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Abstract: We studied the phase behavior of two-dimensional systems of Janus-like particles on a
triangular lattice using Monte Carlo methods. The model assumes that each particle can take on
one of the six orientations with respect to the lattice, and the interactions between neighboring
particles were weighted depending on the degree to which their A and B halves overlap. In this
work, we assumed that the AA interaction was fixed and attractive, while the AB and BB interactions
varied. We demonstrated that the phase behavior of the systems considered strongly depended
on the magnitude of the interaction energies between the AB and BB halves. Here, we considered
systems with non-repulsive interactions only and determined phase diagrams for several systems. We
demonstrated that the phase diagram topology depends on the temperature at which the close-packed
systems undergo the orientational order–disorder transition.

Keywords: Janus particles; phase transitions; Monte Carlo simulation

1. Introduction

Janus particles have a surface composed of two chemically different patches, A and
B [1,2]. The surface chemical anisotropy, which can be tuned by an appropriate fictionaliza-
tion, results in orientation-dependent interactions. The chemical composition and the size
of patches, influence both self-assembly and the formation of different ordered structures
in two- and three-dimensional systems [3–8]. In the region of low and moderate densities,
the formation of micelles, vesicles, and worm-like clusters has been observed [9–11]. It was
also shown that Janus particles form crystals of different structures and density [11].

The behavior of dense two-dimensional systems of Janus particles has been recently
studied by several authors [3,12–14]. Shin and Schweizer [3] used the Kern–Frenkel
model [15] and developed a version of self-consistent phonon theory, which predicted the
formation of different orientationally ordered hexagonal phases. The structure of these
phases was found to be primarily determined by the so-called Janus balance [16], defined
by the size of the attractive patch. Shin and Schweizer showed also that such systems
may undergo phase transitions between different orientationally ordered phases. Similar
orientationally ordered structures were observed by Iwashita and Kimura [4]. On the
other hand, experimental study and Monte Carlo simulation of Jiang et al. [5] showed the
formation of a glass-like phase, instead of the theoretically predicted zigzag phase [3].

In our recent paper [13], we studied the orientational order–disorder transitions in
closely packed two-dimensional systems of Janus particles, using a simple lattice model,
which allowed for only six different orientations of each particle. It was demonstrated
that the nature of the transition is entirely determined by the sign of the parameter
ε = uAA + uBB − 2uAB, where uAA, uAB and uBB are the energies of interaction between
the nearest neighbor pairs with their AA, AB, and BB halves facing one another. The
parameter ε determines whether the contacts between the like (AA and BB) or unlike (AB)
halves are favored.

When ε < 0, the systems were shown to order into the zigzag phase, with the order–
disorder transition belonging to the universality class of the three-state Potts model [17].
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On the other hand, when ε > 0, the ordered phase was found to be different, with the order–
disorder transition belonging to the universality class of the four-state Potts model [17].
Here, we should mention that various lattice models (Ising, Potts, etc.) are commonly used
to describe the behavior of diverse physical systems [18,19].

We also studied the phase behavior of Janus-like particles [14] using the same lattice
model with uAB = uBB = 0, i.e., with the interaction potential similar to that proposed by
Kern and Frenkel [15]. The model was studied using the Monte Carlo method in the grand
canonical ensemble, and two versions of the model were considered. In the first version,
the strength of attractive interaction, confined to the A halves of neighboring particles, was
assumed to depend on the degree to which they were overlapping. In the second version,
it was assumed that the interaction energy between a pair of neighboring particles was the
same for any mutual orientations, in which their A patches overlapped to any extent.

It was demonstrated that both versions of the model led to qualitatively different
results. In the case of the first version, the self-assembly was found to lead to different
stripped structures, depending on the density and the temperature. In particular, we found
that, at sufficiently low temperatures, the condensation led from a very dilute lamellar gas
phase to the high density ordered zigzag phase. At intermediate temperatures, the system
underwent two first-order phase transitions. The first led to the condensation of the gas
phase into the partially ordered, phase (Z2), with kinked stripes that were predominantly
ordered along two axes of the lattice.

