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Introduction
Epigenetic modifications are inherited changes in DNA that 
do not change the sequence itself. These include DNA meth-
ylation, histone deacetylation, and miRNA regulation.1 DNA 
methylation is one of the most extensively studied epigenetic 
changes and it regulates expression of genes in normal develop-
ment of mammalian cells. Dysregulation in DNA methylation 
often plays a vital role in the onset of human diseases, and it has 
been proposed that epigenetic aberration potentially gives rise 
to several classic hallmarks of cancer.2 In particular, promoter 
hypermethylation of tumour suppressor genes resulting in the 
silencing of their expression is involved in driving cancer sur-
vival, growth, and metastasis.3,4

DNA methylation of cytosine bases is prevalent in mam-
malian and several other eukaryotic genomes. The addition of 
methyl groups is conducted by DNA methyltransferases 
(DNMTs) consisting of DNMT1, DNMT3A, and 
DNMT3B.5 Methylation occurs at the fifth carbon atom of 
cytosine bases in specific regions of CpG dinucleotides (Figure 
1), and it is formed and preserved by DNMTs.5,6 Both 
DNMT3A and DNM3B catalyse de novo DNA methylation, 
while DNMT1 preserves such patterns of DNA methylation 
during cell division and preferentially methylates hemimethyl-
ated DNA.6,7

Structurally, the domains of all DNMTs are distinguished by 
a variable N-terminal region consisting of regulatory domains 

while the C-terminal region contains the methyltransferase 
domain required for their enzymatic activities.6 The regulatory 
domains at N-terminal differ between DNMT1 and DNMT3 
whereby the N-terminal region of DNMT1 harbours the DNA 
methyltransferase-associated protein (DMAP) charged-rich 
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Figure 1. DNMTs catalyse the transfer of a methyl group from the methyl 

donor S-adenosylmethionine (SAM) to the fifth carbon of the cytosine 

base in the CpG islands of gene promoter. SAM is converted into 

S-adenosylhomocysteine (SAH) in the catalytic reaction. 

Hypermethylation of the cytosines suppresses transcription of the 

gene.8,9
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domain required for interaction with the transcriptional repres-
sor DMAP1.10 In addition, DNMT1 contains the replication 
foci-targeting domain (RFD) that modulates anchoring to the 
replication fork, the zinc finger CXXC domain that recognises 
unmethylated CpG, and two bromo-adjacent homology (BAH) 
domains (ie, BAH1 and BAH2) proposed to act as protein-pro-
tein interaction module for the silencing of gene expression.10 
DNMT3A and DNMT3B contain the Pro-Trp-Trp-Pro motif 
domain (PWWP; a methyl-lysine recognition motif ) and the 
ATRX, DNMT3, DNMT3L (ADD) zinc finger domain 
(Figure 2). The C-terminal region of all three DNMTs consists 
of the methyltransferase domain required for their catalytic 
activities.6

Acute myeloid leukaemia (AML) is a clonal disorder of 
haematopoiesis characterised by the expansion of undifferenti-
ated myeloid precursors, leading to deregulated haematopoiesis 
and bone marrow failure.11 AML is the most common type of 
acute leukaemia with heterogeneous molecular profiles, clinical 
representations, response to therapies and outcomes. Although 
intensive chemotherapy and haematopoietic stem cell trans-
plantation (HSCT) have improved the outcomes of AML 
patients, approximately 50% of younger patients and 80% of 
patients above the age of 60 years succumb to the disease due to 
refractory disease, relapse, or treatment-induced mortality.12 
Older AML patients unable to receive intensive chemotherapy 
due to toxicities have a median survival of just 5-10 months.13

AML presents with fewer mutations than majority of other 
adult cancers and it is a highly heterogeneous disease,14 imply-
ing that other mechanisms such as epigenetics modifications 
play a role in the pathogenesis and outcomes of the disease. 
DNA hypermethylation at the CpG islands of tumour sup-
pressors was reported in myelodysplastic syndrome (MDS) and 
AML nearly two decades ago.15 Deregulated genome-wide 
patterns of DNA methylation occur in AML and they are not 
associated with mutations of known epigenetic regulators.16

Apart from DNA methylation, alterations in DNA demeth-
ylation also contribute to leukaemogenesis and affect clinical 
outcomes in AML patients. The DNA demethylase ten-eleven 

translocation (TET) proteins (including TET1, TET2, and 
TET3) converts 5-methylcytosine into 5-hydroxymethylcyto-
sine.17 TET1 is fused with the MLL gene in t(10;11)(q22;q23) 
AML,18 while TET2 mutations occur in 13% to 27% of AML 
patients with normal or intermediate-risk cytogenetics associ-
ated with unfavourable prognosis.19–21 Moreover, TET2 muta-
tion status has been shown to predict higher response rate in 
AML and MDS patients.22

