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Abstract: The electrode fabrication stage is a crucial step in the design of supercapacitors. The latter
involves the binder generally for adhesive purposes. The binder is electrochemically dormant and
has weak interactions, leading to isolating the active material and conductive additive and then
compromising the electrochemical performance. Designing binder-free electrodes is a practical way
to improve the electrochemical performance of supercapacitors. However, most of the methods
developed for the fabrication of binder-free LDH electrodes do not accommodate LDH materials
prepared via the co-precipitation or ions exchange routes. Herein, we developed a novel method
to fabricate binder-free LDH electrodes which accommodates LDH materials from other synthesis
routes. The induced impacts of various physical parameters such as the temperature and time applied
during the fabrication process on the crystalline domain and electrochemical performances of all the
binder-free LDH electrodes were studied. The electrochemical analysis showed that the electrode
prepared at 200 ◦C-1 h exhibited the best electrochemical performance compared to its counterparts.
A specific capacitance of 3050.95 Fg−1 at 10 mVs−1 was achieved by it, while its Rct value was 0.68 Ω.
Moreover, it retained 97% of capacitance after 5000 cycles at 120 mVs−1. The XRD and FTIR studies
demonstrated that its excellent electrochemical performance was due to its crystalline domain which
had held an important amount of water than other electrodes. The as-developed method proved to
be reliable and advantageous due to its simplicity and cost-effectiveness.

Keywords: dimethyl sulfoxide; layered double hydroxides; binder-free LDH electrode; supercapacitor

1. Introduction

The electrode fabrication stage is one of the major steps in the development of tech-
nological devices, such as supercapacitors and batteries [1,2]. It generally includes three
main steps, such as (1) the mixture of the active material, conductive additive and binder
with consideration to the ratio of each component into a solvent to make the slurry [3];
(2) the coating/casting/dropping of the slurry onto a selected substrate; and (3) the drying
of the as-prepared electrode at a selected temperature and time [4,5]. Normally, binders
are involved during the fabrication of electrodes for adhesive purposes. However, binders
are generally dead mass and electrochemically inert. Consequently, they isolate the active
materials as well as the conductive additives. As a result, they compromise the electro-
chemical performance of energy storage devices [3]. To solve this issue, the development of
binder-free electrodes is highly encouraged [5–9]. The fabrication of binder-free electrodes
is a practical way to improving the electrochemical performance of supercapacitors as well
as batteries and reduce the production cost. Compared to traditional electrodes, binder-free
electrodes possess distinctive advantages for electrochemical energy storage applications
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among which high mass loading of active materials, a good connection between the ac-
tive materials and current collectors since the binder is absent, full utilization of active
materials, and efficient diffusion of electrons and ions within the electrodes [3]. Currently,
several methods to fabricate binder-free electrodes have been developed such as chemical
vapor deposition [10], vacuum filtration [11], hydrothermal/solvothermal [12], aerogel
production [13], electrospinning [14], electrochemical deposition, and electrophoretic [3,15].
The fabrication process of binder-free electrodes generally relies on the direct growth of
the electrode active material onto a specific conductive substrate such as carbon cloth [16],
carbon paper [17] and nickel foam [18]. However, compared to other conductive substrates,
nickel foam has been extensively used as a substrate to make binder-free electrodes due to
its advantages such as high electronic conductivity, high specific surface area, open-pore
structure, good mass transport, and micro-holes. More importantly, it is cheap compared to
other conductive substrates [18].

Nickel foam is generally manufactured through the coating of Ni metal on a polymer sub-
strate via chemical vapor deposition (CVD) or electrochemical deposition techniques [19,20].
Normally, the pore size of a nickel foam depends on the polymer’s arrangement even
though it is commonly ranged from 5 to 130 pores per inch [18]. More interestingly, the
nickel foam’s architecture which is usually 3D favors a high specific surface area on which
the electrochemical reactions take place. This makes nickel foam to be a desirable conduc-
tive substrate for many applications. The hydrothermal or solvothermal techniques were
reported to be facile and promising routes for the direct growth of the active material on
the nickel foam. As a result, nickel foam has been the most extensively used conductive
substrate compared to others [18].

