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Abstract
Aging	 of	 the	 blood	 system	 is	 characterized	 by	 increased	 hematopoietic	 stem	 cells	
(HSCs)	and	myeloid-	biased	differentiation	 leading	to	higher	propensity	for	hemato-
logical	malignancies.	Unraveling	cell-	intrinsic	mechanisms	regulating	HSC	aging	could	
aid	reversal	or	slowing	of	aging.	Asrij/OCIAD1	is	an	evolutionarily	conserved	regulator	
of	hematopoiesis	and	governs	mitochondrial,	endosomal,	and	proteasomal	function	in	
mammalian stem cells. Asrij	deletion	in	mice	causes	loss	of	HSC	quiescence,	myeloid	
skewing,	reduced	p53	and	increased	DNA	damage,	features	attributed	to	aged	HSCs.	
Mechanistically,	 Asrij	 controls	 p53	 ubiquitination	 and	 degradation	 and	AKT/STAT5	
activation.	 Asrij	 localizes	 to	 endosomes	 and	mitochondria.	 As	 decline	 in	 organelle	
structure	and	function	are	common	hallmarks	of	aging,	we	asked	whether	Asrij	regu-
lates	organelle	function	 in	aged	HSCs.	We	find	that	chronologically	aged	wild-	type	
(WT)	HSCs	had	 reduced	Asrij	 levels.	Expectedly,	 young	asrij	KO	mice	had	 reduced	
AcH4K16	levels;	however,	transcriptome	analysis	of	KO	HSCs	showed	a	modest	over-
lap	of	gene	expression	with	aged	WT	HSCs.	Further,	analysis	of	organelle	structure	
and function in asrij	 KO	mice	 revealed	 significant	 changes,	 namely	 damaged	mito-
chondria,	 elevated	ROS;	 impaired	endosomal	 trafficking	 seen	by	 increased	cleaved	
Notch1,	reduced	Rab5;	and	reduced	26S	proteasome	activity.	Pharmacological	cor-
rection of mitochondrial and proteasome activity in asrij	KO	mice	restored	HSC	and	
myeloid	cell	frequencies.	Furthermore,	lysophosphatidic	acid-	induced	Asrij	upregula-
tion	 in	aged	WT	mice	rescued	mitochondrial	and	proteasome	activity	and	restored	
HSC	frequency.	Our	results	highlight	a	new	role	for	Asrij	in	preventing	HSC	aging	by	
regulating	organelle	homeostasis	and	will	help	decipher	organelle	dynamics	 in	HSC	
longevity.
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1  |  INTRODUCTION, RESULTS,  AND 
DISCUSSION

Bone	marrow	hematopoietic	stem	cells	(BM	HSCs)	constantly	com-
bat multiple stressors for blood cell homeostasis. This ability reduces 
with	 age	 leading	 to	 functional	 decline	 characterized	 by	 increased	
HSCs,	 myeloid	 skewing,	 inflammaging,	 and	 clonal	 hematopoiesis	
(Mejia-	Ramirez	 &	 Florian,	 2020).	 Multiple	 cell-	intrinsic	 and	 cell-	
extrinsic	factors	regulate	the	genetic	and	epigenetic	landscape,	cell	
polarity,	and	autophagy	to	maintain	HSCs	(Grigoryan	et	al.,	2018;	Ho	
et	al.,	2017).	The	dynamic	metabolic	requirements	of	HSCs	necessi-
tate	strict	control	of	mitochondrial	 (mt)	metabolism,	endocytic	ac-
tivity,	and	proteostasis	(Gurumurthy	et	al.,	2010;	Warr	et	al.,	2013).	
Low	 mtROS	 levels	 and	 translation	 along	 with	 rapid	 proteasome-	
mediated	protein	turnover	in	HSCs	minimize	oxidative	damage	and	
protein	 aggregation	 (Mejia-	Ramirez	 &	 Florian,	 2020;	 Hidalgo	 San	
Jose	et	al.,	2020).	Further,	endosomal	proteins	aid	asymmetric	local-
ization	of	cellular	components,	essential	for	HSC	self-	renewal	(Ting	
et	al.,	2012).	Thus,	integrated	organelle	function	is	critical	to	delay	
HSC	aging.	Although	altered	organelle	architecture	and	function	are	
implicated	 in	 aging	 and	 age-	related	diseases	 (Bouska	 et	 al.,	 2019),	
very	little	is	known	about	organelles	in	HSC	aging.	Hence,	we	inves-
tigated	the	role	of	Asrij,	an	organelle	protein,	in	HSC	aging.