Findings in the past two decades demonstrating deregu-
lated DNA methylation in the pathogenesis and aggressiveness 
of MDS and AML have led to the approval for the clinical use 
of pyrimidine analogues that inhibit DNMT methylating 
activities (ie, 5-azacitidine [azacitidine] and 5-aza-2′-
deoxycytidine [decitabine]) in both diseases.23 These agents 
mimic cytosine and are able to trap DNMTs when incorpo-
rated into DNA in S phase of the replication cycle. The protea-
some then degrades the trapped DNMTs leading to DNA 
hypomethylation and re-expression of tumour suppressor 
genes.24,25 However, azacitidine is usually administrated for 
older AML patients who are ineligible for HSCT and with low 
blasts count (20%-30% bone marrow blasts),26 while decitabine 
does not improve complete remission rates compared with sup-
portive care and cytarabine in elderly AML patients.27 Hence, 
further understanding of the precise DNMT-mediated onco-
genic mechanisms in AML is required to select for specific and 
potent novel DNMT inhibitors which is currently under 
intense investigation and discovery.28–30

In this review, we describe and discuss the oncogenic prop-
erties of DNMT1, DNMT3A, and DNMT3B in AML. We 
also describe the prognostic and predictive roles of DNMTs in 
clinical trials of AML patients with hypomethylating agents, as 
well as novel DNMT inhibitors that have been tested experi-
mentally in AML cells.

DNMT1 in AML
DNMT1 is the most abundantly expressed DNMT in divid-
ing cells and it represents a key therapeutic target in rapidly 
dividing cancer cells for methylation inhibition and 

Figure 2. The domains of DNMT1 (RefSeq ID: NP_001124295.1), DNMT3A (RefSeq ID: NP_783328.1), and DNMT3B (RefSeq ID: NP_008823.1) proteins 

according to Pfam and PROSITE (for ADD domain of DNMT3A or DNMT3B) obtained from Ensembl database (https://www.ensembl.org/index.html). ADD 

indicates ATRX, DNMT3, DNMT3L zinc finger domain; BAH, bromo-adjacent homology domain; CXXC, CXXC zinc finger domain; DMAP, DNA 

methyltransferase-associated protein; PWWP, Pro-Trp-Trp-Pro motif domain; RFD, replication foci-targeting domain.
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re-expression of tumour suppressor genes.31 Several expression 
and mechanistic studies have shown DNMT1 to be a potential 
oncoprotein in AML.

DNMT1 protein levels were higher in azacitidine-resistant 
AML cells (SKM1 azacitidine-sensitive and azacitidine-resist-
ant clones), and reduced expression of anti-DNMT1 miRNAs 
(ie, targeted DNMT1 3′ untranslated region [UTR] for its 
reduction expression) was associated with azacitidine resistance 
in AML and high-risk MDS (HRMDS) patients.32 DNMT1 
expression was increased in multi-drug resistant AML cells 
(HL60/ATRA), and knockdown of a drug resistance-related 
gene segment, HA117, decreased stem-like signature of the 
cells and blocked DNMT1 expression.33

A key pathogenic mechanism involving DNMT1 in AML 
is the DNMT1-mediated downregulation of the cyclin-
dependent kinase inhibitor p15 (that encodes p15 protein, a 
tumour suppressor) expression in the disease. The expression of 
p15 is lost in approximately 80% of AML cases, and hyper-
methylation of its promoter is frequently associated with trans-
formation of the disease to a more aggressive phenotype.34 
DNMT1 transcripts were found to be upregulated (by 5.3-
fold) in bone marrow cells from AML patients compared with 
bone marrow cells from healthy donors, and p15 was methyl-
ated in 72% of AML patients who had higher levels of 
DNMT1 expression, indicating the potential of DNMT1 to 
induce hypermethylation of tumour suppressors in AML.35

Subsequent studies have shown that treatment with recep-
tor tyrosine kinase (RTK) inhibitor, nilotinib, reduced 
DNMT1 expression resulting in decreased global DNA 
methylation and upregulation of p15 expression via promoter 
hypomethylation in AML cells (MV4-11 and Kasumi-1) and 
patient blasts.36 Treatment with nilotinib led to apoptosis of 
AML leukaemia cell lines, leukaemia regression in mice 
(C1498 mouse AML cells injected into C57BL/6 mice), and 
impaired AML patient cell expansion ex vivo and in vivo 
through reduction of DNMT1. Also, p15 expression was 
increased through promoter hypomethylation. Moreover, 
treatment with harmine (a beta carboline alkaloid derivative of 
Peganum harmala, a type of herb originated from Asia) in 
AML cells (NB4) supressed their proliferation, decreased 
DNMT1 gene expression, and increased p15 promoter hypo-
methylation and reactivation.37

