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Abstract

Background: [18F]AV1451 is a commonly used radiotracer for imaging tau deposits
in Alzheimer’s disease (AD) and related non-AD tauopathies. Existing radiosyntheses
of [18F]AV1451 require complex purifications to provide doses suitable for use in
clinical imaging studies. To address this issue, we have modified the synthesis of
[18F]AV1451 to use only 0.5 mg precursor, optimized the Boc-deprotection step and
developed a simplified method for HPLC purification of the radiotracer.

Results: An optimized [18F]AV1451 synthesis using a TRACERLab FXFN module led to
high radiochemical yield (202 ± 57 mCi per synthesis) and doses with excellent
radiochemical purity (98 ± 1%) and good specific activity (2521 ± 623 Ci/mmol).

Conclusion: An updated and operationally simple synthesis of [18F]AV1451 has been
developed that is fully automated and prepares radiotracer doses suitable for use in
clinical tau PET studies.

Keywords: Tau imaging, Brain PET, [18F]T807, Flortaucipir F18, Fluorine-18
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Background
Neurodegenerative disorders are frequently associated with at least one misaggregated

protein (Sweeney et al. 2017). Historically, physicians have attempted to diagnose such

disorders based upon clinical symptoms, with definitive diagnosis finalized by patholo-

gists during post-mortem examination. In recent years however, there has been consid-

erable effort to move diagnostic strategy from clinical detection of signs and symptoms

of mid-stage disease, to early detection of pharmacological biomarkers of pre-

symptomatic disease (for a recent review, see: Ahmed et al. 2014). This is expected to

improve patient prognosis by enabling initiation of treatment prior to loss of neuronal

function (and associated cognitive decline), and can be used to support development

of disease modifying therapeutics. Diagnostic tests that allow confirmation of abnormal

protein deposits in pre-symptomatic disease are therefore of the utmost importance.

Tau proteins are commonly found in neurons where they promote assembly and

stabilization of microtubules (for a recent review of the role of tau in physiology and

pathology, see: Wang and Mandelkow 2016). However, in Alzheimer’s disease (AD)

dysfunction of enzymes that are responsible for phosphorylating tau, such as glycogen

synthase kinase-3, gives rise to a hyperphosphorylated version of the protein that

aggregates and forms insoluble intracellular tau neurofibrillary tangles (NFTs)
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(Iqbal et al. 2016). Pathology studies have shown correlation between tau NFT burden

and the neuronal damage/cognitive decline associated with the later stages of AD

(Haroutian et al. 2007). Given this correlation, as well as the number of tau-based therap-

ies being developed (Boutajangout et al. 2011; Panza et al. 2016), a tau PET imaging agent

would allow for the selection of tau-positive AD patients for enrollment in clinical trials

of such experimental treatments, and provide a means to monitor response to therapy. In

addition to AD, misaggregated tau is implicated in a range of other tauopathies (e.g.

progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and tau variants

of frontotemporal dementia (FTD)), and a tau radiotracer can be expected to have similar

impact in all of these disorders (for reviews of the role of tau in AD and non-AD

tauopathies, see: Iqbal et al. 2005, 2010, 2016).

Many different tau radiotracers have been reported to date (for recent reviews, see:

Ariza et al. 2015; James et al. 2015; Villemagne et al. 2015; Watanabe et al. 2015; Kolb

and Andrés, 2017; Hall et al. 2017; Saint-Aubert et al. 2017). Of these, [18F]AV1451 (7-

(6-[18F]fluoropyridin-3yl)-5H-pyrido[4,3-b]indole, flortaucipir F18, [18F]T807) devel-

oped by Siemens Molecular Imaging and Biomarker Research (Xia et al. 2013), and

subsequently licensed to Eli Lilly / Avid Radiopharmaceuticals, has been among the

most utilized in clinical tau PET imaging to date. It has been used to image patients

with AD (see, for example: Schwarz et al. 2016), non-AD tauopathies (Marquié et al.

2017) including PSP (Passamonti et al. 2017; Smith et al. 2017) and CBD (McMillan

et al. 2016), and non-tauopathies such as dementia with Lewy bodies (Gomperts et al.

