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Genome-wide association studies (GWAS) have identified numerous associations between
genetic loci and individual phenotypes; however, relatively few GWAS have attempted to
detect pleiotropic associations, in which loci are simultaneously associated with multiple
distinct phenotypes. We show that pleiotropic associations can be directly modeled via the
construction of simple Bayesian networks, and that these models can be applied to produce
single or ensembles of Bayesian classifiers that leverage pleiotropy to improve genetic risk
prediction.The proposed method includes two phases: (1) Bayesian model comparison, to
identify Single-Nucleotide Polymorphisms (SNPs) associated with one or more traits; and
(2) cross-validation feature selection, in which a final set of SNPs is selected to optimize
prediction. To demonstrate the capabilities and limitations of the method, a total of 1600
case-control GWAS datasets with two dichotomous phenotypes were simulated under
16 scenarios, varying the association strengths of causal SNPs, the size of the discovery
sets, the balance between cases and controls, and the number of pleiotropic causal SNPs.
Across the 16 scenarios, prediction accuracy varied from 90 to 50%. In the 14 scenarios
that included pleiotropically associated SNPs, the pleiotropic model search and prediction
methods consistently outperformed the naive model search and prediction. In the two sce-
narios in which there were no true pleiotropic SNPs, the differences between the pleiotropic
and naive model searches were minimal. To further evaluate the method on real data, a
discovery set of 1071 sickle cell disease (SCD) patients was used to search for pleiotropic
associations between cerebral vascular accidents and fetal hemoglobin level. Classifica-
tion was performed on a smaller validation set of 352 SCD patients, and showed that the
inclusion of pleiotropic SNPs may slightly improve prediction, although the difference was
not statistically significant. The proposed method is robust, computationally efficient, and
provides a powerful new approach for detecting and modeling pleiotropic disease loci.
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INTRODUCTION
Genome-wide association studies (GWAS) have identified numer-
ous single associations between genetic loci and individual phe-
notypes; but, relatively few GWAS have attempted to detect
pleiotropic associations, in which loci are simultaneously associ-
ated with multiple distinct phenotypes (Huang et al., 2010, 2011;
Zhernakova et al., 2011). However, pleiotropic loci have been
inferred and/or identified by various means, both in humans and
in model organisms (Chavali et al., 2010; Huang et al., 2010, 2011;
Stearns, 2010; Kochunov et al., 2011; Tesse et al., 2011; Zhernakova
et al., 2011). These works generally identified pleiotropic candidate
loci by identifying overlapping Single-Nucleotide Polymorphisms
(SNPs) between two independently run analyses on the same
dataset, via meta-analyses of multiple studies, or via ANCOVA
(Gupta et al., 2011; Huang et al., 2011; Zhernakova et al., 2011).
Statistical methods for joint modeling of multivariate response
could be used to capture pleiotropic associations. Several suitable
methods have been recently reviewed in Shriner (2012) but they
do not seem to be commonly used in statistical genetics (Shriner,
2012).

There are several potential advantages to the direct modeling
of pleiotropic associations. First, a model search for loci that are
simultaneously associated with multiple phenotypes would likely
have higher power than a model search that only considers each
phenotype individually. Secondly, more exact modeling may yield
more accurate prediction of either or both phenotypes. Thirdly,
pleiotropic genes may tend to have a more central role in the
relevant functional pathways (Chavali et al., 2010).

Bayesian model search is flexible, robust, and computationally
efficient, and lends itself naturally to the creation of genetic risk
classifiers. Bayesian classifiers have been used before in GWAS,
but generally only on individual phenotypes (McKinney et al.,
2006; Sebastiani et al., 2008a,b, 2012a; Okser et al., 2010; Jiang
et al., 2011). We recently showed that Bayesian classifiers produce
classification rules that are equivalent to using logistic regression
with a genetic risk score, and we argued that the advantage of
the model approach based on Bayesian classifiers is that it can
be generalized to include multiple traits, and gene-gene or gene-
environment interaction models (Sebastiani et al., 2012b). We will
show that pleiotropic associations can be directly modeled via the
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construction of simple Bayesian networks, and that these mod-
els can be applied to produce Bayesian classifiers, or ensembles
of Bayesian classifiers, that leverage pleiotropy to improve genetic
risk prediction.

The proposed method includes two phases: (1) discovery of
SNPs that could be used for prediction using a Bayesian-model-
based approach, and (2) selection of a final set of the most pre-
dictive SNPs using cross-validation. In the first phase, Bayesian
model comparison is used to determine the most likely dis-
ease associations and inheritance modes for each SNP, and then
SNPs are ranked by the posterior probability of the associa-
tion(s). Bayesian classifiers can then be constructed using these
SNPs to predict phenotype status either given the genotype data
alone or given the genotype data combined with any known
phenotype values, if available. In the second phase, we conduct
cross-validation to estimate the optimal feature set, so as to avoid
over-fitting the mode or, alternatively, applying overly stringent
inclusion thresholds. The full details can be found in the methods
section.

RESULTS
SIMULATION OVERVIEW
In total, 1600 GWAS were simulated, with 100 replications each
for 16 scenarios. All simulated studies assumed two phenotypes,
DA and DB. For each subject, genotype data were simulated for
a hypothetical 500,150-SNP assay, and all SNPs were simulated
independently. Each scenario specified the number of subjects in
the discovery set and their phenotype values, as well as the number
of causal SNPs of each type and the range of association strengths
for those SNPs. For each simulated GWAS, the exact parameters
of each causal SNP (odds ratio, minor allele frequency, mode of
inheritance,and disease allele) were randomly selected (See“Meth-
ods”). Then the discovery set and 4000-subject validation set were
generated using these parameters. More details on the simulation
methods can be found in the methods section.

Four distinct sets of simulations were run.

1. Set 1. The first set of simulations tested the algorithms assum-
ing the GWAS were balanced case-control studies of various
sample sizes and genetic association strengths, and in which
pleiotropy did exist between the two phenotypes. One hun-
dred simulated GWAS were run under each of six scenarios
described in Table 1. In all these simulations, there were 150
causal SNPs: 50 associated only with DA, 50 associated only
with DB, and 50 pleiotropic loci associated with both.

Table 1 | Set 1 scenario parameters.

No. Scenario name Sample size ORmin ORmax

1 1.5k Sample, Weak effect 4000 1.10 1.50

2 4k Sample, Weak effect 1500 1.10 1.50

3 1.5k Sample, Moderate effect 4000 1.25 2.00

4 4k Sample, Moderate effect 1500 1.25 2.00

5 1.5k Sample, Strong effect 4000 1.75 2.50

6 4k Sample, Strong effect 1500 1.75 2.50

2. Set 2. Like the first simulation set, the second set consisted of 100
simulated GWAS for each of six scenarios. Unlike the first set,
the primary phenotype of interest, Da, was not equally balanced
between cases and controls. Instead, only 10% of the subjects
in both the discovery and replication sets were “cases” for Da,
whereas cases and controls were balanced for the secondary
phenotype, Db. Further, in all six scenarios the discovery sets
consisted of 1000 subjects. As in set 1, the validation set con-
sisted of 4000 subjects (Table 2). The six scenarios varied by
the strengths of association for Da and Db (see Table 3). We
also simulated smaller genetic effects to further challenge the
method.

3. Set 3. The third simulation set tested the scenario in which
there were no pleiotropic SNPs, to assess the “false discovery
rate” of the method and the effect on prediction. Unlike the
other two sets, the third simulation set consisted of only two
scenarios, one with moderate effects (OR 1.25–2.0) and one
with strong effects (OR 1.75–2.5). Each scenario was applied to
100 simulated GWAS. All GWAS contained 150 causal SNPs: 75
associated only with Da, and 75 associated only with Db. Other
than these exceptions, these scenarios were identical to those in
simulation set 1.