Interestingly, emerging evidence has shown an association 
between DNMT1 and lipid metabolism protein in the sup-
pression of p15 expression in AML. Fatty acid-binding protein 
4 (FABP4), a key regulator of lipid metabolism, is upregulated 
in AML cells and enhances their aggressiveness via DNMT1-
dependent DNA methylation. Increased FABP4 expression 
induced IL-6 expression and STAT3 phosphorylation, causing 
DNMT1 overexpression and subsequent silencing of p15 
expression while FABP4 silencing suppressed DNMT1-
dependent DNA methylation that restored p15 expression in 
AML cells (C1498, MV4-11, and Kasumi-1).38 Similarly, 

inhibition of FABP4 by its selective inhibitor BMS309403 
resulted in suppressed DNMT1 expression, a decrease in global 
DNA methylation, and re-expression of p15 through promoter 
DNA hypomethylation in AML cells (C1498, MV4-11, and 
Kasumi-1). Impairment of their growth in vitro, ex vivo (human 
and mouse AML primary cells), and in vivo (C1498 cells 
injected into C57BL/6 mice) was also reported.39

Synergistic inhibition of DNMT1 and other oncogenic 
proteins through the use of pharmacological inhibitors has 
been proposed to treat AML. MUC1C, a transmembrane 
oncoprotein expressed in AML stem-like cells, induced 
DNMT1 expression by activating NF-κB p65 pathway that 
drove DNMT1 mRNA transcription.40 Synergistic pharmaco-
logical inhibition of MUC1C (with GO-203) and DNMT1 
(with decitabine) reduced DNMT1 levels followed by 
decreased AML cell survival in cell lines (THP-1 and MOML-
14) and primary AML cells.40

DNMT1 has also been implicated in various other haema-
tological malignancies. The protein is frequently expressed in 
diffuse large B-cell lymphoma (DLBCL) being highly associ-
ated with Ki-67 expression as demonstrated in our multi-cen-
tre series of DLBCL cases.41 We also showed that stable 
knockdown of DNMT1 in DLBCL cells upregulated expres-
sion of genes involved in the activation of cell cycles,42 similar 
with the DNMT1-p15 axis (p15 protein inhibits cell cycle pro-
gression) frequently reported in AML. Recent studies have also 
demonstrated its potentially oncogenic properties in acute 
lymphoblastic leukaemia,43 chronic myeloid leukaemia,44 mul-
tiple myeloma,45 and Burkitt’s lymphoma.46 Collectively, 
DNMT1 appears to be a promising target for therapeutic 
modulation in haematological malignancies.

DNMT3A in AML
Mutations affecting the loci of epigenetic regulators are com-
monplace in AML with DNMT3A being the most commonly 
mutated epigenetic regulator in the disease. Around 22%-33% 
of AML cases present with DNMT3A mutations.14,47–49

One of the vital findings pertaining to DNMT3A in AML 
is the identification of DNMT3A missense mutations that 
affect the encoding of arginine R882 (codon CGC), causing 
loss of methylation activity of DNMT3A.50 R882 mutation 
occurred in 13.2% (n = 37/281) of AML patients, and other 
types of mutations encompassing DNMT3A were found in 25 
AML patients (8.9%).51 These mutations were significantly 
more frequent in patients with an intermediate-risk cytoge-
netic profile but absent in all patients with a favourable-risk 
cytogenetic profile (P < .001), and DNMT3A mutations con-
ferred significantly shorter survival (P < .001). In a study of 
AML patients younger than 60 years of age, a similar propor-
tion (14%, n = 58/415) of patients were found to harbour mis-
sense mutations of R882 and R882 mutations were significantly 
associated with inferior overall survival (OS; P = .018) and 
relapse-free survival (RFS; P = .029).52
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Mutated DNMT3A is considered an early genetic lesion in 
the pathogenesis of leukaemia and DNMT3A mutation alone 
might be insufficient to cause malignancies as observed in 
asymptomatic older carriers,53–55 suggesting that additional 
genetic perturbation is required to transform into leukaemia 
cells. In line with this, functional studies in Dnmt3a knockout 
mice (C57BL/6-CD45.2 background) with Flt3 internal tan-
dem duplication (Flt3-ITD) overexpression have shown the 
roles of DNMT3A mutation as a reservoir for the clonal expan-
sion of HSCs until the acquirement of the additional genetic 
lesion Flt3-ITD, causing transformation into AML cells.56

An independent study also showed that mice (C57BL 
/6-CD45.2 background) with Flt3-ITD and inducible dele-
tion of Dnmt3a developed a rapidly lethal, penetrant, and 
transplantable AML.57 The authors reported that single-cell 
assays identified clonogenic subpopulations expressing genes 
sensitive to methylation and responsive to Dnmt3a levels, and 
concluded that Dnmt3a haploinsufficiency transformed Flt3-
ITD myeloproliferative neoplasms into AML by regulating 
methylation-sensitive gene expression. Likewise, a recent 
analysis of the mutational landscape of 85 AML patients 
with partial tandem duplication of MLL (MLL-PTD) sug-
gested that DNMT3A (among others including IDH2, TET2, 
or U2AF1) mutations are clonal with early onset, and MLL-
PTD likely occurs after these initial mutations while prolif-
erative mutations involving FLT3 or RAS, that usually appear 
later, are largely subclonal.58