2016). Methods for kinetic modeling of [18F]AV1451 have been developed (Shcherbinin

et al. 2016; Baker et al. 2017; Barret et al. 2017; Hahn et al. 2017), and studies have also

been conducted to establish biomarker endpoints (Jack et al. 2017) and human

dosimetry (Choi et al. 2016). As a cautionary side note, all of this work has also

identified potential off-target binding of [18F]AV1451 in brain areas such as the

basal ganglia. Such binding may be due to specific binding of the radiotracer to

monoamine oxidase A (MAO-A) (Vermeiren et al. 2015) or neuromelanin (Hansen

et al. 2016), and should be accounted for during image analysis. Nevertheless,

[18F]AV1451 PET has been used to identify distinct cortical spreading patterns of

tau pathology, aiding in our understanding of how tau distribution propagates

across the brain (Sepulcre et al. 2016) and to develop image-based tau staging

(Cho et al. 2016; Wang et al. 2016).

In connection with an NIH-funded project developing imaging biomarkers for

dementia with Lewy body patients, we had cause to make [18F]AV1451 available

for clinical use. Reflecting its widespread use, several different syntheses of

[18F]AV1451 suitable for clinical use have been reported. Shoup and Gao both re-

ported syntheses of [18F]AV1451 from N-Boc-protected nitro precursor (Shoup

et al. 2013; Gao et al. 2015), which eliminated the need for the reduction of the

nitro precursor prior to purification that the original report required to facilitate

purification of [18F]AV1451 (Xia et al. 2013). More recently, Holt et al. reported
18F-fluorination of N-Boc-protected trimethylammonium precursor by microwave

irradiation (Holt et al. 2016). Given the commercial availability of the N-Boc-nitro

precursor 1, and its amenability to use in a standard radiosynthesis module that

employs thermal heating, it was our choice for further development of a radio-

synthesis of [18F]AV1451 2 for routine clinical production.
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While these reported synthesis of [18F]AV1451 represented an attractive starting

point, we were unsatisfied with various aspects of these reports, including: i) ambiguity

surrounding deprotection of Boc-protected [18F]AV1451, since both Shoup and Gao

describe the Boc group being removed concomitantly with fluorination (through either

thermal promotion or due to the basic reaction conditions) while Holt includes a separ-

ate acid-mediated deprotection (Shoup et al. 2013; Gao et al. 2015; Holt et al. 2016); ii)

the need for solid-phase extraction (SPE) purification steps both pre- and post-semi-

preparative HPLC purification, which necessitates a reconfiguration of the synthesis

module in the Shoup method; iii) the Gao method used a purpose built set-up which

could complicate compliance with current Good Manufacturing Practice (cGMP), and

the literature report contained none of the quality control and release data required to

determine if the procedure was compliant with the US Pharmacopeia; and iv) the use

of an MeCN-containing mobile phase in the Gao method (our laboratory has made

applying green methods when possible a priority to reduce environmental impact and

risk associated with class 2 solvents such as MeCN (Stewart et al. 2015), and simplify

quality control (QC) testing since eliminating such solvents reduces residual solvent

analysis to an annual QC test). To address these issues, we have undertaken a de-

tailed investigation of the radiosynthesis of [18F]AV1451, and herein report insights

into the N-Boc deprotection and a new operationally simple, greener method for

the radiosynthesis and purification of the radiotracer that uses a commercial syn-

thesis module without reconfiguration, and does not utilize any class 2 solvents in

the synthesis or purification.
Methods
Materials for synthesis and analysis

Unless otherwise stated, reagents and solvents were commercially available and used

without further purification: N-Boc-protected nitro-precursor (Part No. NPPI-95-

0010C) and authentic AV1451 reference standard (Part No. FPPI-95-0002A) were

purchased from Huayi Isotopes/NucMedCor. Ethanol (200 proof, USP) was purchased

from Decon Laboratories, Inc. Sodium chloride 0.9%, USP and sterile water for

injection, USP were sourced from Hospira. Other synthesis components were obtained

as follows: Sterile vials were obtained from Hollister-Stier; Millex filters were from

Millipore; QMA-light and Oasis HLB 1 cc cartridges were purchased from Waters.