4. Set 4. The final simulation set tested the classifier performance
in two scenarios with a wide variation in the effect strengths
of the individual causal SNPs (Table 4). These two scenarios
were run almost identically to the scenarios from simulation

Table 2 | Set 2 discovery and validation set sample size and

phenotype distribution.

Discovery set Total Validation set Total

Da=1 Da=2 Da=1 Da=2

Db=1 450 50 500 Db=1 1800 200 2000

Db=2 450 50 500 Db=2 1800 200 2000

Total 900 100 1000 Total 3600 400 4000

Table 3 | Set 2 scenario parameters.

No. Scenario name Da Db

ORmin ORmax ORmin ORmax

1 Weak/Moderate 1.1 1.5 1.5 2.0

2 Weak/Strong 1.1 1.5 2.0 2.5

3 Moderate/Moderate 1.5 2.0 1.5 2.0

4 Moderate/Strong 1.5 2.0 2.0 2.5

5 Strong/Moderate 2.0 2.5 1.5 2.0

6 Strong/Strong 2.0 2.5 1.5 2.5

Table 4 | Set 4 scenario parameters.

No. Scenario name Sample size ORmin ORmax

1 4k Sample 4000 1.1 2.5

2 1.5k Sample 1500 1.1 2.5
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set 1, except in both the odds ratios were drawn from a distri-
bution ranging from 1.1 to 2.5. The first scenario set simulated
large 4000-subject discovery sets, the second scenario simulated
smaller 1500-subject discovery sets.

SIMULATION SET 1 RESULTS: PLEIOTROPY WITH BALANCED
PHENOTYPES
Figure 1 shows the true discovery rate (across 100 simulations)
of the pleiotropic model search described in the methods, while

Figure 2 shows the true discovery rate for the naive model search
in which one of the two phenotypes was ignored. The solid colors
indicate the total percentage of the SNPs that were identified as
causal and assigned the correct model, whereas the shaded col-
ors indicate SNPs that were identified as causal but assigned an
incorrect model. The x-axis indicates the ranking of the last SNP
included in the nested SNP sets, i.e., the number of SNPs in the
SNP sets. The color bar at the bottom of each graph indicates
the percentage of SNPs at each specific ranking that is true causal

FIGURE 1 | Nested model composition, 2-phenotype search
(Simulation Set 1). The six graphs depict, for each of the six scenarios, the
composition of the models resulting from the 2-phenotype phase I model
search (y-axis), as a function of SNP rank cutoff (x-axis). The three blue,
un-shaded colors indicate the percentage of the SNPs in the given models
that were both causal and assigned to the correct association models. The
dark blue indicates pleiotropic SNPs, the medium blue indicates
Da-associated SNPs, and the light blue indicates Db-associated SNPs. The
brown colors (with diagonal shading lines) indicate SNPs that are causal, but
were assigned the incorrect model. Dark brown indicates pleiotropic SNPs
that were incorrectly assigned a single-phenotype model. Tan (with diagonal

shading lines) would indicate single-phenotype-associated SNPs that were
incorrectly assigned either the pleiotropic model or a model with the wrong
SNP, but this happened so infrequently that no visible tan pixels are visible.
The remaining white space indicates non-causal SNPs erroneously included
in the nested models. For example, in the “4k sample, moderate effect”
scenario (mid-right plot), the 80-SNP model contains approximately 30%
pleiotropic SNPs, 25% SNPs associated with Da and Db each, and around
10% pleiotropic SNPs mistakenly assigned a single-SNP associated model,
and around 10% non-causal SNPs (white space). Beneath each graph is a
color bar summarizing the percentage of causal SNPs discovered at each
rank (see key, inset).
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FIGURE 2 | Nested model composition, single-phenotype (naive)
search (Simulation Set 1). As Figure 1, except for the
single-phenotype (naive) model search, in which Db is entirely withheld
from the model selection process. Note that since no pleiotropic

models were fitted, all pleiotropic SNPs that were discovered were of
course incorrectly modeled with the single-phenotype model.
Furthermore, all correctly modeled SNPs were always associated with
Da only.

across 100 simulations (e.g., the percentage of causal SNPs for the
50th SNP S50 across 100 simulations, as opposed to the percent-
age of causal SNPs in the SNP set Σ50= {S1, . . ., S50} across 100
simulations).

As we would expect, larger samples and stronger effects result
in higher true discovery rates. Furthermore, the pleiotropic SNPs
are more often highly ranked when modeled fully using the 2-
phenotype search than when only partially modeled as being
single-phenotype associated (Figure 2). Thus, the pleiotropic
search method not only models these SNPs correctly (as opposed
to the naive search, which will only model them as single-
phenotype-associated), but it also ranks them higher and thus
has a higher true discovery rate.

This advantage translates into higher accuracy in the predic-
tion (see Figure 3). In all scenarios, the conditional prediction

of Da, given both genotype data and Db status, has the highest
peak accuracy, followed by the marginal prediction (in which pre-
dictions are made using the pleiotropic model but assuming Db

status is unknown), and, with the lowest peak accuracy, the naive
prediction (in which both model search and prediction was car-
ried out without using Db). For each prediction statistic type, the
ensemble predictions achieved slightly higher peak accuracy than
the single-classifier prediction. Additionally, the ensemble predic-
tion generally peaked when using far more SNPs, including a large
proportion of non-causal SNPs, and appears to be more robust to
the inclusion of false positive SNPs.

Similarly, using the final cross-validation-selected classifiers,
the conditional prediction achieved the highest accuracy, followed
by the marginal prediction and the naive prediction. Accuracy was
of course higher with larger sample sizes and stronger effects, and
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FIGURE 3 | Accuracy of single-classifier and ensemble prediction of Da

using three types of classification, by SNP rank cutoff (Simulation Set 1).
For each of the six scenarios, the accuracy of single-classifier (solid lines) and
ensemble-of-classifier (dashed lines) prediction of Da, using three prediction

methods: conditional prediction, in which Da is predicted given known Db

(red, upward triangles); marginal, in which Da is predicted without known Db

(green, diamonds); and the single-phenotype prediction, in which model
search and classification accounts only for Da (blue, downward triangles).

ranged between 53.4 and 90.3% for the conditional prediction,
53.3 and 88.3% for the marginal prediction, and 52.8 and 85.7%
for the naive prediction (see Table 5). Note that, in the case of
a balanced phenotype, the classification accuracy based on the
Bayesian rule (threshold= 1) performs as well as an optimized
classification rule chosen via cross-validation.

SIMULATION SET 2 RESULTS: PLEIOTROPY WITH UNBALANCED
PHENOTYPES
In these simulations, the pleiotropic model search had an even
larger advantage compared to the naive search, than it did in the
simulation set 1. With an unbalanced case-control ratio, the power
for detecting associations with Da was substantially weaker than
the power for detecting associations with Db, even when the effect
strengths were the same. As a result, relatively few SNPs associ-
ated only with Da were ranked highly in the pleiotropic search

(see Figure 4), and very few of either type of Da-associated SNPs
(pleiotropic or Da only) were ranked highly by the naive search
(see Figure 5).

The conditional and marginal prediction performed much bet-
ter than the naive prediction, although the accuracy for all methods
was lower than in the first set of simulations (see Figure 6). The
difference between the pleiotropic and the naive methods was
much larger than seen in the first set of simulations. As before,
the conditional prediction was slightly better than the marginal
prediction, for both ensemble and single-classifier classification
rules. Similarly, the ensemble prediction rules had slightly higher
peak accuracy than the single-classifier rules, and peaked with
much larger final SNP sets.

