper spin rotations

(b–d) between the celebrated Heisenberg antiferromagnet (HAF) and two spin liquids X � with opposite vector chirality given in equation (3). By tuning

the anisotropy coupling d of equations (5) and (6), our mapping directly extends onto the anisotropic XXZ model. Its chiral counterparts (named XXZ±)

share the same extensive ground-state degeneracy as the XXZ model for do1, until the end point d¼ � 1/2 (FDM±), which belongs to the ferromagnetic

model with Dzyaloshinskii–Moriya interactions, and where chirality becomes scalar. The local bases (b–d) are rotated by � 2p
3 around the z-axis when

moving from B�0 ! B�1 ! B�2 . The z-axes are the same for all bases, which are right-oriented.
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Figure 2 | Structure factor of the Heisenberg antiferromagnet and X � spin liquids. The Fourier transforms of the spin correlations have been computed

using the method developed by Henley71 for Coulomb spin liquids in which the local constraints are enforced by a projection operator in reciprocal space.

We have considered the planar components of the spin correlations S? qð Þ � S? � qð Þ
� �

, where q¼ (qx, qy) is the wavevector in Fourier space. ‘Pinch-point’

singularities are formed in the centre of the Brillouin zones, characteristic of the local flux conservation discussed in equation (2). The structure factors

clearly illustrate the underlying equivalence of the models, and the difference of their in-plane fluctuations; antiferromagnetic in the HAF (a) and

ferromagnetic in the X � models (b). Only one figure is shown for the X � phases because they cannot be distinguished by the structure factor of the

planar spin components. The colour scales are fixed from zero to maximum intensity of the structure factor on each figure.
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where the ± index distinguishes the two FDM± models. With
respect to the XXZ± models where y was imposed to be p/2, the
global degeneracy of the FDM± ground states is enhanced to
O(3). Thus, while the S> degrees-of-freedom conserves the
character of a classical spin liquid, with the extensive degeneracy
and algebraic correlations of the three-colouring problem,
Sz¼ cos y can now take a finite uniform value, conferring a
finite scalar chirality to any ground-state configuration with
ya{0, p/2, p} (see equation (8)).

The threefold mapping transforms the FDM± models back
into a specific point of the XXZ model of equation (5) with
d¼ � 1/2, which we shall refer to as XXZ0

HXXZ0 ¼ J
X

i;jh i
S?i � S?j �

1
2

Sz
i Sz

j

� 	
ð9Þ

In the XXZ0 ground state, the scalar chirality persists on each
triangle but vanishes on average. The enhanced global O(3)
degeneracy remains. It is noteworthy that the end point value
d¼ � 1/2 takes an elegant meaning along the XXZ± lines,
namely that the FM coupling becomes isotropic, which is hidden
if only considering the XXZ model.

The emergence of scalar chirality in what is essentially a
‘simple’ ferromagnet with DM interactions is quite remarkable,
with a rich potential for unconventional phenomena. For
example, the interplay between a chiral spin liquid and itinerant
electrons is an up-and-coming topic21,37,38. Indeed, the FDM±

ground state is neither fully ordered like a solid or paramagnetic
like a gas. In a pictorial way it is a magnetic liquid where strong
correlations and fluctuations co-exist, which can then couple via
double-exchange to another ‘fluid’ made of itinerant electrons.

While hopping on the scalar-chiral spin texture, the itinerant
electrons pick up a Berry phase that might not only induce
anomalous Hall conductivity1,21,39, but at the same time feedback
into the strongly correlated spin texture to induce exotic magnetic
order21,40–42. This feedback actually does not require scalar
chirality and would also be pertinent to the XXZ± lines.

It should be noted that given the large value of D ¼
ffiffiffi
3
p

J , an
experimental realization of the FDM± models per se would
arguably be difficult in solid state physics, but on the other hand,
particularly promising for optical lattices. Indeed, the kagome
geometry29 and spin anisotropy30 have been experimentally
realized with ultracold atoms. There is also good hope that the
active research on synthetic gauge fields might be able to produce
synthetic DM interactions43–45, with the caveat that the DM
vector should be out-of-plane here.

Last but not least, FM insulators with DM coupling have been
studied in the context of magnon Hall effect, that is, where a
transverse heat current is induced by a temperature gradient. It is
intriguing to notice that the FDM± sits at the frontier between
two different topological phases, indicating the closing of a gap
between two magnon bands46. In light of our present work, and
since the topological phase for Do

ffiffiffi
3
p

J is the same down to
D¼ 0 (ref. 46), it would be of great interest for future work to
study the finite temperature physics of the DM ferromagnet.
This is especially true since chiral magnonic edge states and
topological skyrmion excitations have been observed in
simulations for D/JB0.4 (ref. 47).

Quantum fluctuations. Our analysis has been so far focused on
classical spins to precisely determine the nature of their classical
ground states. However, it is important to keep in mind that our
present threefold mapping is also exact with quantum spins.
Indeed the local transformations GBi are proper rotations, that is,
unitary matrices, and therefore preserve the commutation
relations of the spin components. It means that all the mappings
illustrated in Fig. 1 can be applied to quantum spins of any size S.
This important result makes it very tempting to investigate how
the previous classical analysis evolves for quantum Hamiltonians.