In conjunction with the aforementioned studies, several reports 
have also proposed the DNMT3Amut/Flt3-ITD axis as a promis-
ing therapeutic target for AML patients. AML patients with 
FLT3-ITD displayed inferior outcomes in AML patients after 
allogeneic HSCT due to higher risk of early relapse.59,60 
Co-occurrence of DNMT3A mutations with FLT3-ITD com-
prised about 13% of AML patients (n = 210/1571),61 and in adult 
AML patients (n = 128), patients with DNMT3A R882 mutations 
positive for FLT3-ITD (DNMT3Amut/FLT3-ITDpos) had the 
worst OS (P = .025) and RFS (P = .011) compared with three other 
groups (DNMT3Awt/FLT3-ITDneg, DNMT3Awt/FLT3-ITDpos, 
DNMT3Amut/FLT3-ITDneg).62 In normal-karyotype (NK)-
AML patients after allogeneic HSCT, patients with FLT3-ITDpos 
and DNMT3A R882mut had significantly worse survival compared 
with patients harbouring FLT3-ITDneg/DNMT3A R882wt, 
FLT3-ITDneg/DNMT3A R882mut, and FLT3-ITDpos/DNMT3A 
R882mut (all P < .05).63

There also appears to be less conventional findings pertain-
ing to DNMT3A mutations in AML patients. The frequency 
of R882 mutation was much lower in Chinese patients where 
R882 mutations occurred in 6.6% (n = 12/182) of AML 
patients and in 7.8% (n = 4/51) of patients with MDS.64 None 
were found in patients with chronic myeloid leukaemia or 
myeloproliferative neoplasms in the same study. In AML 
patients with DNMT3A mutations (R882H/R882C), mutated 
DNMT3A transcript levels were higher in bone marrow than 
in the blood after induction and consolidation therapies but 

did not have association with endpoints remission duration 
and OS, although its levels were persistently high in remis-
sion.65 Interestingly, the molecular landscape of paediatric 
AML derived from nearly 1000 participants in the Children’s 
Oncology Group (COG) AML trials demonstrated that no 
mutations affecting the protein-coding regions of DNMT3A 
were found in paediatric AML, although these mutations were 
frequent in adults, implying that mutations in DNMT3A that 
promote leukaemogenesis occur in many apparently healthy 
adults but are rare in children.66

Other recent findings include the following: (1) DNMT3A 
was mutated in approximately 19% of AML cases with RUNX1 
mutations that negatively impacted OS of the patients 
(P = .001)67; (2) methylation profiling studies on TCGA AML 
patients (n = 194) identified two distinct subgroups with pro-
found hypomethylation signatures termed as DMP.1 and 
DMP.2. Mutations affecting DNMT3A and FLT3 were sig-
nificantly enriched in the DMP.1 cases (P < .001).68 The 
DMP.1 group had the worst survival compared with DMP-
negative and DMP.2 group, and immune response genes were 
enriched in the DMP.1 group, suggesting a link between 
DNMT3A mutations and altered immune response in AML.

Apart from the therapeutic potential, assessment of 
DNMT3A mutations might represent a diagnostic tool for 
AML. A recent study of women who were healthy at study 
baseline but were eventually diagnosed with AML (n = 212), 
somatic mutations of DNMT3A (among mutations of other 
genes) in peripheral blood DNA were found to predict an 
increased risk of developing AML years before diagnosis.69 
Thus, screening peripheral blood for DNMT3A mutations in 
asymptomatic AML patients warrants expanded future research.

DNMT3B in AML
Unlike DNMT3A, DNMT3B mutation is a rare event in 
AML. Nonetheless, multiple lines of evidence have demon-
strated that its expression in AML is associated with worse 
clinical outcomes:

1. Overexpression of DNMT3B was associated with infe-
rior event-free survival (EFS; P = .006) and a trend 
towards worse OS (P = .056) in a panel of de novo AML 
patients (n = 191)70.

2. In an integrated analysis of the methylome and transcrip-
tome of 151 paediatric AML patients, increased DNMT3B 
expression and reduced methylation were associated with 
poorer clinical outcomes (P ⩽ 10−5; q ⩽ 0.002), and higher 
DNMT3B expression was associated with worse minimal 
residual disease (MRD), higher rate of relapse or resistant 
disease, worse EFS, and higher genome-wide methylation 
burden (GWMB) in both the training and validation 
cohort (all P < .03 in both cohorts).71 Higher GWMB was 
also associated with worse MRD and EFS (all P < .05 in 
both cohorts), implying that DNMT3B-induced GWMB 
may play a role in the aggressiveness of paediatric AML.
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3. Older adults (⩾60 years old) with primary, cytogeneti-
cally normal AML (n = 210) who expressed high 
DNMT3B transcript levels had significantly fewer com-
plete remissions (P = .002), inferior disease-free survival 
(DFS; P = .02), and OS (P < .001), and all three charac-
teristics remained significant (P < .05) in multivariable 
analyses.72 High DNMT3B levels in these patients were 
associated with gene expression profiles implicated in 
differentiation, proliferation, and survival pathways, but 
surprisingly high DNMT3B levels were not associated 
with DNA methylation changes, consistent with other 
reports demonstrating that DNMT3B expression did not 
influence the DNA methylation levels of leukaemic 
blasts derived from cytogenetically normal AML 
patients.73 These suggest that older AML patients with 
high DNMT3B expression might not respond to hypo-
methylation agents, and that DNMT3B might exert its 
effects through an additional, methylation-independent 
mechanism in older AML patients.