It is worth noting that unlike in simulation set 1, the threshold
selection provided a considerable improvement in the prediction
relative to the Bayesian classification rule (see Table 5).
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Table 5 | Phase II selected model prediction accuracy, by search and

prediction method.

No. Classification

rule threshold

(Specificity+ sensitivity)/2 (mean±SD)

Naive

single Cf.

Marginal

single Cf.

Conditional

single Cf.

SIMULATION SET 1

1 Threshold=1 0.528±0.03 0.533±0.03 0.534±0.03

Cross-val thresh 0.529±0.03 0.532±0.03 0.532±0.03

2 Threshold=1 0.589±0.02 0.592±0.02 0.593±0.03

Cross-val thresh 0.587±0.02 0.591±0.02 0.591±0.03

3 Threshold=1 0.680±0.03 0.690±0.03 0.699±0.04

Cross-val thresh 0.678±0.03 0.688±0.03 0.697±0.03

4 Threshold=1 0.751±0.02 0.755±0.02 0.767±0.02

Cross-val thresh 0.750±0.02 0.753±0.02 0.766±0.02

5 Threshold=1 0.824±0.03 0.842±0.03 0.866±0.03

Cross-val thresh 0.823±0.03 0.841±0.03 0.865±0.03

6 Threshold=1 0.858±0.02 0.884±0.02 0.903±0.02

Cross-val thresh 0.857±0.02 0.883±0.02 0.903±0.02

SIMULATION SET 2

1 Threshold=1 0.500±0.01 0.504±0.01 0.505±0.02

Cross-val thresh 0.501±0.01 0.504±0.02 0.504±0.02

2 Threshold=1 0.501±0.01 0.505±0.01 0.507±0.02

Cross-val thresh 0.499±0.01 0.505±0.01 0.507±0.01

3 Threshold=1 0.528±0.03 0.579±0.06 0.583±0.06

Cross-val thresh 0.539±0.04 0.586±0.06 0.593±0.06

4 Threshold=1 0.524±0.03 0.595±0.04 0.608±0.05

Cross-val thresh 0.529±0.04 0.593±0.04 0.608±0.05

5 Threshold=1 0.694±0.08 0.746±0.06 0.754±0.07

Cross-val thresh 0.707±0.07 0.748±0.06 0.758±0.06

6 Threshold=1 0.557±0.05 0.652±0.05 0.684±0.05

Cross-val thresh 0.570±0.05 0.652±0.05 0.686±0.05

SIMULATION SET 3

1 Threshold=1 0.616±0.05 0.618±0.05 0.618±0.04

Cross-val thresh 0.615±0.05 0.616±0.05 0.616±0.05

2 Threshold=1 0.783±0.04 0.781±0.04 0.780±0.04

Cross-val thresh 0.781±0.04 0.780±0.04 0.779±0.04

SIMULATION SET 4

1 Threshold=1 0.817±0.03 0.826±0.03 0.841±0.03

Cross-val thresh 0.816±0.03 0.825±0.03 0.840±0.03

2 Threshold=1 0.793±0.03 0.801±0.03 0.816±0.03

Cross-val thresh 0.792±0.03 0.800±0.03 0.814±0.03

Reports, for the three simulation sets, and for each of the single-classifier

classification rules, the mean and standard deviation of the average of the

specificity and sensitivity for the classification of the external replication sets

using the final models selected by the cross-validation algorithm. Both the

Bayesian 0–1 loss function threshold (i.e., threshold=1) and the cross-validation

selected threshold (in which the threshold is selected so as to maximizeYouden’s

J in the cross-validation) are listed. The conditional and marginal classifica-

tions are based on the pleiotropic search method; the conditional classifica-

tion uses both the subject genotype and the secondary phenotype status,

whereas the marginal classification is based only on the subject genotype.

The naive classification uses the naive search method to find the model, and

as such does not use the secondary phenotype in either model selection or

classification.

SIMULATION SET 3 RESULTS: NO PLEIOTROPY
When there were no true pleiotropic SNPs in either of these
scenarios, neither model composition plot shows any dark blue.
The only substantive difference between the naive and pleiotropic
model search algorithms was that the pleiotropic search mod-
eled some single-phenotype-associated SNPs as being associated
with both phenotypes, but this false discovery rate was small (see
Figure 7). In fact, in Figure 7, only a few pixels are visible that cor-
responded to SNPs that were mistakenly applied to the pleiotropic
model. Additionally, very few of the non-causal SNPs were falsely
discovered as being pleiotropic (see Table 6 for an example).

As a result, the prediction accuracy was about the same across
all prediction statistics. The only real difference between the naive
prediction and the pleiotropic prediction was that the pleiotropic
prediction accuracy peaked with about double the number of
SNPs, as it included SNPs associated with both Da and Db. Since
there were very few SNPs modeled as pleiotropic, the marginal and
conditional prediction statistics were almost identical, and both
were almost identical to the corresponding naive prediction statis-
tic (see Figure 8; Table 7). The cross-validation similarly found
almost-equivalent classifiers for all three types of classification
statistics (see Table 5).

SIMULATION SET 4: PLEIOTROPY WITH WIDE VARIATION IN EFFECT
STRENGTH
As seen in Figures 9 and 10, the model search and classification
does not suffer any new problems when the causal SNPs vary
widely in effect strength. The analyses worked about as expected:
better than the moderate effect-strength scenarios from simula-
tion set 1, but worse than the strong effect scenarios. As before,
the conditional prediction performed best (up to 0.841 accuracy),
followed by the marginal prediction (up to 0.825 accuracy), and
the naive prediction (up to 0.817 accuracy), see Table 5.

RESULTS OF TESTING WITH REAL DATA
Data from five different studies of sickle cell disease (SCD) patients
were collected and used to test the proposed methods under real
world conditions. The primary phenotype of interest was cerebral
vascular accident (CVA), or stroke, a complication seen in about
10% of children with SCD. The secondary phenotype was fetal
hemoglobin level (HbF), a laboratory measurement that has pre-
viously been found to be associated with reduced mortality and
improved clinical prognosis.

The first and largest of the five studies, the Cooperative Study
of SCD (CSSCD), was used as the discovery set. A total of
1071 subjects were taken from the CSSCD, 83 of which had
reported CVA.

Four smaller study datasets were used for validation: the Mul-
ticenter Study of Hydroxyurea (MSH), Pulmonary Hypertension
and the Hypoxic Response in SCD (PUSH), Treatment of Pul-
monary Hypertension and SCD with Sildenafil Treatment (walk-
PHaSST, or WP), and the Comprehensive Sickle Cell Centers Col-
laborative Data Project (C-Data). In total, the validation dataset
consisted of 352 subjects, 37 of which had reported CVA.

For each prediction method (conditional single-classifier, con-
ditional ensemble, naive single-classifier, and naive ensemble), and
each nested model Σ1, . . ., Σ200, leave-one-out cross-validation
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FIGURE 4 | Set 2 Total model composition by rank, 2-phenotype model search (Simulation Set 2). See legend for Figure 1.

was used to select an optimal decision threshold for prediction of
CVA given known HbF. These classifiers were tested on the exter-
nal validation set for which HbF data was available, which was
comprised of 352 subjects, 37 of which were CVA cases. Any differ-
ential classification was generally not even nominally statistically
significant, and the few nested models that did yield single-test sta-
tistical significance would not remain significant after correction
for multiple testing (see Figure 11).