Prior to use QMA cartridges were conditioned with ethanol (10 mL), 0.5 M NaHCO3

(10 mL) and sterile water (10 mL), while HLB cartridges were conditioned with ethanol

(10 mL) and sterile water (10 mL).
Radiosynthesis

The synthesis of [18F]AV1451 (Scheme 1) was fully-automated using a General Electric

(GE) TRACERLab FXFN synthesis module loaded as follows: V1: 500 μL 7 mg/mL

K2CO3 in water; V2: 1000 μL 15 mg/mL kryptofix-2.2.2 (K2.2.2) in ethanol; V3: 0.5 mg

precursor (N-Boc nitro) in 500 μL DMSO; V6: 3000 μL semi-preparative HPLC Buffer

(see below); V7: 6.5 mL buffered saline; V8: 500 μL ethanol; V9: 10 mL water; Dilution

flask: 50 mL water; product vial 3 mL buffered saline. [18F]Fluoride (~1400 mCi) was

produced via the 18O(p,n)18F nuclear reaction with a GE PETtrace cyclotron equipped



Scheme 1 Radiosynthesis of [18F]AV1451 (2)
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with a high-yield fluorine-18 target. [18F]Fluoride was delivered in a 1.5-mL bolus of

[18O]H2O to the synthesis module and trapped on a QMA-Light sep-pak cartridge to

remove [18O]H2O. [18F]Fluoride was then eluted into the reaction vessel with potas-

sium carbonate (3.5 mg in 500 μL of water). The solution of K2.2.2 (15 mg in 1 mL of

ethanol) was added to the reaction vessel, and the [18F]fluoride was azeotropically dried

by heating the reaction vessel to 100 °C and drawing full vacuum for 6 min. After this

time, the reaction vessel was subjected to both an argon stream and a simultaneous

vacuum draw for 9 min at 100 °C. The solution of AV1451 N-Boc nitro-precursor in

DMSO (0.5 mg in 500 μL) was added to the dried [18F]fluoride, and was heated to

130 °C with stirring for 10 min. Subsequently, the reaction mixture was cooled to

50 °C, diluted with HPLC mobile phase (3 mL), and purified by semi-preparative

HPLC (column: Phenomenex Gemini NX C18, 5 micron, 10x250 mm; mobile phase: 40%

Ethanol 10 mM Na2HPO4 pH: 9.3 ± 0.2; flow rate: 3 mL/min; UV: 254 nm; and a typical

semi-preparative trace, Fig. 1). The product peak (tR = 21–22 min) was collected into the

dilution flask where it was concomitantly diluted with 50 mL of sterile water. The result-

ing solution was passed through an Oasis HLB cartridge, which was then washed with

10 mL of sterile water. [18F]AV1451 was eluted with 0.5 mL of EtOH (USP for injection)

and collected in the Tracerlab FXFN product vial, containg 3 mL of saline (USP). The Sep-

Pak was washed with 6.5 mL of saline to bring the final formulation volume to 10 mL.
Fig. 1 Typical semi-preparative HPLC trace from synthesis of [18F]AV1451
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The final drug product was dispensed into a septum sealed, sterile, pyrogen-free glass vial

through a 0.22 μm sterile filter and submitted for QC testing as outlined in the Quality

Control section.
Quality control

Quality control testing of [18F]AV1451 doses was conducted according to the guide-

lines outlined in the U.S. Pharmacopeia and as described below. Testing included

visual inspection, pH, residual K2.2.2, chemical purity and radiochemical purity (RCP),

specific activity (SA), radionuclidic identity, sterile filter integrity, bacterial endotoxin

analysis, and sterility testing. Results for four process verification batches are reported

in Table 1.
Visual inspection

Doses were visually examined and needed to be clear, colorless and free of particulate

matter.
Dose pH

The pH of the [18F]AV1451 doses was analyzed by applying a small amount of the dose

to pH-indicator strips and determined by visual comparison to the scale provided. Dose

pH was required to be between 4.5 and 7.5.
Residual K2.2.2
Residual K2.2.2 levels in [18F]AV1451 doses were analyzed using the established spot test