Layered double hydroxides (LDH) are lamellar inorganic solids considered as promis-
ing electrode active materials for supercapacitors due to their excellent electrochemical
property which is the result of combined impacts of two or more metal cations involved
during the synthesis [21]. Adding to this, various advantages such as facile synthesis,
unique structure, unvarying distribution of diverse metal cations in the brucite layer, sur-
face hydroxyl groups, high tunability, intercalated are anions with interlamellar spaces,
excellent chemical stability, and the ability to intercalate diverse varieties of anions (in-
organic, organic, biomolecules, and even genes) make them a center of great research
attraction [22]. Several LDH materials have recently been directly synthesized on nickel
foam and applied as binder-free electrodes for supercapacitor applications. However, the
majority of them were hydrothermally fabricated [4,7,8,23–25]. This shows how the current
fabrication process of nickel foam-based binder-free LDH electrodes do not accommodate
LDH materials synthesized through other methods such as the co-precipitation and ion
exchange; whereas the latter are the most used techniques to prepare LDH materials [26,27].

We recently reported on the benefits of dimethyl sulfoxide (DMSO) used as a binder
solvent on the electrochemical performance of layered double hydroxides (LDH) [28].
During the experiment, it was noticed that DMSO prevents the LDH electrode crystalline
structure from great damage due to the electrode drying parameters. More importantly, the
adhesive property of the slurry prepared using DMSO on the nickel foam was remarkably
high which could probably be due to both DMSO and the electrode drying temperature.
Inspired by this observation and considering that W. Blake Hawley et al., had demonstrated
that the casting temperature can ameliorate the adhesive property of a slurry, favoring a
speed coating and a successful vacuum pressure [29]. We intended to fabricate LDH elec-
trodes without involving the binder while DMSO was used as a binder solvent. Benefiting
from the spectacular adhesive property of DMSO due to the electrode drying temperature,
several binder-free LDH electrodes deposited on nickel foam were fabricated. Afterwards,
the impacts of physical parameters such as the electrode drying temperature and time on
the crystalline domain and electrochemical performances of the as-fabricated electrodes
were investigated. More interestingly, we developed a novel cost-effective method for
the growth of LDH materials on nickel foam without binders. More importantly, this
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technique can accommodate LDH materials prepared via other synthesis methods such as
the co-precipitation, and exchange ions.

2. Results and Discussion

The crystalline structure is an important part for LDH materials. It was reported that
during the charging step, the surface of LDH materials is not the only part that participates,
the entire crystalline structure is also involved via intercalation/de-intercalation of elec-
trolyte ions; promoting the excellent energy storage capabilities of LDH materials [6,30–33].
Therefore, the LDH crystalline domain deserves attention. Figure 1 shows the XRD pat-
terns of the as-synthesized LDH used as the electrode active material. Even though this
result was discussed in detail in our previous work [28], however, all the diffraction peaks
depicted could be attributed to the planes of layered hydrotalcite-like material [5,34].
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Figure 1. XRD patterns of the as-synthesized LDH used as electrode active material.

Subsequently, Figure 2a,b display the schematic illustration of the fabrication process
of binder-free LDH electrodes as well as the image of the as-fabricated binder-free LDH
electrode. Figure 2c shows the XRD patterns of the LDH-100-1h, LDH-100-1h30, LDH-
100-2h, LDH-150-1h, and LDH-200-1h electrodes. Compared to the XRD patterns of the
as-synthesized LDH, the XRD patterns of all the binder-free LDH electrodes displayed
types of disordered stacked structures which could be due to the effects of electrode drying
parameters [28,35]. Nevertheless, some diffraction peaks corresponding to the plane of
layered hydrotalcite labelled with red starts were observed in the XRD patterns of all
the binder-free LDH indicating that the initial crystalline structures were of the planes of
layered hydrotalcite-like material, thereafter, they got altered probably due to the applied
physical parameters. The LDH diffraction peaks recorded from the XRD patterns of all the
binder-free LDH electrodes were positioned at 24◦, 34◦, and 39◦ indexed to (006), (012), and
(015) [5,34]. Adding to this, a diffraction peak located at 11◦ indexed to (003) was noticed,
but only for the LDH-150-1h electrode. Furthermore, diffraction peaks depicted at 60◦