The average of the sensitivity and the specificity for the single-
classifier naive prediction peaked in the validation set at 0.530
(using classifier Σ151, with 151 SNPs), and for the ensemble naive
prediction peaked at 0.501 (using an ensemble of classifiers based
on nested models Σ1 to Σ2). The average of sensitivity and speci-
ficity for the conditional single-classifier was generally slightly
higher than 0.5, and peaked at 0.601 (using classifier Σ97 with
97 SNPs). The conditional ensemble classifier peaked at 0.549
(using an ensemble of classifiers based on nested models Σ1 to

Σ23). Both naive prediction methods yielded approximately ran-
dom prediction areas under the receiver operating curve (AUC)
(see Figure 11). The AUCs were similar, and although none of the
four methods achieved statistical significance, the conditional pre-
diction, which used information on HbF status as well as genotype,
performed slightly (but not significantly) better than the naive pre-
diction (Figure 11). The lack of statistical significance is likely due
to the extremely small number of cases in the validation set (only
37 subjects had a CVA event). Note also that in this analysis, the
cross-validation-selected SNP sets did not perform as well as the
peak classifiers. All four classification methods performed about
as would be expected by random chance (see Table 8).

DISCUSSION
We presented a new method to discover SNPs that are associated
with multiple traits and a model based approach to risk predic-
tion that uses pleiotropic SNPs to increase accuracy. We evaluated
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FIGURE 5 | Nested model composition by rank, single-phenotype model search (Simulation Set 2). See legend for Figures 1 and 2.

the proposed approach in four simulation sets. In simulation
set 1, we demonstrated that the methods function well on large
datasets with strong genetic effects. Many pleiotropic loci were
detected by the model search methods, and very few SNPs were
misidentified as being pleiotropic. Furthermore, the pleiotropy-
based prediction methods showed a substantial improvement
over standard naive classification, particularly when the value
of the secondary phenotype was known. In the second simu-
lation set, we demonstrated that these methods also function
well when applied to an unbalanced case-control dataset, and in
fact the improvement over the naive methods was even more
substantial in these scenarios. In the third simulation set, we
demonstrated that the methods do not perform significantly
worse than conventional analysis when applied to data in which
pleiotropy is absent. In the final simulation set, we showed that
with genetic effects of varying strength, the methods perform
as expected. Very few SNPs were falsely assigned the pleiotropic

model by the model search, and as such the prediction by all three
methods were very similar. The simulation results are consistent
with the hypothesis that genetic data can help prediction when
the effects are large, and the predictive accuracy increases with
larger sample sizes. Although we did not investigate the specific
effects of minor allele frequencies, we expect that large samples
will be needed to accurately estimate the genetic effects of rare
variants.

Although there was no statistically significant differential pre-
diction in the CVA/HbF analyses, we did demonstrate that these
methods can be applied to real data, and that the conditional pre-
diction may perform better than the naive prediction in certain
circumstances. It should be noted that given the small validation
set sample size and the relatively low heritability of CVA, the lack
of significant validation is not surprising.

As genome-wide assays have rapidly become more afford-
able, genome-wide data has become correspondingly more
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FIGURE 6 | Single-classifier and ensemble-of-classifier Da prediction
using three prediction methods, with both single-classifier and
ensembles, by SNP set size (Simulation Set 2). See legend for Figure 3.
Due to the uneven distribution of Da, total accuracy is not a useful measure of

prediction. Therefore, the average of the true positive rate (sensitivity) and
true negative rate (specificity) was used. Note that this is a simple linear
transformation of the Youden’s J statistic, used to make it comparable to the
simple accuracy statistic used in simulation set 2.

commonplace. Correction for multiple comparisons often results
in low power, particularly for weak, multigenic associations.
Assuming pleiotropic associations are indeed present within
a dataset, these methods may be able to achieve higher
power than analyses using the same data that only search
for single-phenotype associations. Additionally, by leveraging
pleiotropy, these methods may be able to more accurately pre-
dict phenotype status than traditional naive Bayesian classi-
fiers. The model search and classification methods described
in this paper are capable of effective pleiotropic locus iden-
tification and phenotype classification under a variety of
conditions.

The approach described uses simple Bayesian networks for clas-
sification, built by essentially merging and retraining simple Naive

Bayes classifiers. One of the problems of naive Bayes classifiers is
determining the optimal number of features. Including too many
SNPs can reduce prediction accuracy due to the large propor-
tion of false positive associations included in the model, while
applying stringent genome-wide significance thresholds can yield
sub-optimal prediction, as the reduction in false positives comes at
the cost of a reduction in true positives. However, particularly with
weak genetic effects, there may be valid multiple-comparison con-
cerns with classifier validation: if there is found to be only a narrow
range of SNP set sizes within which the classifier predicts signifi-
cantly better than chance, then that narrow range could potentially
be dismissed as the result of random chance. Therefore, the cross-
validation methods described here represent an attempt at finding
a single final SNP set that can be expected to yield reasonable
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FIGURE 7 | Nested model composition by SNP set, pleiotropic, and naive model searches (Simulation Set 3). Legend as in Figures 1 and 2.

Table 6 | Model assignment by SNP type, for each search method (using BF threshold: ln(BF) > 1) (Simulation Set 3).

2-Phenotype search Naive search

Assigned model True association Assigned model True association

Da only Db only Non-causal Da only Db only Non-causal

MODERATE EFFECT SCENARIO

Da and Db 0.0005 0.0023 0.0002 Da and Db 0 0 0

Da only 0.4181 0.0185 0.0267 Da only 0.4205 0.0271 0.0272

Db only 0.0196 0.4168 0.0266 Db only 0 0 0

Non-causal 0.5617 0.5624 0.9464 Non-causal 0.5795 0.9729 0.9728

STRONG EFFECT SCENARIO

Da and Db 0.0016 0.0024 0.0002 Da and Db 0 0 0

Da only 0.7077 0.0107 0.0267 Da only 0.7124 0.0285 0.0272

Db only 0.0093 0.6957 0.0266 Db only 0 0 0

Non-causal 0.2813 0.2912 0.9464 Non-causal 0.2876 0.9715 0.9728

Displays the rate at which each SNP type was assigned each model, for both the naive and 2-phenotype model searches. Recall that all SNPs that did not pass the

first-pass significance threshold of ln(BF) > 1 were assigned the null model, and otherwise were assigned the most likely of the three models. The rates at which

each SNP type were assigned the correct respective models are listed in bold.

(if not optimal) prediction. Their application to both simulated
and real data show mixed results, and further refinement of these
algorithms may yet be necessary.

An alternative approach to search for the “best classifier” is
to use an ensemble of classifiers, and our results show that
this approach can be more robust to inclusion of false positive
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FIGURE 8 | Accuracy by prediction method and number of SNPs used, by prediction method (Simulation Set 3). Legend as in Figure 3.

Table 7 | Peak accuracy by prediction method (Simulation Set 3).

Prediction method Moderate effect Strong effect

Peak Acc. No. of

SNPs

Peak Acc. No. of

SNPs

Naïve S. Cf. 0.618635 7 0.784248 22

Ens. 0.624560 11 0.792385 45

Marginal S. Cf. 0.616150 12 0.784140 44

Ens. 0.623878 24 0.792025 93

Conditional S. Cf. 0.615453 12 0.783708 44

Ens. 0.623358 24 0.791498 90

associations. Ensemble of classifiers is well known to improve pre-
diction and many methods have been proposed (Rokach, 2010).
The approach investigated here can be improved using more
advanced ensemble methods.

An additional limitation of Naïve Bayes classifiers is the
assumption that SNPs are conditionally independent given
the phenotype. We have recently shown that this assump-
tion makes the prediction rule based on a Naïve Bayes clas-
sifier equivalent to the more popular approach of collapsing
genetic information into a genetic risk score but it provides
a more general modeling framework that leads, for exam-
ple, to the pleiotropic modeling introduced in this manuscript
(Sebastiani et al., 2012b). However, the impact of more com-
plex dependency structure among SNPs on the predictive accu-
racy needs to be investigated further. Bayesian network models
would provide an ideal extension of this approach to include
more general dependency structures between SNPs (Jiang et al.,
2011).