(Scott and Kilbourn 2007). Strips of plastic-backed silica gel TLC plates saturated with

iodoplatinate reagent were spotted with water (negative control), 50 μg/mL K2.2.2 stand-

ard (positive control) and with the [18F]AV1451 dose. If K2.2.2 was present in a sample,

a blue–black spot appeared. Spots for the three samples were compared and a visual

determination of residual K2.2.2 in the dose was made; ≤50 μg/mL was acceptable.
Table 1 QC Data for Process Verification Batches of [18F]AV1451

QC Test Release Criteria Batch 1 Batch 2 Batch 3 Batch 4

Visual inspection Clear, colorless, free of particulates Pass Pass Pass Pass

pH 4.5-7.5 5.0 5.0 5.0 5.0

Radiochemical Yield (mCi) >10 mCi 170 140 231 266

Radioactivity Conc. >10 mCi/10 mL 34 28 46 53

AV1451 Conc. ≤5.0 μg/mL 2.5 2.0 3.5 2.5

SA (Ci/mmol) N/A 1,789 3,228 2,788 2,278

RCP (%) >90% 98 97 98 100

Radiochemical Identity RRTa =0.9-1.1 1.0 1.0 1.0 1.0

Radionuclidic Identity t1/2 = 105-115 min 107 107 110 109

Residual K2.2.2 ≤50 μg/mL ≤50 ≤50 ≤50 ≤50

Filter Integrity >44 psi 51 50 50 51

Bacterial Endotoxins <17.5 EU/mLb <2.00 <2.00 <2.00 <2.00

Sterility Sterile Sterile Sterile Sterile Sterile
aRRT = Relative retention time (tR [

18F]AV1451 / tR of [
19F]AV1451 standard); b EU = Endotoxin units
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Chemical purity and radiochemical purity/identity

Chemical and radiochemical purities/identities are analyzed using a Shimadzu LC2010

HPLC equipped with a radioactivity detector and an ultraviolet (UV) detector (column:

Gemini NX C18 5 micron 4.6x250 mm; mobile phase: 40% Ethanol 10 mM Na2HPO4

pH: 9.3 ± 0.2; flow rate: 1 mL/min; UV: 254 nm). A representative analytical HPLC

trace is shown in Fig. 2 ([18F]AV1451 tR = 13.2 min) and with an overlay of the UV

trace of the reference standard in Fig. 3. Radiochemical purity for doses must be >90%,

and identity was confirmed by comparing the retention time of the radiolabeled

product with that of the corresponding unlabeled reference standard.
Radionuclidic Identity

Radionuclidic identity was confirmed by determining the half-life of [18F]AV1451 doses

and comparing it to the known half-life of fluorine-18 (109.77 min). Activities were

measured using a Capintec dose calibrator and half-life was calculated using Eq. (1).

Calculated half-life must be 105–115 min.

T1=2 ¼ ‐ ln2 Time Difference= ln ending activity=starting activityð Þð Þð Þ ð1Þ

Sterile filter integrity (Bubble Point) test

Sterile filters from doses (with needle still attached) were connected to a nitrogen

supply via a regulator. The needle is then submerged in water and the nitrogen

pressure gradually increased. If the pressure was raised above the filter acceptance

pressure (44 psi) without seeing a stream of bubbles, the filter was considered intact.
Bacterial endotoxins

Endotoxin content in [18F]AV1451 doses was analyzed by a Charles River Laboratories

EndoSafe® Portable Testing System and according to the US Pharmacopeia. Doses must

contain ≤175 Endotoxin Units (EU), or ≤17.5 EU/mL.
Fig. 2 [18F]AV1451 QC HPLC traces (UV above, Radioactivity below) are representative of those observed



Fig. 3 Typical Analytical HPLC trace of [18F]AV1451: gamma detection trace with overlay of UV trace of
genuine standard (Standard UV trace above, Product Radioactivity trace below)
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Sterility

Culture tubes of fluid thioglycolate media (FTM) and tryptic soy broth (TSB) were

inoculated with samples of [18F]AV1451 and incubated (along with positive and nega-

tive controls) for 14 days. FTM was used to test for anaerobes, aerobes and microaero-

philes while TSB was used to test for non-fastidious and fastidious microorganisms.