Myeloperoxidase (MPO), a microbicidal protein measured in 
leukaemia blasts by cytochemistry, is a biomarker for the diagno-
sis of AML and its expression is associated with better prognosis 
in AML patients. DNMT3B was found to have a significantly 
inverse relationship with MPO levels in CD34+ AML cells 
(P = .0283) without significant association with common muta-
tions in AML (FLT3-ITD, CEBPA, or NPM1 mutations).74 
This suggests that MPO gene transcription might be repressed 
through promoter methylation by DNMT3B, although this is 
subject to further proof by functional studies.

Furthermore, in a DNMT3B genotyping study on de novo 
AML patients (n = 317) and healthy control subjects (n = 406) of 
Chinese Han populations, the GG genotype of rs1569686 was 
most significantly associated with increased risk for AML (OR: 
5.76; 95% confidence interval (CI): 2.60-12.73; P < .01), com-
pared with the TT genotype, in contrast with the CC genotype 
of rs2424908 shown to have reduced AML risk (OR: 0.57; 95% 
CI: 0.36-0.91; P = .01) compared with the TT genotype, sug-
gesting that DNMT3B gene polymorphisms could play roles in 
AML leukaemogenesis and as potential markers for AML.75 
Moreover, DNMT3B overexpression leading to DNA hyper-
methylation has also been reported in T-cell acute lymphoblastic 
leukaemia and Burkitt’s lymphoma,76 illustrating the oncogenic 
role of DNMT3B through hypermethylation of tumour sup-
pressor genes in haematological malignancies.

Despite of the association of DNMT3B expression with 
worse prognosis in AML patients, recent studies have also 
shown its potential tumour suppressive roles in two subtypes of 
AML, ie, MLL-AF9 AML, and inv(16)(p13;q22) AML.

In MLL-AF9 AML, one of most frequent MLL rearrange-
ments in MLL-rearranged leukaemia, deletion of Dnmt3b in 
mice model increased their progression through enhanced 
stemness and cell cycle progression accompanied by upregula-
tion of oncogenic gene sets, indicating a tumour suppressive 

role of Dnmt3b in MLL-AF9 AML.77 Moreover, the authors 
also showed that Dnmt3a/3b double-KO (DKO) AML cells 
had accelerated leukaemic development compared with control 
AML cells or deletion of either Dnmt3a or Dnmt3b gene, sug-
gesting the synergistic involvement of DNMT3A and 
DNMT3B in suppressing MLL-AF9 leukaemia progression. 
These observations were in line with findings by an independ-
ent group in which Dnmt3b overexpression (inducible 
Dnmt3b-knock-in mice) slowed leukaemia development and 
deregulated leukaemia stem cell (LSC) function, and murine 
MLL-AF9 cells with Dnmt3b-knock-in demonstrated leukae-
mia development with prolonged survival compared with 
MLL-AF9 alone.78 These studies appear to tally with previous 
observations of the Dnmt3b tumour suppressive roles in lym-
phomas whereby Dnmt3b–/– mice with MYC-induced lym-
phomas demonstrated accelerated lymphomagenesis.79

The inv(16)(p13;q22) is one of the most common recurring 
chromosomal rearrangements in AML, and the transcriptional 
coactivator MN1, an oncogene in inv(16) AML, is known to be 
overexpressed in inv(16) AML.80 Recently, DNMT3B expres-
sion was found to be lower in inv(16) vs non-inv(16) paediatric 
AML patients, and knockdown of DNMT3B expression in 
AML cells (HL-60) led to decreased re-methylation efficiency 
of MN1 exon-1 locus that subsequently drove MN1 overexpre-
sion in AML cells.81 This implies the involvement of DNMT3B 
in the leukaemogenesis of inv(16) AML and suggests a tumour 
suppressive role akin to those observed in MLL-AF9 AML.

miRNAs Implicated in the Regulation of DNMTs 
Expression
One of the pivotal findings in the regulation of DNMTs expres-
sion is through miR-29b-mediated suppression. Overexpression 
of miR-29b in AML cells (MV4-11 and Kasumi-1) reduced 
the expression of DNMT1, DNMT3A, and DNMT3B at both 
mRNA and protein levels, resulting in reduced global DNA 
methylation and re-expression of p15 through promoter DNA 
hypomethylation.82 The authors demonstrated that miR-29b 
directly targeted DNMT3A and DNMT3B in their 3′ UTRs, 
while miR-29b downregulated DNMT1 indirectly by targeting 
SP1, a transactivator of DNMT1 expression.