The	OCIA	(Ovarian	Carcinoma	Immunoreactive	Antigen)	domain-	
containing	 protein	 Asrij/OCIAD1	 has	 a	 conserved	 role	 in	 post-	
translational regulation of signaling to maintain embryonic stem cell 
potency,	and	hematopoietic	and	immune	homeostasis.	Several	mito-
chondrial,	endosomal,	and	proteasomal	components	are	sensitive	to	
Asrij	levels,	indicating	a	possible	role	for	Asrij	in	organelle	homeosta-
sis	(Khadilkar	et	al.,	2014,	2017;	Kulkarni	and	Khadilkar	et	al.,	2011;	
Praveen	et	al.,	2020;	Sinha	et	al.,	2013,	Sinha,	Dwivedi,	et	al.,	2019;	
Sinha,	Ray,	et	al.,	2019).	Asrij	regulates	HSC	quiescence	and	asrij dele-
tion	in	mice	triggers	HSC	expansion,	myeloid	skewing,	DNA	damage,	
and	 reduced	p53	 levels	 (Sinha	et	 al.,	 2019),	 phenotypes	attributed	
to	 an	 aged	 hematopoietic	 system.	 Hence,	 we	 compared	 organelle	
homeostasis	and	HSC	aging	in	control	and	asrij	knockout	(KO)	mice.

Immunoblotting,	 immunofluorescence,	 and	 flow	 cytometry	
showed	reduced	Asrij	levels	in	BM,	hematopoietic	stem	and	progen-
itor	cells	(HSPCs),	and	long-	term	(LT)	HSCs	of	aged	(>20	months)	WT	
mice	(C57BL/6J)	(Figure	1a–	c).	Unexpectedly,	gene	expression	anal-
yses showed increased asrij	transcript	in	aged	WT	HSCs	(Figure	1d)	
suggesting	 complex	 regulation	 of	 expression	 and	 possible	 post-	
translational	mechanisms	that	may	operate	to	lower	Asrij	expression	
in	aged	HSCs.	Epigenetic	and	transcriptional	changes	causally	linked	
with	WT	HSC	aging	include	reduced	histone	H4	lysine	16	acetylation	
(AcH4K16)	(Grigoryan	et	al.,	2018)	and	aberrant	gene	expression	sig-
natures.	Flow	cytometry	of	young	(6–	8	months)	KO	HSPCs	showed	
reduced	AcH4K16	compared	to	age-	matched	controls	(Figure	1e),	a	
phenotype	reported	for	aged	WT	HSCs	(Grigoryan	et	al.,	2018),	con-
firming	epigenetic	dysregulation.	However,	comparing	LT-	HSC	tran-
scriptomes	of	WT	aged	mice	(Svendsen	et	al.,	2021)	with	that	of	asrij 
KO	mice	(see	Methods)	showed	only	a	modest	overlap	(Figure	1f,g),	
suggesting	variation	in	HSC	aging	signatures.

Asrij	harbors	multiple	motifs	that	target	mitochondria	[TOM20	
(76–	80	 aa),	 CX14C	 (83–	98	 aa)],	 endoplasmic	 reticulum	 (ER)-	
mitochondria	 contact	 sites	 (Cho	 et	 al.,	 2020),	 endosomes	 (OCIA	
domain)	 (Figure	 1h),	 and	 proteasome	 [N-	degron	 (1–	3	 aa)].	 A	 natu-
rally	occurring	brain	variant	of	Asrij	lacks	an	endocytic	sorting	motif	
(199–	202	aa)	but	localizes	to	mitochondria	and	endosome	similar	to	
full	length	Asrij.	Using	mutant	and/or	deletion	constructs	[∆TOM20,	
∆	CX14C,	Hydrophobic	region	(Hph),	Hph*Hx1	(mutated	helix	1),	and	
Hph*Hx2	 (mutated	Helix	2)]	expressed	 in	HEK293	cells,	we	 found	
that	disruption	of	Hx2	or	the	CX14C	reduced	Asrij	localization	to	ly-
sosomes	and	mitochondria	(Figure	1i,j;	Figure	S1a,b).	As	disrupting	
organelle	targeting	motifs	in	Asrij	perturbs	its	localization,	we	inves-
tigated the effect of asrij depletion on organelle homeostasis.