Let us start by considering quantum fluctuations in the
framework of linear spin wave theory. We shall consider the
Hamiltonian of equation (1) whose phase diagram is given in
Fig. 4 for Jz40. Approaching any of the HAF or X � models
(marked by dots), the linear spin wave Hamiltonian takes the
same form, which simply confirms the equivalence of these three
spin liquids in the presence of quantum fluctuations. The linear
spin wave calculation also indicates the likelihood of quantum
disorder around the centre of Fig. 4. Approaching the white-
triangle region, a flat band of excitations collapses to zero energy,
leading to a divergence in the quantum correction to the order
parameter.

Within the phase diagram of Fig. 4, the J>¼ Jz¼ J40 line has
drawn substantial interest for its relevance to Herbertsmithite
ZnCu3(OH)6Cl2, where DM interactions are not negligible
(D/JB0.044� 0.08)48–51. We reproduce the results of refs 31,52
done on this line of parameters, namely that classically31 and up
to linear order in spin wave theory52, magnetic order is stabilized
for any finite value of D. However, higher order terms in
quantum fluctuations studied by Exact Diagonalization53,54,
Schwinger–boson55,56 and perturbative methods57 have shown
that quantum disorder actually persists over a finite region up to
D/JB0.1, which includes Herbertsmithite. Our goal here is not to
claim explanation of the spin-liquid nature of Herbertsmithite
which has been extensively studied, but rather to set our theory
on an experimental footing. In particular, it should be noted that
at linear order in quantum fluctuations, the small XXZ anisotropy
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Ā

A

A

Ā Ā
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Figure 3 | Three-colouring ground states. The classical ground-state

ensemble of the XXZ model and its chiral counterparts XXZ± are

equivalent to the three-colouring problem, up to a global O(2) symmetry.

The equivalence is transparent for the XXZ ground state (b) [35], where

each triangle possesses the three possible spin orientations rotated by

2p/3 from each other, and Sz¼0. The colour code of the spin orientations

is given in a. The two antiferromagnetic permutations A¼ { } and
�A¼ { } are possible, giving a zero vector chirality on average. In this

context, the apparition of vector-chirality in the XXZ± ground states

(d,e) is understood as the suppression of either the A or �A configurations in

favour of a collinear state (F). The same scenario holds for the XXZ0 and

FDM± ground states where the spontaneous out-of-plane magnetization

makes the chirality scalar (see equation (8)). An example of spin

configuration with finite scalar chirality is given in c: the planar projection of

the spins corresponds to configuration A.
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observed in Herbertsmithite49,58 (J>/JzE0.9) brings this
compound at the tip of the white-triangle region with quantum
disorder.

Over the past year, the XXZ line with D¼ 0 and 0oJzoJ> has
also received significant attention for the spin-liquid nature of its
ground state for spins S¼ 1/2 (refs 59–61), and the complex
quantum order-by-disorder mechanism that takes place for
S41/2 (refs 59,62). Noticeably for spin-1/2, the density
matrix renormalization group (DMRG) approach indicates that
the quantum spin liquid persists for 0oJ>/Jzo1 and D¼ 0
(refs 60,61) (see solid and dashed red lines in Fig. 4). The
consequences on our work are multiple.

First of all, we had previously shown the extensive nature of the
XXZ± classical ground states for dr1 in equation (6). Our
threefold mapping applied to spin-1/2 now makes the XXZ±

models quantum spin liquids for all positive values of d (see solid
and dashed, green and blue lines in Fig. 4). Furthermore, the
central point of our phase diagram D¼ J>¼ 0 has Ising
anisotropy and is known for remaining a quantum paramagnet
even for arbitrarily small transverse fields28,63,64. As such, it has
been described as a rare example of ‘disorder-by-disorder’, a
mechanism proposed by Fazekas and Anderson65, where
quantum fluctuations select a disordered sub-manifold of the
classically degenerate ground state. Within the framework of our
threefold mapping, this remarkable resistance to order can be
understood as the consequence of being at the intersection of
three (dashed) lines of spin liquids, in a way reminiscent of what
has been observed in pyrochlore systems66. However, please note
that the spin-1/2 phase diagram is expected to be highly
anisotropic around this central point, since it has been shown
to order into a superfluid phase for D¼ 0 and J>o0 (refs 60,67),
and thus also along the symmetric lines J? ¼ �D=

ffiffiffi
3
p

40
around the origin according to our threefold mapping.

We have discovered a connected network of quantum spin
liquids on the kagome lattice, which are mapped onto each other
via a threefold transformation. One of the branches of this
network is the anisotropic XXZ model, known to be a quantum
spin liquid for spin-1/2 (refs 59–61) (see the red lines in Figs 1
and 4), which includes the actively studied HAF. While every
triad of Hamiltonians connected by this mapping have exactly the
same energy spectrum at the classical and quantum level, the
corresponding spin configurations are necessarily transformed
by GBi . As a consequence, the threefold mapping of the XXZ line
gives rise to spin liquids with intrinsic vector chirality because of
DM interactions. The Ising antiferromagnet sits at the centre of
this map (see Fig. 4), which sheds a new light on the unique
propensity of this model to remain disordered28,63,64.