The second transition occurred between the Z2 phase and the high density well-
ordered zigzag phase (Z). At sufficiently high temperatures, only one continuous transition,
between the disordered fluid-like and the ordered zigzag phases, was observed. In the
case of the second model, we found only one first-order transition at low temperatures.
This transition occurs between a dilute gas-like phase and the ordered phase, which
forms a kagome lattice of the density equal to 6/7. A further increase of the density was
demonstrated to lead to the reorientation of particles and the formation of dense glass-like
structure, similar to that observed by Jiang et al. [5].

Thus, the phase behavior was demonstrated to be sensitive to the magnitude of
attractive interaction acting between differently oriented particles.

The primary aim of this work is to discuss the phase behavior of two-dimensional
systems of Janus-like particles with the tuned interactions between their different parts. In
particular, we were interested in the question of how the phase behavior is affected by the
stability of the dense ordered phase and by the strength of attractive interactions between
particles.

To this end, we applied the same lattice gas model as used in [13,14,20] and assumed
that the interaction between the neighboring Janus particles depends on the degrees to
which their different parts overlap. We considered three series of systems in which the A-A
interaction was fixed while A-B and B-B interactions were varied. In the first series, the AB
and BB interactions were assumed to be the same, uAB = uBB = u∗. In the second (third)
series, uAB (uBB) was assumed to be equal to zero, while uBB (uAB) was varied.

Only the second series, with uAB = 0, appeared to mimic real Janus particles with
hydrophilic and hydrophobic parts [2,3,14]. However, the other two series are also of
interest, since each of them has demonstrated a little different phase behavior.

2. The Model and Methods

As already mentioned, the model used here is quite similar that considered in [13,14,20].
Thus, the Janus particles placed on a triangular lattice were assumed to be made of two halves
A and B, and each particle was assumed to take on one of the six orientations, defined by the
angle θ(k) = (k− 1)(2π/6) (k = 1, . . . , 6), measured with respect to the x-axis (see Figure 1a).
Throughout this work, we assumed that all interactions were short-ranged and limited to the
first nearest neighbors.
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Figure 1. (a) The six possible orientations of a particle on a triangular lattice. (b) Two representative examples of differently
oriented Janus particles, with (k, l) = (1, 6) and (6, 6) and the separation vector r = a1, demonstrating how the weights
determining the interaction energy between neighboring particles were calculated.

The interaction energy between a pair of particles located on adjacent sites i and j,
u(ki, k j, rij), was assumed to depend on their orientations, ki and k j, defined by the angles,
θ(ki) and θ(k j), as well as on the separation vector, rij, of unit length. The triangular lattice
is described by three unit vectors: a1 = (1, 0), a2 = (0.5,

√
3/2), and a3 = (−0.5,

√
3/2),

and hence there are six different separation vectors, which are equal to ±ai (i = 1, 2, 3).
To each particle, we assigned the spin vector of unit length, S = (cos(θ), sin(θ)), and

hence u(ki, k j,~rij) can be written as u(Si, Sj, rij). Moreover, we assumed that the energy of
interaction between a pair of neighboring particles depends on the degree to which their
various halves overlap. This leads to the following expression for u(Si, Sj, rij):

u(Si, Sj, rij) = wAA(Si, Sj, rij)uAA + wAB(Si, Sj, rij)uAB + wBB(Si, Sj, rij)uBB , (1)

where uAA, uAB, and uBB are the interaction energies corresponding to the orientations,
in which the AA, AB or BB halves face one another, while wAA(Si, Sj, rij), wAB(Si, Sj, rij),
and wBB(Si, Sj, rij) are the weights, determined by the degrees to which the AA, AB, and
BB regions overlap for given relative orientations, specified by Si and Sj, and locations,
specified by the separation vector rij (see Figure 1b). There are 12 different values of the pair
interaction energy, as summarized in Table 1. In Table 1, we also give the orientations of
pairs of neighboring particles corresponding to different values of u(Si, Sj, rij), for rij = a1.