indexed to (110) were also visible for the LDH-100-1h, LDH-100-1h30, and LDH-150-1h
electrodes [5,34]. Apart from LDH diffraction peaks, two other diffraction peaks with high
intensities were depicted for all the as-fabricated binder-free LDH electrodes and assigned
to nickel foam [36–38]. In addition, the remaining diffraction peaks observed for all the
electrodes beside those highlighted above were considered as foreign peaks resulting from
the electrode fabrication process. More interestingly, it was reported that the effects of
structural disorder can be very beneficial for an energy storage device since it can improve
the electrochemical activity [39,40]. The difference noticed on the intensity or appearance
of diffraction peaks could be attributed to the applied physical parameters. It is known
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that the LDH crystalline domain deserves an attention, unfortunately, in this work, the
very low intensity of LDH diffraction peaks recorded for all the binder-free LDH electrodes
made the deep analysis of XRD profiles difficult. As a result, the Fourier transform infrared
(FTIR) measurements were performed for all the binder-free LDH electrodes in order to
understand the impacts of applied physical parameters on the interlamellar for all the
binder-free LDH electrodes.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 18 
 

 

electrochemical activity [39,40]. The difference noticed on the intensity or appearance of 

diffraction peaks could be attributed to the applied physical parameters. It is known that 

the LDH crystalline domain deserves an attention, unfortunately, in this work, the very 

low intensity of LDH diffraction peaks recorded for all the binder-free LDH electrodes 

made the deep analysis of XRD profiles difficult. As a result, the Fourier transform infra-

red (FTIR) measurements were performed for all the binder-free LDH electrodes in order 

to understand the impacts of applied physical parameters on the interlamellar for all the 

binder-free LDH electrodes. 

 

Figure 2. (a) Schematic illustration of the fabrication process of binder-free LDH electrodes; (b) the 

image of the as-fabricated binder-free LDH electrode; (c) XRD patterns of the LDH-100-1h, LDH-

100-1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes; and (d) FTIR spectra of the LDH-

100-1h, LDH-100-1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes. 

Figure 2d shows the FTIR spectra for the LDH-100-1h, LDH-100-1h30, LDH-100-2h, 

LDH-150-1h, and LDH-200-1h electrodes. Generally, the nature of the LDH interlamellar 

also determines the electrochemical performance [30,41]. Since it was difficult to under-

stand the nature of the interlamellar for all the as-fabricated binder-free LDH electrodes 

using XRD, the FTIR measurements for all the binder-free LDH electrodes were carried 

out. To understand the FTIR results, the focus was given to three major regions pointed 

out by arrows with different colors. The arrows with the color red refer to the vibration 

bands ranging from 3000 to 3600 cm−1 that were attributed to the O-H stretch of physical-

Figure 2. (a) Schematic illustration of the fabrication process of binder-free LDH electrodes; (b) the
image of the as-fabricated binder-free LDH electrode; (c) XRD patterns of the LDH-100-1h, LDH-100-
1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes; and (d) FTIR spectra of the LDH-100-1h,
LDH-100-1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes.