Treatment of AML cell lines (Kasumi-1 and NB4) and leu-
kemic blasts from primary AML patients with a potent histone 
deacetylase 1 (HDAC1) inhibitor AR-42 resulted in down-
regulation of miR-29b targets including SP1, DNMT1, 
DNMT3A, and DNMT3B.83 Combination of AR-42 and 
decitabine yielded higher anti-leukemic activity both in vitro 
(Kasumi-1, NB4, and murine FDC-P1-KITmut) and in vivo 
(FDC-P1-KITmut cells injected into NOD/SCID mice).83 
These findings suggest that miR-29b oligonucleotides might 
be effective hypomethylating therapeutic compounds by 
supressing DNMTs expression. Moreover, the levels of miR-
29b, in addition to DNMTs, have since been evaluated as a 
potential predictive factor in decitabine clinical trials of AML 
patients as described in the next section.
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Growing evidence has shown the potential mechanisms 
involving DNMT3B-mediated hypermethylation in the promo-
tion of leukaemogenesis and aggressiveness of AML, particularly 
involving miRNAs.82,84,85 miR-375 has been demonstrated to be a 
tumour suppressive miRNA in various cancers; its expression con-
ferred better OS (P = .007) and DFS (P = .015) in AML patients 
(n = 102), and DNA hypermethylation of the promoter of precur-
sor-miR-375 (pre-miR-375) caused lower miR-375 expression in 
AML.85 In the same study, it was reported that overexpression of 
miR-375 suppressed proliferation and colony formation of AML 
cells and reduced tumour size with prolonged survival in leukae-
mia xenograft mouse model (HL-60 cells in nude mice). More 
importantly, HOXB3 (a homeobox protein) induced DNMT3B 
expression to bind pre-miR-375 promoter that led to increased 
DNA hypermethylation of pre-miR-375, causing lower expres-
sion of miR-375 in AML cells (HL-60 and THP1), and the 
authors proposed a novel miR-375-HOXB3-CDCA3/
DNMT3B regulatory circuitry in AML.85

Predictive Roles of DNMTs in AML Clinical Trials
In clinical trials of AML patients with and without hypometh-
ylating agents that have assessed changes in DNMTs, the clini-
cal response predictive role of DNMT markers remains 
unresolved. In a phase I study of decitabine alone or in combina-
tion with valproic acid, DNMT1 protein was detected in eight 
of 14 (57.1%) AML patients. DNMT1 was significantly (P = .02) 
decreased by decitabine treatment in the patients but the deple-
tion was not associated with clinical response.86 In another phase 
I trial of decitabine plus bortezomib, bone marrow samples from 
five patients showed that DNMT1, DNMT3A, and DNMT3B 
were downregulated while miR-29b and estrogen receptor (ESR) 
were upregulated post-treatment (day 26) but none of the genes 
reached statistical significance.87

In terms of decitabine treatment alone, a phase II study of 
untreated older (⩾60 years old) AML patients receiving low-
dose decitabine showed that responders (n = 14) had a signifi-
cantly higher pre-treatment level of miR-29b vs non-responders 
(n = 9) (P = .02).88 In the same study, a trend for lower DNMT3A 
(P = .06) was observed in responders vs non-responders, and no 
significant differences in the levels of DNMT1, DNMT3B, or 
ESR1. The COG conducted a trial on eight young adults or 
children with refractory/relapsed (R/R) AML to receive low-
dose decitabine alone.89 Three bone marrow samples were avail-
able in the study for expression analysis that showed increased 
miR-29b expression associated with a decrease in DNMT1 
expression post-treatment. Furthermore, a phase I/II trial of 
adult R/R AML patients (n = 122) receiving guadecitabine 
showed that global DNA demethylation was strongly associ-
ated with clinical response, and DNMT3B (but not DNMT1 
and DNMT3A) expression contributed >5% in predicting clini-
cal response. FLT3-ITD and NPM1 mutations did not predict 
response in this cohort of AML patients.90

Although DNMT1-mediated suppression of p15 is common 
in AML, the expression of p15 in clinical trials also does not always 

correlate with response or prognosis. In a phase I/II study of 
5-azacitidine in combination with valproic acid and all-trans reti-
noic acid, p15 mRNA expression was significantly upregulated 
after 7 days of treatment (P = .02) but it was not associated with 
clinical response.91 Likewise, in a separate phase I study, no associa-
tion was observed between p15 methylation status at baseline or 
after therapy and response to decitabine in R/R AML patients.92 
Conversely, p15 mRNA levels were increased in five of six (83.3%) 
assessable AML patients treated with decitabine, and global DNA 
hypomethylation occurred in 7 of 12 (58.3%) patients.86 Changes 
in DNMT1, DNMT3A, or DNMT3B expression and response 
predictive roles of each biomarker in clinical trials of AML patients 
treated with DNMT inhibitors are summarised in Table 1.