Table 1. Possible different values of the interaction energy between a pair of neighboring particles
and the pairs of orientations of a given energy for the separation vector vecr = (1, 0).

u1 = uAA (0,3)
u2 = uAB (0,0), (1,5), (2,4), (3,3), (4,2), (5,1)
u3 = uBB (3,0)
u4 = 0.75uAA + 0.25uAB (0,2), (0,4), (1,3), (5,3)
u5 = 0.75uAA + 0.25uBB (1,2), (5,4)
u6 = 0.75uBB + 0.25uAB (2,0), (3,1), (3,5), (4,0)
u7 = 0.75uBB + 0.25uAA (2,1), (4,5)
u8 = 0.75uAB + 0.25uAA (0,1), (0,5), (2,3), (4,3)
u9 = 0.75uAB + 0.25uBB (3,2) (5,0), (3,4), (1,0)
u10 = 0.5uAB + 0.25(uAA + uBB) (1,1), (2,2), (4,4), (5,5)
u11 = 0.5uAA + 0.5uAB (1,4), (5,2)
u12 = 0.5uBB + 0.5uAB (2,5), (4,1)
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To study the phase behavior, we used the Monte Carlo method in the grand canonical
ensemble [21]. The Hamiltonian of the model reads

H =
1
2 ∑

i,j
u(Si, Sj, rij)ninj − Nµ , (2)

where the sum runs over all pairs of nearest neighbors; ni = 1, when the i-the site is
occupied, and 0 otherwise; and N is the total number of particles in the system,

N =
L2

∑
i=1

ni (3)

and µ is the chemical potential. In the system with linear dimension L, the total density is
equal to ρ = N/L2, and the densities of differently oriented particles are defined as

ρk =
1
L2

L2

∑
i=1

niδ(θ(ki)− θ(k)). (4)

Of course,

ρ =
1
L2

6

∑
l=1

ρl (5)

Throughout this work, we assumed that uAA = −1.0, with |uAA| taken as the unit
of energy, while the values of uAB and uBB were varied. The temperature, the chemical
potential, and all other energy-like quantities are expressed in the reduced units.

The simulations were carried out for rhomboid cells of the size L× L, with the standard
periodic boundary conditions. Since the systems considered were found to form various
ordered structures of different symmetry and density, we considered simulation cells of the
sizes suitable to properly accommodate those structures in periodically repeated simulation
cells.

The quantities recorded included the averages of the total density, 〈ρ〉, the densities of
differently oriented particles, 〈ρk〉, the potential energy per site, 〈u〉, the heat capacity

CV =
1

T2 [〈H
2〉 − 〈H〉2], (6)

and the density susceptibility per site

χρ =
1
T
[〈ρ2〉 − 〈ρ〉2] . (7)

To equilibrate the system, we used 106–107 Monte Carlo steps and another 5 · 106–108

Monte Carlo steps were used to calculate averages. Each Monte Carlo step involved 10 · L2

attempts to change the state of the system. In the grand canonical ensemble, the possible
changes of the system state involved either the creation of a particle on a randomly chosen
site, with also a randomly chosen orientation or the removal of a randomly chosen particle.
The simulation at a given temperature usually began at a sufficiently low value of the
chemical potential, corresponding to a very low density, and then the chemical potential
was gradually increased up to the values at which the nearly entire lattice was filled.

After the recording of such an “ascending” isotherm, we performed the run, starting
at a high density, and recorded the “descending“ isotherm. This procedure allowed
locating the first-order phase transitions. In finite systems, the first-order transitions at
low temperatures are usually accompanied by hysteresis loops, due to the presence of
metastable states [21,22].

During the equilibration runs, the changes of the recorded quantities were monitored,
and the equilibration was assumed to be complete when these quantities ceased to undergo
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systematic changes and showed only oscillations around average values. In some cases, this
was achieved already after 105–5 · 106 Monte Carlo steps; however, usually the equilibration
required a considerably larger number of Monte Carlo steps, up to 107.

3. Results and Discussion

To begin, we consider the systems with uAB = uBB = u∗, assuming that u∗ ∈ [−1.0,−0.1].
The isotherms, calculated at different temperatures and for different values of u∗, demon-
strated that all these systems exhibit qualitatively the same behavior. Figure 2 presents
the isotherms recorded for u∗ = −0.1, and the systems with u∗ < −0.1 led to quite similar
results and the presence of the first-order transition at sufficiently low temperatures. The
transition can be treated as the gas–liquid condensation, and it terminates in the critical
point. The critical temperature, Tc(u∗), gradually increases when u∗ decreases from −0.1
to −1.0 (see Figure 3). In the particular case of u∗ = −1.0, the critical temperature takes
on the value of about 0.91, as predicted for the isotropic lattice gas model on a triangular
lattice [23,24].