Figure 2d shows the FTIR spectra for the LDH-100-1h, LDH-100-1h30, LDH-100-2h,
LDH-150-1h, and LDH-200-1h electrodes. Generally, the nature of the LDH interlamellar
also determines the electrochemical performance [30,41]. Since it was difficult to understand
the nature of the interlamellar for all the as-fabricated binder-free LDH electrodes using
XRD, the FTIR measurements for all the binder-free LDH electrodes were carried out. To
understand the FTIR results, the focus was given to three major regions pointed out by
arrows with different colors. The arrows with the color red refer to the vibration bands
ranging from 3000 to 3600 cm−1 that were attributed to the O-H stretch of physically
adsorbed water, water molecules within the interlamellar, and the hydroxyl group [41].
The blue colored arrows refer to the physically adsorbed water stretch; while the pink
colored arrows refer to carbonate vibrations [42]. Enlargement of curves of vibration bands
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assigned to the O-H stretch of physically adsorbed water, water molecules within the
interlamellar, and the hydroxyl group were noticed for the LDH-100-2h and LDH-200-1h
electrodes compared to the LDH-100-1h, LDH-100-1h30, LDH-150-1h electrodes (refer to
the red colored arrows). It must be noted that the width or intensity of an infrared band is
the consequence of the chemical environments within the materials. This reflects also the
strength of intermolecular interactions [43]. Nyongombe et al. have recently demonstrated
that the electrode drying temperature is one of the major factors that triggers changes in the
crystalline domain of LDH electrodes [28]. This leads to the state that due to the electrode
drying temperatures, the hydrogen bonds in molecules of water were differently affected
resulting in different strengths of interactions of intermolecular within binder-free LDH
electrodes that caused the curves of vibration bands ranging from 3000 to 3600 cm−1 to
differ in shape [41]. This can be confirmed by the difference in recorded intensities of bands
attributed to vibration of physically adsorbed waters (refer to the blue colored arrows) [42].
After a deep analysis of bands attributed to the vibration of physically adsorbed waters, it
was observed that the LDH-200-1h electrode possesses a band with high intensity compared
to its counterparts, followed by the LDH-100-2h, LDH-100-1h, LDH-150-1h, LDH-100-1h30
electrodes, respectively. This reveals the difference in the amount of physically adsorbed
water within the interlamellar of all the electrodes [42]. It was also recently proved that
during the LDH electrode fabrication, the molecule from the solvent used can easily be
intercalated in the interlamellar due to the impact of the electrode drying temperature
and alter the crystalline domain [28]. Considering this and the reagents used during the
fabrication of all the electrodes, it can be assumed that sulfur particles were released from
DMSO due to the electrode drying temperatures according to Equation (1) [44] and got
encapsulated in carbon matrix from the conductive additive, then both got intercalated into
the interlamellar of all the electrodes [45,46]. Consequently, the interlamellar environment
was greatly altered compared to a pure LDH, causing the diffraction peaks indexed to
(003) to be invisible in the XRD patterns of all the electrodes. This hypothesis can also be
supported by the behaviors of carbonate anions in the interlamellar of all the electrodes
(refer to the pink colored arrows). It is known that more than one atomic species in the
interlamellar of LDH possesses a carbonate anion (CO2−

3 ) and the corresponding bands are
generally distinguished by a D3 h trigonal planar symmetry that shows the vibrations V2,
V3, V4 which can be located at 860, 1360, 774 cm−1, respectively [42,47]. In this work, the
recorded bands attributed to carbonate vibrations ranged from 1355 to 1365 cm−1 for all
the electrodes indicating the interactions between carbonate groups and water molecules
in the interlamellar. It also demonstrates the existence of fractions of carbonates in the
lower symmetry [42,48]. A careful analysis of bands attributed to carbonate vibrations
revealed a difference in their width and intensities. It was observed that the LDH-200-1h
electrode possesses a wide and intense band compared to its counterparts, followed by
the LDH-100-2h, LDH-150-1h, LDH-100-1h, LDH-100-1h30 electrodes, respectively. This
reveals the interactions of different forms of carbonate anion. It further informs about the
amount of low symmetry carbonate anions in the interlamellar for all the electrodes [42,47].
Therefore, it can be stated that the LDH-200-1h electrode possesses a high amount of low
symmetry carbonate anions in the interlamellar compared to its counterparts. Followed
by the LDH-100-2h, LDH-150-1h, LDH-100-1h, LDH-100-1h30 electrodes, respectively.
Moreover, shoulders at 1427 and 1469 cm−1 were also depicted for the LDH-100-2h and
LDH-100-1h30 electrodes, respectively. These could be attributed to the characteristics of
free low symmetry carbonate anion on the surface [47].

2(CH3)2SO→ (CH3)2SO2 + (CH3)2S (1)

Afterwards, the morphologies of all the as-fabricated binder-free LDH electrodes
were captured as depicted in Figure 3a–f. The latter compared the morphology of the as-
synthesized LDH used as electrode active material to those of the as-fabricated binder-free
LDH electrodes. The flower-like structures made of nanosheets were noticed as morphology
for all the binder-free LDH electrodes which were comparable to the morphology of the
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as-synthesized LDH used as electrode active material. However, it was observed that the
leaves of flowers were opened for the morphologies of all the as-fabricated binder-free LDH
electrodes compared to those of the as-synthesized LDH used as electrode active material.
Subsequently, Figure 4a–e display the morphologies of all the as-fabricated binder-free LDH
electrodes at a different magnification revealing the adhesion of slurries on nickel foam.
The mass-loading for the as-fabricated binder-free LDH electrodes is displayed in Table 1.
It was noticed that two sets of electrodes possess comparable masses. Understanding
the casting step can allow the fabrication of electrodes with constant mass. These results
indicate that the applied physical parameters had more effect on the structural domains
than the morphologies.
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Figure 4. (a–e) FESEM images of the LDH-100-1h, LDH-100-1h30, LDH-100-2h, LDH-150-1h, and
LDH-200-1h electrodes at a different magnification.