Finally, the Bayesian model approach lends itself naturally
to genetic risk prediction, and the more accurate modeling of
phenotype-genotype associations used by these methods can
provide improved prediction over analogous single-phenotype
prediction methods, even absent additional information from
the subjects being predicted (i.e., using the marginal classifica-
tion).

In summary: our proposed methods have two distinct appli-
cations. First, model selection and subsequent replication set

prediction can be used to identify and verify potential candi-
date genes for additional study. Particularly in the case of multi-
genic diseases that are governed by numerous weakly penetrant
causal variants, genome-wide significance levels may be far too
conservative, and direct replication may provide similarly inad-
equate power. By combining many weak effects, genetic risk
prediction can be used to validate the composite of numer-
ous causal loci. Secondly, these classification scores could be
directly applied to develop novel diagnostic and prognostic
tests.

The methods proposed here are highly extensible, and can easily
be expanded to account for more than two phenotypes, correlated
phenotypes, and/or additional covariates and phenotypes. Phe-
notypes that are marginally correlated can be easily included in
the model specification and will only change the formulation of
the predictive probabilities described in Section “Model Search,
Phase I: Discovery of Significant SNPs and Generation of Nested
Models.” The correct formulation can be derived from the spe-
cific assumptions of conditional independence, using for example
algorithms derived for reasoning with Bayesian networks (Shriner,
2012). We expect that the impact of correlated phenotypes on the
predictive accuracy will depend on the strength of the correlation
between phenotypes and future studies will elucidate this further.
Additional covariates can be easily included if they are qualitative
variables, while inclusion of continuous covariates would proba-
bly require Markov Chain Monte Carlo methods to estimate the
predictive probability of phenotypes given genetic data and a set
of covariates. Additional phenotypes would increase the degrees
of freedom, and such extensions would require significantly larger
samples; however, as genotype assays grow more affordable, suffi-
ciently large datasets may become more common. Loci associated
with more than two phenotypes would be even more likely to
be central in the Human PPI network, and thus might be more
likely to possess essential functional significance. Furthermore,
as these associations are predicated on this complex network of
underlying protein interactions, building classification scores that
condition on multiple known phenotypes may improve prediction
even further.

With the rapid expansion and proliferation of genetic, expres-
sion, phenome, and protein–protein interaction datasets, new
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FIGURE 9 | Model composition by SNP set, pleiotropic, and naive model searches (Simulation Set 4). Legend as in Figures 1 and 2.

FIGURE 10 | External validation AUC of the ROC curve, with 95% CI (Simulation Set 4). Legend as in Figure 3.

methods must be developed to efficiently extract useful mean-
ing from the overwhelmingly complex network of (unknown)
underlying biological mechanisms. The usage of pleiotropy and
genetic risk prediction to improve candidate SNP identification
and to develop novel prognostic tests represent just one of many
approaches aimed at leveraging these interactions toward the
extraction of practical information.

METHODS
The algorithm takes as input a genome-wide association study
dataset with multiple known and potentially related phenotypes,

identifies relationships between the SNPs and the phenotypes,
and uses these relationships to generate classifiers and ensem-
bles of classifiers that can predict one or multiple target pheno-
types.

The algorithm operates in two distinct phases: in phase I, the
SNPs are ranked by significance of association, and the most likely
association model is determined for each SNP. This yields a series
of ranked SNPs, which can be used to build nested Bayesian clas-
sification rules by adding one SNP at a time from the ranked list.
In phase II, the optimal number of SNPs is estimated via 10-fold
cross-validation.
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FIGURE 11 | External validation AUC of the ROC curve, with 95% CI
(Real Data Set). Validation set AUC, with Delong 95% confidence
intervals, using the classification statistics calculated from each of the

nested SNP sets Σ1, . . ., Σr, for each of four prediction methods: naive
single-classifier, naive ensemble, conditional single-classifier, and
conditional ensemble.

Table 8 | Prediction summary statistics of cross-validation-selected classifiers, by method (Real Data Set).

Naive prediction Conditional prediction

Single Cf. Ensemble Single Cf. Ensemble

No of SNPs 6 8 14 18

Prediction thresh 0.561825199 0.606951538 0.508542101 0.622242802

Sensitivity 0.189189189 0.432432432 0.108108108 0.513513514

Specificity 0.685714286 0.514285714 0.780952381 0.492063492

Mean (sens, spec) 0.437451737 0.473359073 0.444530245 0.502788503

AUC 0.445945946 0.43963964 0.4874 0.474646075

AUC 95% CI 0.3570 0.5349 0.3490 0.5303 0.3958 0.5790 0.3841 0.5652

Various summary statistics for prediction using the final SNP sets selected via the cross-validation algorithm. The AUC 95% confidence intervals are calculated using

the Delong method described in Delong et al. (McKinney et al., 2006), implemented via the pROC package in R.

Although these methods can easily be extended for use with
three or more phenotypes, we will limit our focus to the investi-
gation of two dichotomous phenotypes: Da and Db, each taking
values of 1 or 2.

OVERVIEW OF BAYESIAN MODELING FRAMEWORK
Let S be a random variable representing a single-SNP, with 2–
3 possible values, depending on the mode of inheritance being
tested. In the recessive mode, S is modeled as a Bernoulli random
variable with two possible values: 1= {AA | AB} and 2= {BB}. In

the dominant mode, S is coded as 1= {AA} and 2= {AB | BB}.
In the allelic mode, each allele is treated as a separate observa-
tion, with 1= {A} and 2= {B}. Finally, in the genotypic model, S
is modeled as a categorical random variable with three possible
values: 1= {AA}, 2= {AB}, and 3= {BB}.

We did not include the additive model, as it is very similar to
the allelic model.

We model the SNP random variables as having distributions
that are conditional on the phenotype class, and then the classi-
fication rules are computed by using Bayes theorem to calculate
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the probability of the phenotype given a genetic profile (Sebastiani
et al., 2012a).

For each SNP S, we consider four possible relationships between
Da, Db, and S: M 0, the null model, in which the distribution of
the SNP is independent of either phenotype; the single-phenotype
association models M a and M b, in which the genotype frequen-
cies of S is dependent on Da or Db, respectively; and M ab, the
pleiotropic model, in which the distribution of S is dependent on
both Da and Db. We assume that these four models are, a priori,
equally likely.

The model selection process has three major goals: (1) deter-
mine which of these models is the most likely, (2) measure the
strength of the evidence for the associations, and (3) use this
information to produce effective risk prediction for the traits Da

and Db.

MODEL SEARCH, PHASE I: DISCOVERY OF SIGNIFICANT SNPs AND
GENERATION OF NESTED MODELS
In phase I, the most likely model for each SNP is calculated using
a Bayesian method, and the strength of the evidence of this associ-
ation is measured. The SNPs are then ranked in descending order
of the posterior odds of association. Since uniform prior proba-
bilities are used, the posterior odds are equivalent to Bayes factors,
defined below (Balding, 2006).

First, for each SNP S, single-phenotype Bayes factors are calcu-
lated for each phenotype Da and Db. These Bayes factors compare
the likelihood of observed genotypes ES given observed phenotypes
EDa and EDb, under the models in which the distribution of the SNP
depends on one and only one of the two phenotypes (M a or M b),
with the likelihood of ES under the null model (M 0) in which the
distribution of the SNP is independent of all phenotypes:

BFa vs. 0 =
p
[
ES| EDa, Ma

]
p
[
ES|M0

] and BFb vs. 0 =
p
[
ES| EDb, Mb

]
p
[
ES|M0

]
These calculations are carried out under the four different

modes of inheritance: genotypic (2df), allelic, dominant, and
recessive (see reference Sebastiani et al., 2012a for details), so
that eight models are tested against the null hypothesis of no
association.