-1.20 -1.18 -1.16 -1.14 -1.12
µ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

a

T=0.15

T=0.17

T=0.19

T=0.20

T=0.21

Figure 2. The examples of isotherms recorded for the system with u∗ = −0.1 at different temperatures
(given in the figure).

In [13,20], we show that the close-packed systems, with ρ = 1.0 and different values
of u∗, undergo the order–disorder transition between the orientationally disordered phase
and the ordered zigzag (Z) phase. The transition was demonstrated to be continuous
and belonging to the universality class of the three-state Potts model, with the transition
temperature decreasing linearly to zero, when u∗ decreases toward −1.0. When u∗ = −1.0,
the interactions become isotropic, and hence no orientational order–disorder transition
is possible. The locations of the orientational order–disorder transition, To(u∗), are also
included in Figure 3 and in all systems with u∗ ≤ −0.1 the critical temperature is higher
than To(u∗).

Therefore, at sufficiently low temperatures, the gas should condense directly into the
ordered Z phase, while at higher temperatures, but still lower than Tc(u∗), the condensation
should lead to the orientationally disordered condensed phase. The transition between the
dense orientationally disordered and the ordered zigzag phase is expected to be continuous,
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just the same as in the close-packed systems. This implies that the line of the orientational
order–disorder transition terminates in the critical end point located on the condensed
phase branch of the gas-condensed phase coexistence.

-1 -0.8 -0.6 -0.4 -0.2 0

u*

0

0.2

0.4

0.6

0.8

1

T

Figure 3. The changes of the critical temperature, Tc(u∗), (circles), the critical end point temperature,
Tcep(u∗), (triangles) the orientational order−disorder transition temperature in close-packed systems,
To(u∗) (filled circles), and the tricritical point temperatures, Ttrc(u∗) (triangles), with u∗.

This scenario was found in the systems characterized by u∗ = −0.1 and −0.2, in
particular, when u∗ = −0.1. The recorded densities of differently oriented particles, 〈ρk〉,
along the isotherms at T = 0.16 and 0.17 demonstrated (see Figure 4) that, at T = 0.16, the
gas condensation led to the orientationally ordered Z phase, in which four orientations
were favored (cf. [20]), while, at T = 0.17, the gas condensation led to an orientationally
disordered liquid.

However, the orientationally disordered liquid phase undergoes the transition to the
ordered Z phase at the chemical potential µ ≈ −1.12, and the density is equal to about 0.99.
From the results obtained at different temperatures, we estimated the phase diagram for
this system, which is given in Figure 5. As expected, the line of continuous orientational
order–disorder transition meet the gas-condensed phase coexistence at the critical end point,
located at Tcep(−0.1) ≈ 0.167, µcep(−0.1) ≈ −1.175, and ρcep(−0.1) ≈ 0.965. In the system
with u∗ = −0.2, the critical end point is located at Tcep(−0.2) ≈ 0.16, µcep(−0.2) ≈ −1.33,
and at the density ρcep(−0.2) ≈ 0.997.

Qualitatively, the same behavior is bound to occur in the systems with lower values
of u∗. However, since To(u∗) decreases when u∗ becomes lower, the critical end point is
shifted toward gradually decreasing temperatures, and toward the densities very close to
unity. Already in the system with u∗ = −0.2, the estimated density at the critical end point
is very high.
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Figure 4. The densities of differently oriented particles along the isotherms obtained for the system
with u∗ = −0.1 at two temperatures, given in the figure. The filled (open) symbols correspond to the
four favored (the two disfavored) orientations in the ordered zigzag structure.
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Figure 5. The estimated phase diagram for the system with u|ast = −0.1. The main part shows
the T − µ projection, and the inset gives the T − ρ projection. Circles and squares represent the
coexistence points of the first−order and continuous transitions, respectively. The filled square marks
the location of the critical end point, while the filled circle (in the main part) shows the location of the
first-order transition in the ground state.
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The situation changes when u∗ becomes higher than about −0.084, since the order–
disorder transition temperatures, To(u∗), exceed the expected critical temperatures (cf.
Figure 3). This does not exclude the possibility that the phase diagrams may still look
like those shown in Figure 5, however. The calculations carried out for the systems with
u∗ = −0.05 and −0.03 demonstrated a different behavior. The isotherms (see the main
part of Figure 6) and the isothermal changes of the ratio 〈ρk〉/〈ρ〉 (see the inset to Figure 6)
obtained for the system with u∗ = −0.05, demonstrated that, at the temperature T = 0.14,
the first-order transition leads from the gas phase directly to the well developed Z structure.