Culture tubes were visually inspected on the 3rd, 7th and 14th days of the test period

and compared to the positive and negative standards. Positive standards needed to

show growth (turbidity) in the tubes, and [18F]AV1451 doses/negative controls had to

show no culture growth after 14 days to be indicative of sterility.

Results and discussion
[18F]AV1451 2 features a carbazole scaffold appended with a 2-fluoropyridine moiety,

which is the site of radiofluorination. The corresponding nitro-precursor 1 is an at-

tractive starting point to synthesize the radiotracer because of its commercial availabil-

ity, but is less often used than its trimethylammonium counterpart due to two major

issues: i) poor solubility of the precursor in polar aprotic solvents used for SNAr chem-

istry (displacement of -NO2 with -18F), and ii) difficulties in separation of precursor

and product using semi-preparative HPLC.

Issues with solubility of the nitro-precursor have been partially resolved by N-Boc

protection of the carbazole nitrogen, which improves solubility by increasing the lipo-

philicity of the molecule. Literature reports are unclear as to whether N-Boc protection

improves radiochemical conversion or if increased yields are due to the solubility

afforded (Shoup et al. 2013; Gao et al. 2015). Ambiguity also surrounds the deprotec-

tion of N-Boc-protected [18F]AV1451 in the literature: Shoup and Gao describe the N-

Boc group being removed concomitantly with fluorination through either thermal pro-

motion or due to the basic reaction conditions (Shoup et al. 2013; Gao et al. 2015),

while Holt and co-workers add HCl following fluorination to deprotect in a separate

deprotection step (Holt et al. 2016). We were also uncertain whether the acidic HPLC

buffer specified in the report by Shoup might also be contributing to deprotection.
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To evaluate the feasibility of a thermal deprotection we evaluated the predicted pKa

of AV1451 versus predicted and literature values of analogues to determine why

AV1451 would behave differently than a typical carbazole or indole (pKa values sourced

either from the literature and/or predicted with JChem (https://epoch.uky.edu/ace/

public/pKa.jsp) or ADMET Predictor 7.2 (courtesy of Adam C. Lee, PhD at Dupont)

are summarized in Fig. 4). We found that γ-carbolines (Angulo et al. 1997) are more

acidic than corresponding carbazole (Bordwell et al. 1981; Maran et al. 1991), azain-

dole (Adler and Albert 1960) and indole (Bordwell et al. 1981; Maran et al. 1991) and

reasoned this observed change in electronics could explain why thermal removal of

an N-Boc protecting group is possible with [18F]AV1451. To experimentally deter-

mine the extent of thermal deprotection, reactions were run (Scheme 2) and analyzed

by HPLC (Fig. 5). N-Boc nitro precursor 1 was dissolved in DMSO and heated at

130 °C. Aliquots were removed at 1, 5 and 10 minutes and analyzed by HPLC. Within

1 min, the ratio of N-Boc precursor 1 (tR = 20.3 min) : deprotected precursor 3 (tR = 14.7 mi-

nutes) was 95 : 5 (Fig. 5). Greater conversion was observed at 5 min (1 : 3 = 52 : 48), and at

10 min the majority of N-Boc precursor 1 was thermally deprotected (1 : 3 = 22 : 78). These

results confirmed the feasibility of thermal deprotection, and that basic or acidic

conditions are not required for the removal of the N-Boc protecting group during

the synthesis of [18F]AV1451.

To study the radiofluorination reaction, [18F]KF/K2CO3/K2.2.2 was prepared as a stock

solution in DMSO and reactions with the N-Boc-protected nitro precursor were carried

out manually. Two products were observed by radio-TLC and radio-HPLC (Scheme 2

and Fig. 6), corresponding to the [18F]N-Boc intermediate 4 (tR = 21–22 min) and

[18F]AV1451 2 (tR = 12 – 13 min). Aliquots taken at 1 min demonstrated that the inter-

mediate was the major radiolabeled product and that the precursor was still N-Boc pro-

tected. The RCC of the intermediate at this time was 43.4% with only 5.5% RCC to

[18F]AV1451. At 5 min the RCC to intermediate 4 and [18F]AV1451 2 were 47% and

23%, respectively. Finally, after a 10 min reaction at 130 °C, thermal deprotection of the