Of the eight models tested in the first-pass, the model with the
largest Bayes factor is selected for each SNP. We then only consider
SNPs whose Bayes factor satisfies a first-pass significance threshold
of ln(BF) > 1. Let t equal the number of SNPs selected.

Next, the pleiotropic model is tested for each of the t remaining
SNPs. If Dx is the phenotype chosen in the first-pass, then if:

p
[
ES|Mab, EDa , EDb

]
> p

[
ES|Mx, EDx

]
then the model M {a,b} would be selected for this SNP. Otherwise,
the first-pass model (either M a or M b, whichever has the higher
Bayes factor) would be selected.

Next, the SNPs are ranked based on the Bayes factor compar-
ing their respective selected models against the corresponding null
models. Let S1, . . ., Sr, . . ., St be the t SNPs that pass the first-pass
significance threshold, ranked in order of descending Bayes factor.

We then define t nested SNP sets: Σ1, . . ., Σr, . . ., Σt, for all
0 < r≤ t as:∑

r

= {S1, . . . , Sr }

Additionally, to serve as a basis for comparison, a second model
search is performed, in which SNPs are also ranked using Da only,
without accounting for Db at all. The method used is similar to the
one described above; except that only one phenotype is used and
thus pleiotropic models are not tested. This alternate method is
more explicitly described elsewhere, and produces standard naive
Bayes classifiers (Sebastiani et al., 2012a).

PREDICTION
Three distinct forms of prediction can be tested, differing by the
information provided on the discovery set to the model search
algorithm and by the information provided on the subjects whose
phenotypes are being predicted. For each type, prediction can be
performed by either a single-classifier or an ensemble of classifiers.

The first two prediction methods are based on the use of Bayes
theorem to calculate the probability of a set of phenotypes given
a genotype. Let Σr be the set of SNPs selected by the model
search, and let M∗1 , . . . , M∗i , . . . , M∗r be the selected models
for each SNP S1, . . ., Si, . . ., Sr. For the purposes of prediction we
always used the genotypic model that is more general and includes
all other models of inheritance. Then the probability of having

phenotypes Ed = (da , db) given genotypes ES = (S1, . . . , Sr ) is:

p

[
ED = (da , db) |Es,

∑
r

]
∝ P

[
ED = Ed

] r∏
i=1

P
[

Si = si
∣∣ ED = Ed , M∗i

]
which can be calculated using the Bayesian estimate of the con-
ditional probability of the genotype given the phenotype for each
SNP Si:

P
[

Si = si | ED = Ed , M∗i

]
=

nijs + av

nij• + 3 · av

In the formula we define:

av =
4

q

nijs is the (j, s) cell in the contingency table of phenotype values vs.
SNP values under model M∗i and SNP Si, j is the index for the row

in that table that corresponds to the phenotype values Ed , and q is
the total number of rows in that table (i.e., the number of possible
phenotype combinations for the phenotypes that are modeled as
associated with Si under model M∗i ).

We then define the classification statistics:

(1) Marginal prediction: A prediction for only one of the pheno-
types, Da, is desired, using only the subject genotype Es. The
other phenotype is assumed unknown for prediction, but the
classification rule is trained on a discovery set that includes
both phenotypes.
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Single-classifier prediction statistic:

C
(margSC)
1

(
ES, r
)
=

p
[
Da = 2|

∑
r

]
p
[
Da = 1|

∑
r

]
=

∑2
db=1 p

[
Da = 2, db |

∑
r

]∑2
db=1 p

[
Da = 1, db |

∑
r

]
Ensemble of classifiers prediction:

C
(m arg Ens)
1

(
ES, r
)
=

1
r

∑r
k=1 p

[
Da = 2|

∑
k

]
1
r

∑r
k=1 p

[
Da = 1|

∑
k

]
(2) Conditional prediction: As above, a prediction for only one of

the phenotypes, Da, is desired, but now we assume that both
the subject genotype and the value of Db is known. Once
again, the classification rule is trained using both phenotypes
in the discovery set.

Single-classifier prediction:

C (condSC)
1

(
ES, r , db

)
=

p
[
Da = 2|Db = db ,Es,

∑
r

]
p
[
Da = 1|Db = db ,Es,

∑
r

]
=

p
[
Da = 2, Db = db |Es,

∑
r

]
p
[
Da = 1, Db = db |Es,

∑
r

]
Ensemble-of-classifiers prediction:

C (condEns)
1

(
ES, r , db

)
=

1
r

∑r
k=1 p

[
Da = 2|Db = db ,Es,

∑
k

]
1
r

∑r
k=1 p

[
Da = 1|Db = db ,Es,

∑
k

]
(3) Naive prediction: To serve as a basis for comparison, these

classification rules were compared to those based on naive
Bayesian classifiers. In this case, the classification rule was
trained using Da alone, ignoring all data on Db in the discovery
set. Nested models were built composed only of Da-associated
single-SNP models. Bayesian classification rules were built
using these nested models, using methods similar to those
described here, except that only a single-phenotype was used.
Both single-classifier prediction and ensemble-of-classifiers
prediction was carried out using these naive Bayesian classi-
fiers. These alternative methods are described in more detail
elsewhere (Sebastiani et al., 2012a).

For any of these six prediction statistics, two different classification
rules are tested.

D̂a =

{
2 if C1 >T
1 otherwise

First, the threshold T= 1 was used, which is the optimal clas-
sification rule assuming balanced priors and a 0–1 loss func-
tion (Hand, 2009). This is known as “the Bayesian classification
rule.” Second, we calculated an alternate classification thresh-
old by selecting the prediction statistic threshold that maximized
the Youden’s J statistic (J = sensitivity+ specificity− 1), which
is the threshold recommended by Perkins and Schisterman for
optimizing dichotomous prediction (Perkins and Schisterman,
2006).

MODEL SEARCH, PHASE II: DISCOVERY OF THE OPTIMAL NUMBER OF
SNPs
In phase I, t nested SNP sets Σ1, . . ., Σr, . . ., Σt are created. In
phase II, the optimal number of SNPs to be used is determined via
cross-validation. Either 10-fold or leave-one-out cross-validation
(LOOCV) can be used.

First, the discovery dataset is split into cross-validation train-
ing/test sets. For each training/test set, phase I model selection is
repeated on the training set, and the corresponding test set is clas-
sified using the resultant nested SNP sets Σ1, . . ., Σt. For each of
the four prediction statistics both the T= 1 prediction threshold
and the cross-validation-selected prediction thresholds are tested.
Finally the specificity and sensitivity of the each model is calculated
at each model size r for each prediction method.

The final number of SNPs to include in the model is deter-
mined by finding the number of SNPs that, in the cross-validation
achieves the highest area under the Receiver Operating Charac-
teristic (ROC) curve. To find this threshold we used the pROC
package in R (Robin et al., 2011).

IMPLEMENTATION
The vast majority of analyses were carried out using a custom-
built utility, which is intended for eventual public release. The
utility can read genotype and phenotype data in the standard
PLINK binary file format. It can carry out both naive analyses,
as well as pleiotropic analyses on two or more phenotypes using
a variety of different search algorithms, some of which are not
documented in this paper. The data output is designed to be easily
read by most statistical packages, and several companion R scripts
have been developed to provide secondary analyses, and visual-
ization, including AUC calculations and threshold selection using
the pROC library. The utility is written primarily in Java, and uses
Java Standard Edition v1.6.0 and R v2.14.