OCIAD1/Asrij	controls	mtComplex	I	activity	and	thereby	mtROS,	
in	human	pluripotent	stem	cells	(Shetty	et	al.,	2018)	and	also	mito-
chondrial	morphology	and	dynamics	(Ray	et	al.,	2021).	Flow	cytome-
try	showed	elevated	mtROS	levels	in	young	KO	HSPCs	compared	to	
control	(Figure	2a).	Further,	ultrastructural	defects	in	mitochondrial	
architecture	such	as	vacuolization	and	linearization	of	cristae	were	
seen	in	KO	BM	cells	(Figure	2b).

Asrij null Drosophila blood progenitors show stalling of cleaved 
Notch1	 (Notch1	 intracellular	 domain:	 NICD)	 in	 Hrs+	 endosomes,	
leading	 to	 elevated	 NICD	 and	 ectopic	 Notch	 signaling	 (Kulkarni	
et	al.,	2011).	We	tested	whether	endocytic	transport	was	similarly	
affected	 in	mouse	KO	HSCs.	 Immunoblotting	and	 immunostaining	
in	KO	BM	and	HSCs	showed	increased	NICD	(Figure	2c,d)	and	de-
creased	Rab5	GTPase	(Figure	2e,f)	levels.	Thus,	Asrij	is	essential	for	
regulated endosomal activity.

Mitochondrial and endosomal machineries crosstalk with the 
proteasome	to	ensure	cellular	quality	control	 (Raimundo	&	Krisko,	
2018).	As	Asrij	plays	a	conserved	role	in	regulating	protein	ubiquiti-
nation	(Khadilkar	et	al.,	2017;	Sinha,	Dwivedi,	et	al.,	2019;	Sinha,	Ray,	
et	 al.,	 2019),	we	 reasoned	 that	asrij deficiency may affect protea-
some.	Expectedly,	proteasomal	activity	(Figure	2g–	i)	and	Prosβ2 lev-
els	 (Figure	 2j)	 were	 significantly	 reduced	 in	 KO	 HSPCs	 and	 BM,	
respectively,	implying	impaired	proteostasis,	a	universal	hallmark	of	
aging.	Thus,	asrij	depletion	causes	organelle	dysfunction	in	HSPCs.

To	confirm	that	organelle	dysfunction	causally	leads	to	HSC	aging,	
we treated asrij	KO	mice	with	a	proteasome	activator	(Rolipram)	and	
an	antioxidant	(N-	acetylcysteine)	(Figure	2k)	and	tested	for	reversal	
of	aging	phenotypes.	While	ex vivo	single	treatment	of	LT-	HSCs	with	
Rolipram	 and	NAC	 did	 not	 rescue	 aberrant	 organelle	 phenotypes	
(Figure	S1c–	e),	a	combinatorial	treatment	for	21	days	in vivo restored 
organelle	activity	to	near	control	levels	(Figure	2l,m)	with	reduction	
in	LT-	HSC	and	myeloid	frequencies	(Figure	2n,o),	thereby	attenuat-
ing	HSC	aging.	Further,	lysophosphatidic	acid	(LPA)-	induced	increase	
in	Asrij	in	aged	WT	mice	rescued	mitochondrial	and	proteasome	ac-
tivity	and	restored	HSCs	to	control	 levels	(Figure	S2;	Figure	2p–	v).	
Thus,	we	demonstrate	that	restoring	organelle	homeostasis	by	phar-
macological	 intervention	 can	 maintain	 HSC	 stemness	 and	 lineage	
choice,	thereby	reversing	phenotypes	of	premature	aging	in	young	
asrij	KO	HSCs.	We	propose	that	Asrij	is	a	critical	node	in	organelle	
control	of	HSC	aging.
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In	summary,	we	provide	the	first	report	that	HSC	aging	is	associ-
ated	with	Asrij-	dependent	simultaneous	dysfunction	in	mitochondrial,	
endosomal,	 and	proteasomal	machineries.	Further,	we	demonstrate	
that	Asrij	 links	 organelle	 function	with	 genetic	 and	 epigenetic	 pro-
grams	that	promote	HSC	aging	and	could	serve	as	a	biomarker.	How	
Asrij	 coordinates	 and	 contributes	 to	 the	 dynamic	 interplay	 among	

organelles	requires	further	investigation.	Realtime	analysis	of	organ-
elle	 dynamics	 in	 young	 and	 aged	HSCs	 along	with	 perturbation	 in	
regulators	such	as	Asrij	could	give	further	insight	into	the	process.	A	
deeper	understanding	of	the	organelle-	level	regulation	of	HSC	aging	
could help identify additional aging biomarkers and suggest strategies 
to	rejuvenate	aged	HSCs	or	prevent	premature	HSC	aging.