Table 1. Mass-loading for all the electrodes.

Electrodes Mass Loading (g)

LDH-100-1h 0.028

LDH-100-1h30 0.026

LDH-100-2h 0.028

LDH-150-1h 0.026

LDH-200-1h 0.029

The electrochemical analyses were performed to track the effects of physical parame-
ters applied during the electrode fabrication on the electrochemical performances of the
LDH-100-1h, LDH-100-1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes. The
cyclic voltammetry (CV) measurements were carried out in 1.0 M KOH electrolyte in a
three-electrode system. Figure 5a displays the comparative CV curves for the LDH-100-1h,
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LDH-100-1h30, and LDH-100-2h electrodes at the scan rate of 10 mVs−1 in a voltage win-
dow of 0.6 V (vs. Ag/AgCl). As it can be seen, typical Faradaic peaks were noticeable for
all the electrodes showing that their capacitances were the consequences of quasi-reversible
faradaic redox reactions [30,49,50] due to the combined effects of nickel and cobalt within
the LDH electrodes [51]. Moreover, it was depicted that the CV absolute area of the LDH-
100-2h electrode was larger compared to those of the LDH-100-1h and LDH-100-1h30
electrodes indicating that its charge storage performance is excellent compared to its coun-
terparts. Subsequently, the CV curve of the LDH-100-2h electrode was compared to those
of the LDH-150-1h and LDH-200-1h electrodes at 10 mVs−1 as shown in Figure 5b. It is
obvious that the CV absolute area of the LDH-200-1h electrode is larger compared to those
of the LDH-100-2h and LDH-150-1h electrodes indicating that the LDH-200-1h electrode
possesses a high energy storage capacity compared to the LDH-100-2h and LDH-150-1h
electrodes. This was followed by the LDH-100-1h and LDH-150-1h electrodes, respectively.
Moreover, peaks related to the Faradaic redox reactions were also noticed in the CV curves
of the LDH-150-1h and LDH-200-1h electrodes.
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Figure 5. (a) Comparative CV curves for the LDH-100-1h, LDH-100-1h30, and LDH-100-2h electrodes
at a scan rate of 10 mVs−1; (b) comparative CV curves for the LDH-100-2h, LDH-150-1h, and
LDH-200-1h electrodes at a scan rate of 10 mVs−1.

Afterwards, Figure 6a–e show the CV curves for all the electrodes at different scan rates
(10, 30, 50, 75, and 100 mVs−1) in the voltage window of 0.6 V. No misshaping was observed
for all the electrodes as the scan rate was increasing from 10 to 100 mVs−1, indicating a
relatively high-current capability [22]. Studying electrode kinetics mechanisms is crucial
due to the interfacial nature of electrochemistry. Therefore Equations (2) and (3) [28] were
applied for this purpose.

i = icap + idi f f = avb (2)

log i = log a + b log v (3)

Consequently, Figure 7a–e display the dependence of anodic peak current (ipa) on the
square root of the scan rate for all the electrodes revealing values of their R2 which were
considered as their b values. The results demonstrate that the reaction mechanisms for all
the electrodes were governed by the surface capacitance and diffusion-controlled processes.
Thereafter, Equations (4) and (5) [28] were used to estimate the contribution of each process
in the overall kinetic mechanism for all the electrodes.

i = k1 V + k2V1/2 (4)

i
V1/2 = k1 V1/2 + k2 (5)
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Figure 6. CV curves for the (a) LDH-100-1h, (b) LDH-100-1h30, (c) LDH-100-2h, (d) LDH-150-1h, and
(e) LDH-200-1h electrodes, respectively at various scan rates.
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Figure 7. Dependence of the anodic peak current (ipa) on the square root of the scan rate for
the (a) LDH-100-1h, (b) LDH-100-1h30, (c) LDH-100-2h, (d) LDH-150-1h, and (e) LDH-200-1h
electrodes, respectively.