Boc group resulted in 47% RCC to [18F]AV1451 (23% of the activity balance remained

as intermediate 4). Interestingly, we noted that conversion of [18F]KF to intermediate 4

(or product 2) did not appreciably increase from 5 to 10 min.
Fig. 4 Predicted pKa of [18F]AV1451 by property prediction and comparison of analogues by literature and
predicted pKa values indicates the gamma-carboline NH of [18F]AV1451 is more acidic than a typical indole,
carbazole or azaindole

https://epoch.uky.edu/ace/public/pKa.jsp
https://epoch.uky.edu/ace/public/pKa.jsp


Scheme 2 Investigating the synthesis of [18F]AV1451
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We were uncertain if the lack of radiochemical conversion to intermediate or product

from 5 to 10 min was due to the deprotection of the precursor (only 40% of N-Boc

precursor remained at 5 min) or another reason. Therefore, N-Boc precursor 1 was

first thermally deprotected to give 3, and 3 was then subjected to fluorination. Radiola-

beling was successful (Scheme 2), but only generating [18F]AV1451 2 in a modest 28%

RCC, suggesting that the non-protected precursor 3 can be radiolabeled so long as it is

solubilized. This also suggests that the modest RCC observed in the radiofluorination

of 1, and decline in further reaction after 5 min, is likely due to the decreased solubility

(and thus lower concentration) of precursor associated with thermal deprotection of

the Boc group as the reaction proceeds. The results also indicate that the benefit of N-

Boc protection in the reaction is primarily the improvement of precursor solubility.
Fig. 5 HPLC traces at 1 min, 5 min and 10 min of AV1451 precursor in DMSO at 130 °C



Fig. 6 Radio-TLC (right) and -HPLC (left) data from manual [18F]AV1451 radiolabeling reactions, showing
formation of the [18F]-N-Boc-protected intermediate 4, followed by the [18F]AV1451 product 2. Aliquots
were pulled at t = 0, 1, 5, and 10 minutes and analyzed using both methods [Radio-TLC analysis was
performed using a Bioscan AR 2000 Radio-TLC scanner with EMD Millipore TLC silica gel 60 plates (3.0 cm
wide x 6.5 cm long) developed using hexane:ethyl acetate (1:1); Radio-HPLC analysis was performed using a
Shimadzu LC2010 HPLC equipped with radioactivity and UV detectors (column: Luna C18 5 micron 4.6x150
mm; MeCN:H2O gradient: 5:95 (0–3 min) – 5:95 → 95:5 (3–20 min) – 95:5 → 5:95 (20–30 min); flow rate:
1.5 mL/min; UV: 254 nm). Note: [18F]fluoride tR tended to fluctuate with the unbuffered H2O/MeCN HPLC
gradient, and is thus present at different times in the HPLC rad traces (4–11 min), while small peaks
observable in HPLC traces of t = 0 and 1 minutes are artifacts]
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The methods reported by Shoup and Gao dealt with the issue of purifying

[18F]AV1451 2 from nitro precursor 1 (and other reaction impurities such as 3 and 4)

in different ways. Shoup addressed the issue by adding a SPE extraction prior to HPLC

purification. The reaction mixture was diluted in water and passed through an HLB

cartridge, which removed DMSO and hydrophilic impurities, while trapping the prod-

uct and other lipophilic components. The HLB cartridge was eluted with ethanol into

the intermediate vial, which contained a low pH HPLC buffer. The removal of DMSO

and hydrophilic impurities that would otherwise complicate subsequent semi-

preparative HPLC purification allowed them to achieve separation. However, the pre-

purification process requires the commercial system to be reconfigured as extra valves

need to be added (Shoup et al. 2013). This increases operational complexity and also

the number of steps (synthesis time). On the other hand, Gao reported two different

methods to purify [18F]AV1451 (Gao et al. 2015). The first method involved using

Fe(0)/formic acid to reduce the 2-nitropyridine to the 2-aminopyridine following radi-