At higher temperatures of T = 0.15 and 0.17, which are still lower than To(−0.05) ≈
0.19, the isotherms do not show the first-order transition between the gas and liquid phases,
and the density smoothly increases with µ. However, at sufficiently high densities, a
continuous transition, associated with the development of orientationally ordered Z phase,
takes place at temperatures up to To(−0.05). At the temperatures above To(−0.05), we did
not observe the formation of the Z phase at all.

The orientational order–disorder transition is not accompanied by any visible density
anomalies along the isotherms, but it leads to large changes of the ratio 〈ρk〉/〈ρ〉 (cf. the
inset to Figure 6). In the orientationally disordered phase, all six orientations are equally
probable, and hence 〈ρk〉/〈ρ〉 ≈ 1/6. In the orientationally ordered phase, four orientations
are favored, while the remaining two are disfavored. The transition is also accompanied by
the appearance of heat capacity peaks of the height and location of maxima depending on
the simulation cell size.

In Figure 7, we present examples of heat capacity curves obtained at T = 0.15 and
for different sizes of the simulation cell. Here, we should recall that, in the close-packed
system, the orientational order–disorder transition belongs to the universality class of the
three-state Potts model [12,20]. Therefore, the observed transition also belongs to the same
universality class. However, to confirm this prediction, one would need to evaluate the size
dependence of the joint distribution of density and energy fluctuations, since the scaling
fields comprise mixtures of temperature and chemical potential [25,26].
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Figure 6. The main part shows the isotherms recorded at different temperatures for the system
with u∗ = −0.05, while the inset presents the changes of the ratio 〈ρk〉/〈ρ〉 along the isotherms at
T = 0.14 and 0.15. The arrows in the main part mark the locations of the orientational order−disorder
transition.
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Figure 7. The heat capacity curves for the system with u∗ = −0.05 at T = 0.15, recorded using the
simulation cells of different sizes (shown in the figure).

The constructed phase diagrams for the systems with u∗ = −0.05 and −0.03 are
shown in parts a and b of Figure 8, respectively. Taking into account that, in both systems,
the coexistence lines of the first-order transition smoothly meet the lines of the continuous
transition, we conclude that the first-order transition terminates in the tricritical point,
Ttrc(u∗), which replaces the critical point. The estimated tricritical point temperatures in
these two systems are Ttrc(−0.05) ≈ 0.144 and Ttrc(−0.03) ≈ 0.12.

The calculations carried out for the system with u∗ = −0.01, i.e., quite close to zero,
demonstrated the behavior quite similar to that found in the case of u∗ = 0.0 [14]. Figure 9
shows a series of isotherms recorded for this system, which exhibit two discontinuous
density jumps at temperatures between 0.07 and 0.09, indicating the presence of two first-
order transitions. The first transition occurs between the orientationally disordered low
density phase and the partially ordered phase, Z2, in which two orientations are favored.
This is illustrated by the changes of 〈ρk〉 along the isotherm at T = 0.09 (see Figure 10a).

The phase Z2 consists of long kinked zigzag clusters, with a large number of 120o

kinks, predominantly oriented along with two out of three axes of the triangular lattice
(see Figure 11). The second transition, which takes place at higher densities, leads to the
development of the ordered Z phase. At temperatures T > 0.09, only one continuous
transition takes place. Figure 10b shows the changes of 〈ρk〉 along the isotherm at T = 0.10
and demonstrates that the only transition occurs between the orientationally disordered
(lamellar) fluid and the orientationally ordered Z phase.
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Figure 8. The phase diagrams evaluated for the systems with u∗ = −0.05 (a), and −0.03 (b). Open circles and squares show
the phase boundaries for the first−order and second−order transitions, respectively. The filled squares mark the locations
of the tricritical points. In the main panel, the location of the gas–zigzag transition in the ground state is marked by the
filled circle.
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Figure 9. The isotherms obtained for the system with u∗ = −0.01 at different temperatures.
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Figure 10. The changes of densities of differently oriented particles along the isotherm at T = 0.09 (a) and T = 0.10 (b),
obtained for the system with u∗ = −0.01. The dashed vertical lines in part (a) mark the locations of density jumps due to
the transitions. One should note the hysteresis loop accompanying the transition between Z2 and Z phases.