Novel DNMT Inhibitors and Combination Therapies 
in Clinical Trials of AML
Complete tumour responses are infrequent in AML and MDS 
patients treated with azacitidine or decitabine (a deoxy derivative of 
azacitidine). This is thought to be due to degradation of both agents 
by cytidine-deaminase (CDA) present in the liver, spleen, and intes-
tinal epithelium, resulting in their short plasma half-life.93–95 
Guadecitabine (SGI-110), a dinucleotide of decitabine, demon-
strates improved stability in plasma due to CDA resistance,96,97 and 
it is under active assessment in several AML clinical trials. In a mul-
ticenter phase I study of R/R AML (n = 74) and MDS patients 
(n = 19), the dosage 60 mg/m2 daily in a 5-day schedule and 28-day 
cycle administered subcutaneously (60 mg/m2/d SC 5-day/28) was 
shown to be well-tolerated in both patient populations.98

The clinical trial was followed by a phase II study of elderly 
(⩾65 years) treatment-naïve AML patients (n = 107) to receive 
guadecitabine at different doses and treatment schedules.99 Over 
50% of the patients achieved a composite complete response at 
all doses and schedules of guadecitabine administration, and 
60 mg/m2/d SC 5-day/28 maintained as the recommended regi-
men. Similar findings were reported by another multicenter 
phase II study of R/R AML and MDS (n = 55) where eight 
(14.3%) patients responded to guadecitabine (60 mg/m2/d SC 
5-day/28) with prolonged survival of 17.9 months vs median 
survival of 7.1 months.100 In the study, patients with no or few 
somatic mutations (mutated DNMT3A was present in 20% of 
the study cohort) was the only factor that significantly predicted 
clinical response (P = .035), and high rate of demethylation in 
blood was significantly associated with longer survival (P = .03).

Ongoing clinical trials involving DNMT inhibitors (azaciti-
dine, decitabine, and guadecitabine) in AML patients are sum-
marised in Table 2. In particular, a multicenter phase III 
randomised clinical trial of guadecitabine vs treatment of choice 
in 404 previously treated AML patients is currently underway 
(ClinicalTrials.gov ID: NCT02920008). Interestingly, combina-
tion of decitabine with talazoparib, a novel inhibitor recently 
approved by the Federal Drug Administration (FDA) in October 
2018 for the treatment of BRCA+ breast cancer, is also under 
investigation by a phase I/II study in untreated AML and R/R 
AML patients (n = 171; ID: NCT02878785) (Table 2).
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Talazoparib inhibits the activities of poly (ADP-ribose) 
polymerase (PARP) that subsequently induces DNA damage 
and cell death of BRCA+ breast cancer cells through synthetic 
lethality (ie, simultaneous disruption of multiple genes).108–110 
PARP-BRCA represents the first synthetic lethality approach 
that has successfully translated into the clinic,111 and similar 
synthetic lethality interaction is thought to occur for PARP-
DNMT. The PARP inhibitor olaparib has been shown to syn-
ergise with decitabine whereby treatment with both inhibitors 
caused synthetic lethality with increased apoptosis and DNA 
damage in a panel of AML cell lines (HL60, K562, Mv4-11, 
KG1a, and PL21).112

Likewise, treatment of AML cell lines (KBM3/Bu2506 and 
MOLM14) with combinations of decitabine (DNMT inhibi-
tor), niraparib (PARP inhibitor), and romidepsin or panobi-
nostat (both HDAC inhibitors) suppressed their proliferation 
through trapping of PARP1 and DNMT1 to chromatin, lead-
ing to increased double-strand DNA breaks and cell death.113 
These findings support the ongoing or future clinical trials of 
PARP-DNMT inhibitors combination in AML patients.

Experimental DNMT Inhibitors Targeting AML
Approved nucleoside analogues for AML treatment (azaciti-
dine and decitabine) are relatively non-specific with low chem-
ical stability, confer significant toxicities, and require 
incorporation into DNA to exert their effects as covalent 
inhibitors.114 This intensifies the identification and characteri-
sation of novel, non-nucleoside DNMT inhibitors with vari-
ous chemical scaffolds, and multiple of such inhibitors have 
recently been assessed in AML cells.

A recent structure-based virtual screening in combination 
with biological assays identified two compounds, termed as com-
pounds 40 and 40_3, that inhibited DNMT3A activities with 
IC50 of 46.5 and 41 µM, respectively.29 The authors demonstrated 
that both compounds were more cytotoxic against AML cell 
lines (Kasumi-1, KG-1, MV4-11, and THP-1) than the cervical 
cancer HeLa cells, and both compounds showed similar growth 
inhibitory effects. Compounds 40 and 40_3 at 50 µM concentra-
tion conferred over 50% inhibition in MV4-11 AML cells.