Using Equation (5), plots were drawn with i/V1/2 against V1/2 for all the electrodes as
displayed in Figure 8a–e. Then after the linear fit of plots, the values of their slopes were
taken as their k1 while the intercepts were their k2 [28]. Multiplying the values of their k1
and k2 by the scan rate of 10 mVs−1, the contribution fractions of the surface capacitance
and diffusion-controlled processes and their percentage at the scan rate of 10 mVs−1 for all
the electrodes were revealed in Figure 8f. From the results, it was noticed that the diffusion-
controlled process contributed the most to the overall charge storage mechanisms for all
the electrodes showing that the dominant mechanisms were battery-like [28]. However,
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the percentage of the contribution of the diffusion-controlled process to the overall charge
storage mechanism was different from one electrode to the other, probably due to the
nature of their interlamellar domain.
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at the scan rate of 10 mVs−1.

Thereafter, the specific capacitances for the LDH-100-1h, LDH-100-1h30, LDH-100-2h,
LDH-150-1h, and LDH-200-1h electrodes were calculated from CV curves at the scan rate
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of 10 mVs−1 using Equation (6) [30], and the calculated values are presented in Table 2.
Meanwhile, Table 3 compared the specific capacitance of the LDH-200-1h electrodes with
other reported NiCoAl-LDH electrodes.

Csp =
1

Vm∆Vi f

∫ V f

Vi
(E)dE (6)

where Csp is the specific capacitance (Fg−1), V is the scan rate (Vs−1), m is the mass of active
material on the substrate (g), ∆V is the potential window applied for the measurements (Vi
to Vf ), and the integral term is the absolute area of the CV curve.

Table 2. Specific capacitances calculated from the CV curves at the scan rate of 10 mVs−1.

Electrodes Specific Capacitances Scan Rate

LDH-100-1h 2467.70 Fg−1 10 mVs−1

LDH-100-1h30 2252.43 Fg−1 10 mVs−1

LDH-100-2h 2489.34 Fg−1 10 mVs−1

LDH-150-1h 1110.16 Fg−1 10 mVs−1

LDH-200-1h 3050.95 Fg−1 10 mVs−1

The electrochemical impedance spectroscopy (EIS) measurements were also performed
for the LDH-100-1h, LDH-100-1h30, LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes
in a frequency ranging from 100 kHz to 100 mHz at open circuit potential. It is known
that Rs shows the resistance of the electrolyte, while the charge transfer impedance on
the interface electrode/electrolyte is represented by Rct [30,52]. Figure 9a exposes the
comparative Nyquist plots for the LDH-100-1h, LDH-100-1h30, LDH-100-2h electrodes. All
the electrodes displayed slight semicircles in the high-frequency region, whereas the almost
straight lines were observed in the low-frequency region. Generally, a slight semicircle in
the high-frequency region indicates the faradaic reaction [53]. While the almost straight
line in the low-frequency region informs about the diffusion of redox species and their
kinetics [30,54]. The insert in Figure 9a shows the zoomed comparative Nyquist plots for
the LDH-100-1h, LDH-100-1h30, LDH-100-2h electrodes. As it can be seen, the LDH-100-2h
electrode exhibited a low Rct compared to its counterparts, followed by the LDH-100-1h
electrode. Thereafter, the Nyquist plot of the LDH-100-2h electrode was compared to those
of the LDH-150-1h and LDH-200-1h electrodes as displayed in Figure 9b. However, it is
noticeable from the zoomed comparative Nyquist plots shown in the insert in Figure 9b
that the LDH-200-1h electrode possesses a low Rct compared to the LDH-150-1h and
LDH-100-2h electrodes; the recorded Rct values for all the electrodes are displayed in
Table 4.

Table 3. Capacitance performance of various NiCoAL-LDH-based electrode.

Electrodes Specific Capacitance Electrolyte References

NiCoS@SBA-C 1757 Fg−1–1 A g−1 6 M KOH [55]

CuCo2S4@NiCoAl-LDH/NF 1876 Fg−1–1 A g−1 6 M KOH [56]

Cu2+1O@NiCoAl-LDH 2932 Fg−1–0.75 A g−1 6 M KOH [57]

m-LDH/NRG NHs 1877.0 Fg−1–1 A g−1 6 M KOH [58]

NiCo2Al-LDH/N-GO 1136.67Fg−1–1 A g−1 2 M KOH [51]

NiCoAl-LDH 5691.25 mF cm−2–1 mA cm−2 3 M KOH [8]

NiCo2O4@NiCoAl-LDH 1814.24 Fg−1–1 A g−1 2 M KOH [7]

LDH-200-1h 3050.95 Fg−1–10 mVs−1 1 M KOH This work
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Table 4. Rct values for all the electrodes.