Figure 11. The snapshot recorded for the system with u∗ = −0.01, at T = 0.08 and µ = −1.126,
which shows the structure of the phase Z2.

The recorded isotherms, heat capacities, and density susceptibilities, allowed us to
construct T − µ and T − ρ projections of the phase diagram as shown in Figure 12. Taking
into account that, in the ground state, this system exhibits only one transition, between a
gas-like and the ordered Z phases, we conclude that the triple point, Ttr,1, in which a very
dilute gas-like phase coexists with the Z2 and Z phases, must exist at a certain temperature
below 0.07.
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Figure 12. The proposed phase diagram for the system with u∗ = −0.01. The main part and the inset
show the T− ρ and the T− µ projections, respectively. The circles mark the first−order transitions,
while the squares mark the locations of continuous transitions. The dotted vertical lines in the main
panel mark the expected locations of the triple points.

On the other hand, the lines of low and high density transitions, µ1(T) and µ2(T), are
expected to meet at a temperature of about 0.093 and a density of about 0.65. At this point,
the LF, Z2, and Z phases coexist.

The change of the phase behavior between the systems with u∗ = −0.03 and −0.01
results from the weakening of attractive AB and BB interactions. In the Z and Z2 phases,
every particle enjoys attractive interactions with all neighboring particles; however, the AB
and BB attraction is weaker when u∗ = −0.01. In the Z phase, the A half of each particle
has contact with the A parts of four neighboring particles, and the formation of straight
zigzag stripes is enhanced by the AB and BB attractions.

In the Z2 phase, the A half of each particle interacts with either three or four A
halves of neighboring particles, while the AB and BB attractive interactions are of lesser
importance. On the other hand, the Z phase has a negligible residual entropy per particle
in the thermodynamic limit [3], and this is stabilized by strong attraction. In the Z2 phase,
with large regions of empty sites, the entropy is higher than in the well-ordered Z phase.
Thus, the phase Z2 is stabilized by entropic effects.

However, the contribution of entropy to the free energy decreases when the tempera-
ture is lowered, and hence the structure of the condensed phase becomes dominated by the
potential energy. This explains the appearance of the triple point Ttr,1. As the temperature
increases, the ordering in both the Z and Z2 phases is gradually destroyed by thermal
fluctuations; however, the effect of these fluctuations is considerably stronger in the case of
the already not well-ordered Z2 phase. Therefore, the disordering of the Z2 phase takes
place at lower temperatures than the disordering of the Z structure, thus, leading to the
presence of another triple point at the temperature Ttr,2 ≈ 0.93.

Now, we turn to the results obtained for a series of systems with uAB = 0, which
are the most closely related to the usual models of Janus particles [15]. The close-packed
systems with uAB = 0 and uBB < 0 undergo a continuous orientational transition, however,
at temperatures increasing linearly from about 0.204, when uBB = 0, up to about 0.408,
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when uBB = −1.0. Similarly, to the series with uAB = uBB, the phase behavior is expected
to depend on the stability of the ordered Z phase.

The systems with uBB very close to zero were found to exhibit qualitatively the same
behavior as the already discussed system with u∗ − 0.01 and the system with u∗ = 0.0. For
lower uBB, equal to −0.05 and −0.1, the phase diagrams were qualitatively the same as
found for the systems with u∗ equal to −0.03 and −0.05. Thus, the dilute gas-like phase
condenses directly into the zigzag ordered structure at the temperatures up to the tricritical
point temperature, Ttrc(−0.05) ≈ 0.135 and Ttrc(−0.1) ≈ 0.175.

At higher temperatures, the disordered fluid undergoes a continuous order–disorder
transition, up to the temperatures corresponding to the order–disorder transition in close-
packed systems. Upon a further lowering of uBB below about −0.116, the phase behavior
changes, and the first order transition between the gas-like phase, and the condensed phase
was found to lead directly to the ordered zigzag structure only at temperatures below the
critical end point, which was the onset of the continuous order–disorder transition.