olabeling, similar to the approach taken in the original synthesis (Xia et al. 2013). This

requires extensive modification of a commercial synthesis system, and also increases

potential points of failure in the synthesis. The second method described by Gao is

more interesting: the reaction is quenched by addition of a 0.1 M NaHCO3 before

purification with an acidic HPLC buffer (25% MeCN, 20 mM H3PO4). While there

are not sufficient details in the report to know the extent of separation, we were in-

trigued that a simple basic quench with bicarbonate solution was sufficient to allow

purification of [18F]AV1451.
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We reasoned from the calculated pKa of [18F]AV1451 (Fig. 4), as well as a literature

report of the pKa of γ-carboline (Angulo et al. 1997), that the use of a basic medium was

the optimal approach to purify this radiotracer. The γ-carboline core of [18F]AV1451

contains both pyrrole-like and pyridine-like nitrogen atoms. ADMET and JChem predict

the pKa of the pyrrole NH is ~12-13, and the conjugate pKa of the pyridine is ~7-8

(Fig. 4), and so the best separation could likely be achieved at a pH where [18F]AV1451

(and other reaction components) would be neutral. Since we also wished to avoid the use

of Class 2 solvents such as MeCN, we elected to use an ethanolic phosphate buffer at

pH 9.3. This buffer will leave the pyrrole nitrogen protonated, but will not protonate the

pyridine-like nitrogen of the γ-carboline core. A comparison of the reported acidic buffers

with this basic buffer revealed sharper peaks and increased separation when using the

basic buffer (data not shown). Moreover, peak broadening and overlap of [18F]AV1451 2

with contaminants, that occurred when we used acidic HPLC mobile phases, was not an

issue with the basic buffer. The longer retention times and better peak shapes gave

baseline separation of the product from other reaction components.

Finally, with a better appreciation of the synthesis, deprotection and purification of

[18F]AV1451, we wished to automate the production of [18F]AV1451 (Scheme 1) using

a TRACERLab FXFN synthesis module. We initially re-optimized radiolabeling and

purification using a smaller amount of precursor (0.5 mg vs 1.5 mg) and solvent

(0.5 mL vs 1.5 mL), in order to further reduce HPLC peak broadening and also avoid

precipitation prior to injection onto the HPLC column. Following the concomitant

radiofluorination/Boc deprotection, the reaction mixture was purified by semi-

preparative HPLC (column: Gemini NX C18 5 micron 10x250 mm; mobile phase: 40%

Ethanol 10 mM Na2HPO4 pH: 9.3 ± 0.2; flow rate: 3 mL/min; for a typical semi-

preparative HPLC trace, see Fig. 1 ([18F]AV1451 2 tR = 21–22 min)). This semi-

preparative HPLC system showed a good retention time difference between the product

and other reaction components that allowed for routine clinical production. A subse-

quent reformulation using an Oasis HLB cartridge provided [18F]AV1451 (2). Total

synthesis time was 70 min and the method was validated for the manufacture of doses

for clinical use by completing four process-verification runs. The isolated, formulated

and non-corrected radiochemical yield (RCY) of [18F]AV1451 prepared using this

method was 202 ± 57 mCi at end-of-synthesis (EOS) (14% based on starting

[18F]fluoride), RCP = 98 ± 1%, and SA = 2521 ± 623 Ci/mmol. Doses met (or exceeded) the

QC specifications as described in the methods section (Table 1).

Conclusion
In summary, an optimized fully automated synthesis of [18F]AV1451 has been devel-

oped which uses an unmodified TRACERLab FXFN synthesis module. The synthesis

also employs no hazardous solvents, and provides radiotracer doses suitable for clinical

use. Based on our results in the development of this method, we encourage others to

utilize pKa values to help determine the optimal mobile phase to purify radiotracers

given the increasing availability of diverse HPLC stationary phases that can be used in

combination with mobile phases of varying acidity (or basicity). The use of multiple

manual reactions performed using aliquots of a batch prepared reagent (as was done

with [18F]KF/K2.2.2 in DMSO to prepare [18F]AV1451 in this study) is also a convenient

way to quickly assess a reaction, and the role of reagents and reaction conditions.
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