LDH-100-1h LDH-100-1h30 LDH-100-2h LDH-150-1h LDH-200-1h

Rct (Ω) 0.78 0.98 0.76 4.01 0.68
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Figure 9. (a) Nyquist plots for the LDH-100-1h, LDH-100-1h30, and LDH-100-2h electrodes; and
(b) Nyquist plots for the LDH-100-2h, LDH-150-1h, and LDH-200-1h electrodes.

The electrochemical studies revealed that the LDH-200-1h electrode is the best com-
pared to its counterparts. Followed by the LDH-100-2h, LDH-100-1h, LDH-100-1h30, and
LDH-150-1h electrodes, respectively as shown in Figure 10a. This could be attributed to the
impacts of the physical parameters used during their fabrication. It is obvious that the phys-
ical parameters applied for the LDH-200-1h electrode have favored its crystalline structure
to hold an important amount of water compared to other electrodes (refer to Figure 2d).
However, the hydrophilic nature of the crystalline structure of LDH improves the ionic
diffusion and contributes greatly to the electrochemical performance [6,30–33]. It was
recently demonstrated that when the LDH crystalline structure hydrophilicity is reduced,
the basal spacing also decreases [41]. Adding to this, studies have proved that a larger
basal spacing is very important because it favors the electrolyte ions penetration during the
charging storage, which results in optimizing the electrochemical performance [28,30,41].
That is the reason that favored the excellent electrochemical performance of the LDH-
200-1h electrode compared to other electrodes. Furthermore, Table 5 compares the EIS
results recorded in this work to those of the NiCoAl-NMP and NiCoAl-DMSO electrodes
recently reported [28], it is obvious that those recorded in this work exhibited very low
Rct compared to the NiCoAl-NMP and NiCoAl-DMSO electrodes [28], except from the
LDH-150-1h electrode. This could be attributed to high electrical conductivity that resulted
from the effect of carbon black used as a conductive additive and the absence of the binder.
Moreover, it could also be assumed that the physical parameters have favored a strong
combination between sulfur and carbon within the LDH crystalline domain which had a
good impact on the electrochemical performance of some electrodes [45]. However, the
physical parameters applied for the LDH-150-1h electrode have greatly damaged the crys-
talline structure which had compromised its electrochemical performance. Furthermore,
an electrode is generally acknowledged promising if it exhibits excellent specific capaci-
tance and long-term cycling stability. Consequently, the electrochemical cycling stability
of the LDH-200-1h electrode was studied by CV [59–61]. Figure 10b displays the plot of
capacitance retention against the cycle number. As it can be seen, the LDH-200-1h electrode
retained 97% of its capacitance after 5000 cycles. The insert in Figure 10b shows CV curves
of the LDH-200-1h electrode at the scan rate of 120 mVs−1 from 1st to 5000th cycles in a 1 M
KOH solution. No change of position was noticed in peaks potential indicating excellent
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electrochemical reversibility [60] which could be attributed to the nature of its crystalline
domain as well as to a good intimate contact between the assumed sulfur particles and
carbon within its interlamellar [62].
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Figure 10. (a) Specific capacitances of the LDH-100-1h, LDH-100-1h30, LDH-100-2h, LDH-150-1h, and
LDH-200-1h electrodes at various scan rates; (b) plot of capacitance retention against cycle number
(insert: cyclic voltammogram of the LDH-200-1h electrode at 120 mVs−1).

Table 5. Rct values for binder-free LDH electrodes, NiCoAl-NMP and NiCoAl-DMSO electrodes.