Above the critical end point temperature, the gas-like phase condenses into the disor-
dered lamellar liquid, and the transition terminates in the critical point. The critical end
point temperature and the critical temperature were found to increase when uBB decreased.
Figure 13 presents the examples of phase diagrams obtained for uBB = −0.1 (part a) and
−0.2 (part b), which demonstrate the changes of the topology with uBB, while Figure 14
shows the estimated changes of Tc, Tcep, Ttrc and To with uBB.

It is well seen that Tc and Tcep meet Ttrc at uBB ≈ −0.116. Thus, for any uBB lower
than about −0.116, the phase diagram topology is expected to remain unchanged. When
uBB decreases, the critical end point temperature gradually approaches the temperature
at which the close-packed systems undergo the order–disorder transition. We limited the
calculations to uBB down to−0.3, since the estimation of the critical end point temperatures
for lower values of uBB was quite difficult. Already for uBB = −0.3, Tcep(−0.3) is quite
close to To(−0.3), and the density at the critical end point is quite high and equal to about
0.98.
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Figure 13. The estimated phase diagrams for the systems with uAB = 0 and ubB equal to −0.10 (a) and −0.2 (b). The main
panels and insets show the T − ρ and the T − µ projections, respectively. The circles and squares mark coexistence points of
first−order and continuous transitions, respectively
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Figure 14. The changes of the critical temperature, Tc(uBB), (circles), the tricritical point temperatures,
Ttrc(uBB) (diamonds), the critical end point temperatures, Tcep(uBB) (squares), and the orientational
order−disorder transition temperature in close-packed systems, To(uBB) (filled circles), for the
systems with uAB = 0.

In the series with uBB = 0, the nature of the order–disorder transition in dense systems
is different for uAB lower and higher than −0.5. Namely, when uAB > −0.5, this transition
belongs to the universality class of the three-states Potts model, while, for uAB < −0.5, it
belongs to the universality class of the four-state Potts model [20]. In the particular case
of uAB = −0.5, the orientational order–disorder transition does not occur at all. In the
close-packed systems, the temperature of the order–disorder transition decreases from
0.204, when uAB = 0 to zero, when uAB = −0.5. Then, for uAB < −0.5, the transition
temperature increases from zero up to about 0.14, when uAB decreases from −0.5 to −1.0.

Here, we studied only the systems with uAB between −0.05 and −0.25, and Figure 15
presents three phase diagrams obtained for uAB = −0.05, −0.1, and −0.15. In the case
of uAB = −0.05, the phase behavior is qualitatively the same as in the already discussed
systems with uAB = uBB = −0.03 and −0.05, as well as in the systems with uAB = 0 and
uBB = −0.05 and −0.1. Thus, the fluid phase condenses directly into the ordered zigzag
structure at any temperature, between zero and the temperature at which the close-packed
system undergoes the order–disorder transition.

In the case of uAB = −0.1, the dilute gas-like phase condenses into the ordered zigzag
phase, only at temperatures up to the triple point temperature, Ttr(−0.1) ≈ 0.1, At slightly
higher temperatures, up to about 0.103, the gas condenses into the disordered liquid phase.
The transition terminates at the usual critical point. However, at temperatures between
about 0.1 and 0.102, the disordered liquid undergoes the first-order transition to the ordered
zigzag phase. At ≈0.102, the tricritical point appears, and, at still higher temperatures, the
disordered fluid undergoes a continuous transition to the zigzag phase.

The system with uAB = −0.15 shows qualitatively different phase behavior, and the
onset of a continuous order–disorder transition is located in the critical end point. Here,
again, at the temperatures above the critical end point and up to the critical point, the
gas-like phase condenses into the disordered liquid. Thus, the behavior is the same as in
the already discussed systems with u∗ < −0.076 and with uAB = 0 and uBB < −0.116.
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Figure 15. The estimated phase diagrams for the systems with uBB = 0 and different values of uAB, equal to −0.05 (a),
−0.1 (b) and −0.15 (c). The main figures and insets show the T − ρ and the T − µ projections, respectively. The vertical
line in part b marks the location of the triple point. Open and filled symbols correspond to the first−order and continuous
transitions, respectively. In part b, the low and high density transitions are marked by circles and diamonds, respectively