NSC-319745 is an inhibitor of DNMT1 originally identi-
fied through docking-based virtual screening and enzymatic 
assays, although it contains relatively low potency against 
DNMT1.115 Recently, an independent research group synthe-
sised hydroxamic acid derivatives of NSC-319745, resulting in 
compounds potent against DNMTs and HDACs.116 One of 
the inhibitors termed as compound 15a showed higher 
DNMT1 inhibitory potency than NSC-319745 (% inhibition 
at 100 µM: 69.88 ± 1.97) as well as inhibiting HDAC1 (IC50: 
57 nM) and HDAC6 (IC50: 17 nM). Compound 15a was cyto-
toxic against AML (U937; IC50: 1.06 ± 0.09 µM) and chronic 
myeloid leukaemia (CML) (K562; IC50: 2.85 ± 0.12 µM) cells, 
and induced expression of p16 through its CpG islands dem-
ethylation and histones acetylation. The compound also dem-
onstrated inhibition, albeit lower than DNMT1, against 

DNMT3A (% inhibition at 100 µM: 23.39 ± 4.12) and 
DNMT3B (% inhibition at 100 µM: 48.53 ± 2.38).116

Harmine, a type of β-carboline alkaloid originally isolated 
from the seeds of the herbal plant Peganum harmala, decreased 
DNMT1 expression and re-activated p15 expression through 
promoter hypomethylation. In AML cells (NB4), the compound 
significantly suppressed cell proliferation (P < .05) in a dose- and 
time-dependent manner and arrested the cells in G0/G1 phase.37 
In addition, an analogue of procaine (a non-nucleoside DNMT 
inhibitor) termed as derivative 3b was capable of inducing the 
demethylation of chromosomal satellite repeats in HL60 AML 
cell line, although it was not cytotoxic against the cells.117

Conclusions
DNMT1 is rarely mutated in AML and its high expression 
levels in AML imply the requirement of its increased func-
tions, through overexpression, for the survival of AML cells. 
DNMT1 frequently targets the promoter region of p15 for 
expression downregulation. Hence, assessment of increased 
p15 levels serves as a recommended parameter to measure the 
impaired activity of DNMT1 in AML, and this is applicable in 
future research for the identification and characterisation of 
novel inhibitors specific against DNMT1 which has been a 
subject of active investigations in recent years.28,118,119

A wide body of reports have demonstrated the high fre-
quency of DNMT3A mutations occurring in AML. Mutations 
of DNMT3A locus is regarded as one of the prerequisite early 
genetic lesions in the pathogenesis of AML before the acquisi-
tion of additional mutations such as FLT3-ITD that transform 
a pre-malignant clone into AML, while R882 mutations con-
fer loss-of-function of the encoded protein. DNMT3A-specific 
therapeutic modalities might require genetic editing for the 
restoration of wild-type DNMT3A protein expression.

The roles of DNMT3B in AML might be subtype specific 
as it appears to be oncogenic in AML xenograft mouse models 
as well as cell lines. Paradoxically, it may also play a tumour 
suppressive role in MLL-AF9 AML, and inv(16)(p13;q22) 
AML. Its oncogenic properties have been frequently shown to 
be associated with HOX genes, particularly the oncoprotein 
HOXB3 in AML as well as breast cancer,120 and DNMT3B 
expression is positively associated with those of HOX family 
genes in AML.71 Disruption of the expression or functions of 
DNMT3B as a potential treatment for AML patients might 
thus require assessment for the expression levels of HOX genes.

The expression of DNMTs was not predictive of response 
in most clinical trials of hypomethylating agents in AML. 
However, there are limitations to the interpretation of predic-
tive values whereby most clinical trials had limited number of 
samples for expression studies pre- and post-treatment. 
Furthermore, different patient populations (young or older 
AML patients) or regimens (hypomethylation monotherapy or 
combination treatments) might contribute to differences in 
their DNMTs expression or prediction of response results. 
Nonetheless, majority of the studies reported downregulation 
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of DNMTs expression accompanied with increased expression 
of their suppressor mir-29b post-treatment (Table 1).

In conclusion, increased hypermethylation of tumour sup-
pressor genes in AML is attributable to the aberrant activities 
of DNMT proteins whose expression is primarily regulated by 
miR-29b. Expression of DNMTs is downregulated in clinical 
trials of AML patients treated with hypomethylating agents 
targeting DNMTs. Recent clinical trials have shown the novel 
hypomethylating drug guadecitabine conferring enhanced 
response in AML patients. Multiple phase II and III clinical 
trials are currently underway to test the efficacy of azacitidine, 
decitabine, or guadecitabine in combination with other agents 
(eg, PARP inhibitor or chemotherapy regimens) for AML 
patients. Collectively, these imply that nucleoside-based agents 
might still be the mainstay for AML hypomethylation therapy 
in the upcoming years. Novel non-nucleoside DNMT inhibi-
tors have demonstrated cytotoxicity in pre-clinical experimen-
tal settings against AML cells, and their translation into the 
clinic remains to be elucidated.
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