Using this implementation, these analyses can be carried out
very quickly. On the simulation set I scenario 6 (4000 discov-
ery set subjects, 4000 replication set subjects, 500,000 SNPs each),
running on a workstation with four Intel Xeon 2.4 GHz, quad-
core processors and 64 Gb of RAM, the data read and phase I
model search and prediction could be completed in under 5 min.
For the phase II model selection: 10-fold cross-validation could be
completed in approximately 20 min, and LOOCV cross-validation
could be completed in less than 6 days. The optimizations for speed
used did however, require a substantial investment of memory, and
our analyses required at least 8–16 GB of RAM.

DATA SIMULATION METHODS
For each simulated GWAS, different causal variants were randomly
generated, with each causal SNP varying by minor allele frequency
(selected at random from the MAF’s found on chromosome 1 of
the Illumina Human 610-Quad beadchip, all MAF’s > 0.05), dis-
ease allele (A or B), effect strength (within the scenario-assigned
bounds, from ORmin to ORmax), and mode of inheritance (domi-
nant, recessive, or additive). The total number of causal SNPs was
constant: for simulation sets 1 and 2, each GWAS contained 50
pleiotropic SNPs associated with both DA and DB, 50 SNPs asso-
ciated only with DA, and 50 SNPs associated only with DB. For
simulation set 3, each GWAS contained 75 SNPs associated only
with DA, and 75 SNPs associated only with DB.
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Table 9 | Summary of data sources.

Dataset No of genotyped subjects, after cleaning

Total Total w/clean

HbF reading

Stroke cases,

total

Stroke cases,

w/HbF reading

CSSCD 1071 778 83 63

MSH 140 140 9 9

PUSH 97 51 16 5

WP 45 44 3 3

C-Data 117 117 20 20

All non-causal SNPs were assumed to be independent of one
another and of phenotype status. Minor allele frequencies were
all above 0.05, and were selected from the Caucasian HapMap
estimates for the Illumina Human 610-Quad beadchip. Geno-
type frequencies were calculated from minor allele frequencies
to conform to Hardy–Weinberg equilibrium.

For each causal SNP, once MAF, disease allele, odds ratio, and
mode of inheritance were selected, genotype frequencies were
calculated for each phenotype class. For subject classes that did
not have a disease status associated with a SNP [e.g., for a Da-
associated SNP, this would be the subject classes ED = (1, 1)

and ED = (1, 2)], genotype frequencies conformed to Hardy-
Weinberg equilibrium. For subject classes that were associated
with the SNP, genotype frequencies were transformed to yield
the assigned odds ratio. For the allelic model, the assigned odds
ratio was set as the odds ratio between the opposite homozygous
genotypes (i.e., “AA” and “BB”), and the odds ratio for the “AA”
and “AB” genotypes was set to the square root of the full OR
parameter. For pleiotropic SNPs, the two effects were functionally
additive.

All SNPs were assumed to be conditionally independent from
one another, by phenotype status.

Subjects were first assigned phenotype values for DA and DB,
based on the counts set by the scenario, and then genotypes
were randomly generated for each subject as a function of phe-
notype class, with each genotype being drawn from the 3-value
discrete (or “categorical”) distribution with parameters set to

the genotype frequencies for the subject’s assigned phenotype
class.

REAL DATA ANALYSIS
Genetic and phenotypic data was collected from five different stud-
ies (See Table 9). These datasets, genotype data, and quality control
procedures are described elsewhere (Milton et al., 2012). The first
and largest of the five, the CSSCD, was used as the discovery set.

Four smaller study datasets were used for validation: the MSH,
Pulmonary Hypertension and the Hypoxic Response in SCD
(PUSH), Treatment of Pulmonary Hypertension and SCD with
Sildenafil Treatment (walk-PHaSST, or WP), and the Comprehen-
sive Sickle Cell Centers C-Data Project.

Some of the subjects in the PUSH, WP, and C-Data datasets
were on hydroxyurea at the time of HbF measurement. Since
hydroxyurea operates by increasing the production of HbF, and
since it may have an effect on CVA, subjects on hydroxyurea were
dropped.

For HbF, readings taken before age 5 were discarded, and the
median of the remaining measurements were used. Since our
methods are only designed to deal with dichotomous variables,
HbF was dichotomized into high (≥ 8.6), and low (< 8.6) lev-
els, as HbF above 8.6 has been shown to be associated with
improved clinical prognosis (Okser et al., 2010). Missing HbF val-
ues were imputed using a regression model of HbF as a function of
white blood cell count (WBC), mean corpuscular volume (MCV),
hematocrit (HCT), age, and sex.

ACKNOWLEDGMENTS
Supported by NIH/NHLBI R21HL114237 (Paola Sebastiani) and
NIH/NHLBI R01 HL089655-03 (Martin H. Steinberg). The fol-
lowing studies provided data for analysis: Victor R. Gordeuk,
Gregory Kato, Caterina Minniti, James Taylor, Andrew Campbell,
and Lori Luchtman-Jones, NCT00495638, with the Pulmonary
Hypertension and the Hypoxic Response in SCD study (PUSH),
Carolyn Hoppe representing the Comprehensive Sickle Cell Cen-
ters Collaborative Data Project (C-Data), Mark T. Gladwin,Yingze
Zhang representing investigators on the Treatment of Pulmonary
Hypertension and Sickle cell disease with Sildenafil Treatment
study (walk-PHaSST), (NCT00492531).

REFERENCES
Balding, D. J. (2006). A tutorial on sta-

tistical methods for population asso-
ciation studies. Nat. Rev. Genet. 7,
781–791.

Chavali, S., Barrenas, F., Kanduri, K.,
and Benson, M. (2010). Network
properties of human disease genes
with pleiotropic effects. BMC Syst.
Biol. 4, 78. doi:10.1186/1752-0509-
4-78

Gupta, M., Cheung, C. L., Hsu, Y. H.,
Demissie, S., Cupples, L. A., Kiel, D.
P., and Karasik, D. (2011). Identifica-
tion of homogenous genetic archi-
tecture of multiple genetically cor-
related traits by block clustering of
genome-wide associations. J. Bone
Miner. Res. 26, 1261–1271.

Hand, D. J. (2009). “Naive Bayes,” in
The Top Ten Algorithms in Data
Mining, eds X. Wu and V. Kumar
(London: Chapman and Hall),
163–178.

Huang, J., Johnson, A. D., and
O’Donnell, C. J. (2011). PRIMe:
a method for characterization and
evaluation of pleiotropic regions
from multiple genome-wide asso-
ciation studies. Bioinformatics 27,
1201–1206.

Huang, J., Perlis, R. H., Lee, P. H.,
Rush, A. J., Fava, M., Sachs, G.
S., Lieberman, J., Hamilton, S. P.,
Sullivan, P., Sklar, P., Purcell, S.,
and Smoller, J. W. (2010). Cross-
disorder genome wide analysis of
schizophrenia, bipolar disorder, and

depression. Am. J. Psychiatry 167,
1254–1263.

Jiang, X., Barmada, M. M., Cooper,
G. F., and Becich, M. J. (2011).
A bayesian method for evaluat-
ing and discovering disease loci
associations. PLoS ONE 6, e22075.
doi:10.1371/journal.pone.0022075

Kochunov, P., Glahn, D. C., Lancaster, J.,
Winkler, A., Karlsgodt, K., Olvera, R.
L., Curran, J. E., Carless, M. A., Dyer,
T. D., Almasy, L., Duggirala, R., Fox,
P. T., and Blangero, J. (2011). Blood
pressure and cerebral white mat-
ter share common genetic factors
in Mexican Americans. Hypertension
57, 330–335.

McKinney, B. A., Reif, D. M., Ritchie,
M. D., and Moore, J. H. (2006).

Machine learning for detect-
ing gene-gene interactions: a
review. Appl. Bioinformatics 5,
77–88.