From the calculations carried out for several systems, we can estimate the changes of Tc,
Tcep, Ttrc and Ttr with uAB, shown in Figure 16. Similarly to previously discussed systems,
the tricritical point and the critical point temperatures increase when the AB attraction
becomes stronger, and these two regimes meet when uAB ≈ −0.116. However, the critical
end point temperature exhibits non-monotonous changes with uAB. The temperature of
the order–disorder transition in a close-packed system. To(uAB), decreases when the AB
attraction becomes stronger, and Tcep(uAB) is bound to be lower than To(uAB).
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Figure 16. The changes of the Tc(uAB), (circles), Ttrc(uAB) (triangles), Tcep(uAB) (diamonds), Ttr(uAB)

(squares), and To(uAB) (filled circles) estimated for the series with uBB = 0.

4. Summary

We studied the phase behavior of two-dimensional systems of Janus-like particles on
a triangular lattice. Here, we assumed that all, AA, AB, and BB, interactions are attractive.
The AA interaction energy was fixed, while the AB and/or BB interaction energies were
varied, and assumed to be less attractive than the AA interaction. We assumed that the
particles can take on only six different orientations and that the interaction energy between
a pair of nearest neighbors depends on their mutual orientations. Using the grand canonical
Monte Carlo simulation method, we considered three series of systems with uAB = uBB,
uAB = 0 and with uBB = 0.

We demonstrated that the phase behavior of all systems strongly depends on the stability
of the high density zigzag (Z) phase. The stability of the Z phase is determined by the
anisotropy of interactions and increases when the AB and/or BB attractions become weaker.
As a consequence, in the systems with sufficiently strong anisotropy of interactions, the liquid
phase does not appear, and the dilute fluid condenses directly into the zigzag ordered phase.
The transition terminates in the tricritical point. At temperatures above the tricritical point,
the disordered fluid undergoes a continuous transition into the zigzag phase.

When the AB and/or BB attraction increases, the stability of the zigzag phase becomes
weaker, and its formation is possible only at sufficiently high densities and at sufficiently
low temperatures. This means that the dilute phase condenses into the zigzag phase only
at the temperatures lower than the critical end point temperature. At temperatures above
the critical end point, the dilute phase condenses into the disordered liquid-like phase, and
the transition terminates in the usual critical point.

The above scenario was found in all three considered series of systems. Whenever
the critical point appears, the critical temperature increases when the attraction between
AB and/or BB halves becomes stronger. In the particular series with uAB = uBB = u∗,
the critical temperature went up to the value corresponding to the critical point of the
uniform system when u∗ = −1.0. In the series with uAB = 0 and with uBB = 0, the critical
temperatures reached lower values when uBB or uAB went to −1.0.
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In the case of the series with uAB = 0, the phase diagram topology remained the same
for any uBB lower than about −0.116. Thus, the onset of the continuous order–disorder
transition in the dense fluid meeting the bulk coexistence in the critical end point, Tcep(uBB),
and Tcep(uBB) gradually increased when uBB is lowered. On the other hand, the series with
uBB = 0 is expected to show different behavior, when uAB decreases. In this paper, we
discussed only the systems with uAB ≥ −0.25.

In this series, the critical end point temperature, Tcep(uAB), is bound to go to zero
for uAB = −0.5, since this particular system does not undergo any orientational order–
disorder transition [20]. However, a further decrease of uAB below −0.5 means that
the order–disorder transition reappears; however, now, this transition belongs to the
universality class of the four-state Potts model. Therefore, it is expected that the continuous
order–disorder transition should occur at sufficiently high densities and at sufficiently low
temperatures. The onset of this transition is also expected to be located at the critical end
point, Tcep(uAB).

Here, we recall the results obtained for symmetric mixtures [27,28], which show
qualitatively the same changes in the phase diagram topology when the tendency toward
demixing becomes weaker. In that case, the demixed fluid is an ordered state, and by
lowering its stability, the same sequence of phase diagram topologies appears.
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13. Patrykiejew, A.; Rżysko, W. Order–disorder transitions in systems of Janus particles on a triangular lattice. Phys. A 2020, 548,

123883. [CrossRef]
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