Electrodes Rct (Ω)

LDH-100-1h 0.78

LDH-100-1h30 0.98

LDH-100-2h 0.76

LDH-150-1h 4.01

LDH-200-1h 0.68

NiCoAl-NMP 1.5

NiCoAl-DMSO 2

3. Materials and Methods
3.1. Binder-Free LDH Electrodes Preparation

Binder-free LDH electrodes were fabricated by mixing the LDH material and carbon
black in a ratio of (80:20) into DMSO solvents. The LDH material used as active material in
this study was taken from our recently reported work, whereby its synthesis procedure
was explained in detail [28]. The slurry was obtained with the assistance of ultrasonication
for 15 min. Thereafter, five cleaned 1 cm × 1 cm pieces of nickel foam were immersed
inside the vial containing the slurry and aged for 48 h at room temperature. Afterwards,
three of them were selected and dried at 100 ◦C while the time was varying from 1 h, 1 h
30 min to 2 h. The remaining two were then dried for 1h at different temperatures such
as 150 ◦C and 200 ◦C. Subsequently, they were labelled according to the temperature and
time applied during their fabrication and their mass-loading as displayed in Table 1. The
binder-free LDH electrodes dried at 100 ◦C for different times were named as follows: LDH-
100-1h, LDH-100-1h30, and LDH-100-2h respectively. Whereas dried for 1h at different
temperatures were labelled as LDH-150-1h and LDH-200-1h respectively.



Int. J. Mol. Sci. 2022, 23, 10192 15 of 18

3.2. Materials Characterization

The Rigaku Smartlab diffractometer with (λ = 0.15405 nm) was used to collect XRD
patterns of the as-synthesized LDH as well as all the as-fabricated binder-free LDH elec-
trodes. While the FT-IR studies of the as-obtained LDH and all the as-fabricated binder-free
LDH electrodes were performed using the IR Tracer-100-SHIMADZU (3750–500 cm−1).
The morphologies of the as-prepared LDH and all the as-fabricated binder-free LDH elec-
trodes were captured using a scanning electron microscope (SEM-EDS JEOL JSM-7800F)
coupled with an EDS detector. In addition, the electrochemical data were collected on an
Autolab PGSTAT302N potentiostat using a three-electrode system. All the binder-free LDH
electrodes, platinum wire, and Ag/AgCl (3 M KCl-filled) were used as working, counter,
and reference electrodes, respectively. 1 M KOH solution was used as an electrolyte. Finally,
the electrochemical impedance spectroscopy (EIS) measurements were conducted with an
AC amplitude of 5 mV in the frequency range of 100 kHz–100 mHz.

4. Conclusions

This work revealed the benefits of DMSO in the fabrication of binder-free LDH elec-
trodes and it also demonstrated a novel technique to fabricate binder-free LDH electrodes
which accommodates LDH materials prepared via other synthesis routes such as the co-
precipitation and ions-exchange methods. A series of physical parameters was applied
during the fabrication of binder-free LDH electrodes such as 100 ◦C-1h, 100 ◦C-1h30,
100 ◦C-2h, 150 ◦C-1h, and 200 ◦C-1h. Thereafter, their impacts on the crystalline domains
and electrochemical performances of all the as-prepared binder-free electrodes were stud-
ied. The electrochemical analysis demonstrated that the electrode prepared at 200 ◦C-1h
was the best compared to other electrodes. Maximum specific capacitances of 3050.95 Fg−1,
2489.34 Fg−1, 2467.70 Fg−1, 2252.43 Fg−1, and 1110.16 Fg−1 at 10 mVs−1 were achieved for
the LDH-200-1h, LDH-100-2h, LDH-100-1h, LDH-100-1h30, and LDH-150-1h electrodes,
respectively. Afterwards, Rct values of 0.68 Ω, 0.76 Ω, 0.78 Ω, 0.98 Ω, and 4.01 Ω were
recorded for the LDH-200-1h, LDH-100-2h, LDH-100-1h, LDH-100-1h30, and LDH-150-1h
electrodes, respectively. Moreover, the LDH-200-1h electrode retained 97% of its capacitance
after 5000 cycles at 120 mVs−1. More importantly, the XRD and FTIR studies demonstrated
that the excellent electrochemical performance recorded for the LDH-200-1h electrode was
due to its crystalline domain which had held an important amount of water compared to
its counterparts. This favored its basal spacing to be larger than those of other electrodes
causing an improvement in the electrochemical performance. Furthermore, compared
to the Rct values of our previously reported work, it is obvious that the Rct recorded in
this study are lower, probably because of the high electrical conductivity resulting from
the conductive addictive and the absence of the binder. Furthermore, < 200 ◦C-1h > was
noticed to be the best physical parameter to be applied for the fabrication of binder-free
LDH electrodes using DMSO as a binder solvent. Overall, this confirms the reliability of
the as-developed method and shows that it is a promising procedure for the industrial
arena because of its simplicity and cost-effectiveness.
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