Milton, J. N., Sebastiani, P., Solovieff,
N., Hartley, S. W., Bhatnagar, P.,
Arking, D. E., Dworkis, D. A.,
Casella, J. F., Barron-Casella, E.,
Bean, C. J., Hooper, W. C., Debaun,
M. R., Garrett, M. E., Soldano,
K., Telen, M. J., Ashley-Koch,
A., Gladwin, M. T., Baldwin, C.
T., Steinberg, M. H., and Klings,
E. S. (2012). A genome-wide
association study of total biliru-
bin and cholelithiasis risk in
sickle cell anemia. PLoS ONE 7,
e34741. doi:10.1371/journal.pone.
0034741

Frontiers in Genetics | Applied Genetic Epidemiology September 2012 | Volume 3 | Article 176 | 16

http://dx.doi.org/10.1186/1752-0509-4-78
http://dx.doi.org/10.1186/1752-0509-4-78
http://dx.doi.org/10.1371/journal.pone.0022075
http://dx.doi.org/10.1371/journal.pone.{\penalty -\@M }0034741
http://dx.doi.org/10.1371/journal.pone.{\penalty -\@M }0034741
http://www.frontiersin.org/Applied_Genetic_Epidemiology
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Hartley et al. Modeling pleiotropic associations in GWAS

Okser, S., Lehtimäki, T., Elo, L. L.,
Mononen, N., Peltonen, N., Kähö-
nen, M., Juonala, M., Fan, Y.
M., Hernesniemi, J. A., Laitinen,
T., Lyytikäinen, L. P., Rontu, R.,
Eklund, C., Hutri-Kähönen, N.,
Taittonen, L., Hurme, M., Viikari,
J. S., Raitakari, O. T., and Ait-
tokallio, T. (2010). Genetic vari-
ants and their interactions in the
prediction of increased pre-clinical
carotid atherosclerosis: the car-
diovascular risk in young Finns
study. PLoS Genet. 6, e1001146.
doi:10.1371/journal.pgen.1001146

Perkins, N. J., and Schisterman, E. F.
(2006). The inconsistency of “opti-
mal” cutpoints obtained using two
criteria based on the receiver oper-
ating characteristic curve. Am. J.
Epidemiol. 163, 670–675.

Robin, X., Turck, N., Hainard, A., Tib-
erti, N., Lisacek, F., Sanchez, J.
C., and Müller, M. (2011). pROC:
an open-source package for R and
S+ to analyze and compare ROC
curves. BMC Bioinformatics 12, 77.
doi:10.1186/1471-2105-12-77

Rokach, L. (2010). Ensemble-based
classifiers. Artif. Intell. Rev. 33, 1–39.

Sebastiani, P., Solovieff, N., Dewan, A.
T., Walsh, K. M., Puca, A., Hartley,
S. W., Melista, E., Andersen, S.,

Dworkis, D. A., Wilk, J. B., Myers,
R. H., Steinberg, M. H., Mon-
tano, M., Baldwin, C. T., Hoh, J.,
and Perls, T. T. (2012a). Genetic
signatures of exceptional longevity
in humans. PLoS ONE 7, e29848.
doi:10.1371/journal.pone.0029848

Sebastiani, P., Solovieff, N., and Sun, J.
X. (2012b). Naïve Bayesian classi-
fier and genetic risk score for genetic
risk prediction of a categorical trait:
not so different after all! Front.
Genet. 3:26. doi:10.3389/fgene.2012.
00026

Sebastiani, P., Zhao, Z., Abad-Grau,
M. M., Riva, A., Hartley, S. W.,
Sedgewick, A. E., Doria, A., Mon-
tano, M., Melista, E., Terry, D.,
Perls, T. T., Steinberg, M. H., and
Baldwin, C. T. (2008a). A hierar-
chical and modular approach to
the discovery of robust associations
in genome-wide association studies
from pooled DNA samples. BMC
Genet. 9, 6. doi:10.1186/1471-2156-
9-6

Sebastiani, P., Wang, L., Nolan, V. G.,
Melista, E., Ma, Q., Baldwin, C.
T., and Steinberg, M. H. (2008b).
Fetal hemoglobin in sickle cell ane-
mia: Bayesian modeling of genetic
associations. Am. J. Hematol. 83,
189–195.

Shriner, D. (2012). Moving toward
system genetics through multiple
trait analysis in genome-wide asso-
ciation studies. Front Genet. 3:1.
doi:10.3389/fgene.2012.00001

Stearns, F. W. (2010). One hundred
years of pleiotropy: a retrospective.
Genetics 186, 767–773.

Tesse, R., Schieck, M., and Kabesch,
M. (2011). Asthma and endocrine
disorders: shared mechanisms
and genetic pleiotropy. Mol. Cell.
Endocrinol. 333, 103–111.

Zhernakova, A., Stahl, E. A., Trynka,
G., Raychaudhuri, S., Festen, E. A.,
Franke, L., Westra, H. J., Fehrmann,
R. S., Kurreeman, F. A., Thom-
son, B., Gupta, N., Romanos, J.,
McManus, R., Ryan, A. W., Turner,
G., Brouwer, E., Posthumus, M.
D., Remmers, E. F., Tucci, F., Toes,
R., Grandone, E., Mazzilli, M. C.,
Rybak, A., Cukrowska, B., Coenen,
M. J., Radstake, T. R., van Riel, P.
L., Li, Y., de Bakker, P. I., Gregersen,
P. K., Worthington, J., Siminovitch,
K. A., Klareskog, L., Huizinga, T.
W., Wijmenga, C., and Plenge,
R. M. (2011). Meta-analysis of
genome-wide association studies
in celiac disease and rheumatoid
arthritis identifies fourteen non-
HLA shared loci. PLoS Genet. 7,

e1002004. doi:10.1371/journal.pgen.
1002004

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 29 June 2012; accepted: 20
August 2012; published online: 11 Sep-
tember 2012.
Citation: Hartley SW, Monti S, Liu C-T,
Steinberg MH and Sebastiani P (2012)
Bayesian methods for multivariate mod-
eling of pleiotropic SNP associations
and genetic risk prediction. Front. Gene.
3:176. doi: 10.3389/fgene.2012.00176
This article was submitted to Frontiers in
Applied Genetic Epidemiology, a specialty
of Frontiers in Genetics.
Copyright © 2012 Hartley, Monti, Liu,
Steinberg and Sebastiani. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion License, which permits use, distrib-
ution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

www.frontiersin.org September 2012 | Volume 3 | Article 176 | 17

http://dx.doi.org/10.1371/journal.pgen.1001146
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1371/journal.pone.0029848
http://dx.doi.org/10.3389/fgene.2012.{\penalty -\@M }00026
http://dx.doi.org/10.3389/fgene.2012.{\penalty -\@M }00026
http://dx.doi.org/10.1186/1471-2156-9-6
http://dx.doi.org/10.1186/1471-2156-9-6
http://dx.doi.org/10.3389/fgene.2012.00001
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }1002004
http://dx.doi.org/10.1371/journal.pgen.{\penalty -\@M }1002004
http://dx.doi.org/10.3389/fgene.2012.00176
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive

	Bayesian methods for multivariate modeling of pleiotropic SNP associations and genetic risk prediction
	Introduction
	Results
	Simulation overview
	Simulation set 1 results: pleiotropy with balanced phenotypes
	Simulation set 2 results: pleiotropy with unbalanced phenotypes
	Simulation set 3 results: no pleiotropy
	Simulation set 4: pleiotropy with wide variation in effect strength
	Results of testing with real data

	Discussion
	Methods
	Overview of Bayesian modeling framework
	Model search, phase I: discovery of significant SNPs and generation of nested models
	Prediction
	Model search, phase II: discovery of the optimal number of SNPs
	Implementation
	Data simulation methods
	Real data analysis

	Acknowledgments
	References