F I G U R E  1 Premature	HSC	aging-	like	changes	in	asrij	KO	mice.	(a)	Immunoblot	analysis	of	BM	for	Asrij	levels	and	graph	showing	fold	
change.	Vinculin:	loading	control.	(b)	Micrographs	showing	HSCs	(LSK	CD150+)	immunostained	for	Asrij	(red).	Nuclei	marked	with	DAPI	
(blue).	Scale	bar:	2	µm.	(c)	Representative	and	summarized	flow	cytometry	data	with	mean	fluorescence	intensity	(MFI)	for	Asrij	expression	
in	HSPCs	and	LT-	HSCs.	(d)	RT-	qPCR	for	Asrij.	(e)	AcH4K16	expression	in	KO	HSPCs.	Representative	flow	cytometry	data	and	graph	with	
MFI	are	shown.	(f)	Heat	map	of	differentially	expressed	genes	in	KO	LT-	HSCs.	(g)	Venn	diagrams	comparing	KO	LT-	HSC	transcriptome	with	
WT	aged	dataset	(Svendsen	et	al.,	2021).	(h)	Schematic	representation	of	Asrij	constructs.	Numbers	indicate	amino	acid	positions.	Red	star	
shows	mutated	site.	Micrographs	of	HEK293	cells	transfected	with	Asrij-	FLAG	and	(i)	GFPRab5	or	(j)	LAMP1-	mGFP	construct	and	stained	
with	Mitotracker	Deep	Red.	Insets	show	magnified	view	of	the	boxed	region.	Co-	localization	plots	are	to	the	right	of	each	panel.	Error	bars	
denote	SEM.	*p <	0.05,	**p <	0.01	and,	***p < 0.001
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F I G U R E  2 Asrij	KO	HSPCs	show	organelle	dysfunction	that	can	be	reversed	by	pharmacological	intervention.	(a)	Representative	and	
summarized	flow	cytometry	data	for	mtROS	in	HSPCs.	Graph	shows	MFI.	(b)	Representative	TEM	images	and	quantification	of	abnormal	
mitochondria	in	BM.	(c–	h)	BM	immunoblotting	and	HSC	immunostaining	analyses	for	(c,	d)	cleaved	Notch1	(NICD),	(e,	f)	Rab5,	respectively.	
GAPDH:	loading	control.	Graphs	show	fold	change	in	protein	expression.	(g–	i)	Analysis	of	proteasome	activity	in	HSPCs.	Graph	shows	
fold	change	in	SUC-	LLVY-	AMC	cleavage.	(j)	Immunoblot	analysis	for	Prosβ2	levels	in	BM.	Vinculin:	loading	control.	(k–	o)	Pharmacological	
treatment	and	analysis.	(k)	Regimen	for	Rolipram	and	NAC	treatment	of	mice.	Graphs	show	(l)	mtROS	and	(m)	proteasome	activity	in	HSPCs.	
(n)	Representative	flow	cytometry	data	and	graph	showing	LT-	HSC	percentage	within	LSK.	(o)	Percentage	of	BM	CD11b+	cells.	(p–	w)	LPA-	
mediated	upregulation	of	Asrij	in	WT	aged	mice.	(p)	Regime	for	LPA	treatment.	Immunoblot	and	immunostaining	for	Asrij	in	(q)	peripheral	
blood	cells	and	(r)	spleen,	respectively,	(s)	mtROS,	(t)	NICD,	and	(u)	proteasome	activity	in	LPA-	treated	cells.	(v)	Representative	flow	
cytometry data and graph showing CD150+HSCs	within	LSK.	Error	bars	denote	SEM.	*p <	0.05,	**p <	0.01,	and	***p < 0.001
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2  |  EXPERIMENTAL PROCEDURES

Please	see	Supporting	Information.
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