Beyond these three branches of quantum spin liquids, we have
studied the stability of Hamiltonian (1) for Jz40, up to linear
order in spin wave theory. We have found an extended region of
the phase diagram in Fig. 4 where quantum disorder prevails.
The small XXZ anisotropy observed in Herbertsmithite49,58

(J>/JzE0.9) brings this compound within the tip of this
extended region.

At the classical level, the HAF maps onto two models where
algebraic correlations take the form of FM pinch points visible in
the structure factor of Fig. 2. Keeping the DM term constant,
if one tunes the Jz coupling of these models until they become
isotropic ferromagnet, the chirality can spontaneously become
scalar.

Discussion
Our work opens a wide range of exciting directions to follow,
both theoretically and experimentally. In light of the intense
research on the HAF and XXZ models, here we propose two lines
of systems with the same energy spectra, but different (chiral)
magnetic signatures. With this probe at hand and Figs 1 and 4 in
mind, it would be of great interest to look for new insights as one
approaches these models and their chiral counterparts from
different angles in parameter space (J>, Jz, D). In particular, the
spreading of quantum disorder within the white triangle of Fig. 4
and in its vicinity shall conserve the threefold symmetry, and be
mediated by quantum order-by-disorder mechanisms as we vary
the spin length S59,62.

The inclusion of 2nd and 3rd nearest-neighbour interactions
J2¼ J3¼ JNNN is known to stabilize a chiral spin liquid at finite
value Jc

NNN (refs 21–26,60,61,68). This value Jc
NNN has been shown

by DMRG to decrease as the antiferromagnetic Jz coupling
vanishes60,61. This means that the chiral spin liquid is getting
closer to the nearest-neighbour XXZ model as Jz goes from 1 to 0.
It would thus be very tempting to extend this work to FM
coupling (Jzo0) towards the XXZ0 and equivalent FDM± points.
Since T symmetry can be spontaneously broken in the classical
FDM± ground states, the possible connection with the chiral spin
liquids at finite JNNN is a particularly attractive open question.

Beyond kagome physics, the present methodology can be
applied to a broad range of lattices and dimensions69. Our results
especially suggest that systems supporting the ‘disorder-by-
disorder’ mechanism65, such as the Ising antiferromagnet
here28, are good places to look for hidden spin liquids in the
neighbouring parameter space.

On the experimental front, our work fits within the on-going
effort for the experimental realization of frustrated systems in
optical lattices29,30, and especially to produce tunable synthetic
DM interactions43–45.

We hope that our results will further motivate experimental
efforts on the synthesis and characterization of kagome materials
with anisotropic nearest-neighbour interactions. The recently
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Figure 4 | Phase diagram of the anisotropic nearest-neighbour

Hamiltonian. This phase diagram is obtained from linear spin wave theory

for Jz40. The Heisenberg antiferromagnet and X � spin liquids are marked

by dots and the yellow, orange and purple regions are long-range ordered

phases as displayed on the figure. The white triangle delimits a regime

where quantum corrections to the order parameters diverge, indicating a

possible extended region of quantum disorder. In particular, the density

matrix renormalization group method (DMRG) has shown that the entire

XXZ model (solid and dashed red lines) is a quantum spin liquid60,61.

Our threefold transformation maps this quantum spin liquid onto the XXZ±

models of equation (6) (green and blue lines) for 0odo1 (solid) and d41

(dashed), which are thus also quantum spin liquids. Experimentally,

independent parametrizations of the Herbertsmithite compound50,51,58

put it at the tip of the white-triangle region (black rectangle).
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synthesized ternary intermetallic compounds Dy3Ru4Al12

(ref. 12) and Yb3Ru4Al12 (ref. 13) are very promising materials
to start with, since the 4f orbitals of rare-earth ions are known
to induce very anisotropic and short-range interactions.
Furthermore the presence of itinerant electrons make them
natural materials to probe the chirality of the underlying spin
texture. Their crystal structure, however, corresponds to a
distorted kagome lattice. To impose kagome symmetry is a
chemistry challenge, but such was the case for Volborthite
Cu3V2O7(OH)2 � 2H2O, 14 years ago6, which predated the
synthesis of a growing number of materials with essentially
perfect kagome symmetry7–11. According to our threefold
mapping, some of the places to look for would be large
antiferromagnetic Jz, as well as around the XXZ0 point where
no DM terms are required. In light of refs 46,47, the region
neighbouring the FDM± models is also very promising, even for
smaller values of D and anisotropic Jz. At the proximity of these
high-symmetry points, especially the one at the centre of the
white triangle, chemical, hydrostatic and uni-axial pressure might
help the exploration of the phase diagram, as done in rare-earth
pyrochlore oxides70.
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