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Abstract

Adenovirus was first identified in the 1950s and since then this pathogenic group of viruses has been explored and 
transformed into a genetic transfer vehicle. Modification or deletion of few genes are necessary to transform it into a 
conditionally or non-replicative vector, creating a versatile tool capable of transducing different tissues and inducing 
high levels of transgene expression. In the early years of vector development, the application in monogenic diseases 
faced several hurdles, including short-term gene expression and even a fatality. On the other hand, an adenoviral 
delivery strategy for treatment of cancer was the first approved gene therapy product. There is an increasing interest 
in expressing transgenes with therapeutic potential targeting the cancer hallmarks, inhibiting metastasis, inducing 
cancer cell death or modulating the immune system to attack the tumor cells. Replicative adenovirus as vaccines 
may be even older and date to a few years of its discovery, application of non-replicative adenovirus for vaccination 
against different microorganisms has been investigated, but only recently, it demonstrated its full potential being one 
of the leading vaccination tools for COVID-19. This is not a new vector nor a new technology, but the result of decades 
of careful and intense work in this field.
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Introduction
Adenoviruses were first identified in 1953 after an 

analysis of tissue culture of tonsils and adenoids, that was 
aiming to identify unknown viruses from the respiratory 
tract that could cause acute respiratory diseases. Huebner et 
al. identified 13 new agents in surgically removed adenoids. 
Because the main symptoms presented by patients were acute 
pharyngitis and conjunctivitis, the authors proposed the term 
“adenoidal-pharyngeal-conjunctival agents” to designate this 
group of viruses, but posteriorly the name has changed to 
adenovirus, referring to the tissue of its first reported isolation 
(Robbins et al., 1950; Huebner et al., 1954).

Data provided from the Journal of Gene Medicine 
indicates that adenoviral vectors are the most used vector 
type for gene transfer, representing 17.5% of all gene therapy 
clinical trials (Gene Therapy Clinical Trials Worldwide – 
GTCT, 2021). They are most commonly employed in cancer 
therapies, but can also be applied in vaccinal approaches and 
treatment of monogenic diseases. Its extensive applications 
are due to intrinsic adenoviral vector characteristics: non-
integration in the host genome and high capacity for gene 
transfer and storage. Although adenoviruses are pathogenic 
and associated with respiratory and gastrointestinal diseases, 
modifications of their genome have been made to turn the 
adenoviral vectors safe and to avoid adverse effects of the 

therapy. These genetic modifications on the viral genome 
generated a replication-defective vector, preventing a high 
viral load in the host body. The evolution of adenoviral vectors 
development is shown in Figure 1.

First generation adenoviral vectors
In 1977, a cell line that is necessary for recombinant 

non-replicative adenoviral vectors was raised. The human 
embryonic kidney (HEK) cells were modified with human 
adenovirus type 5 (Ad5) DNA fragments and the particular 
clone 293 (HEK293) was transformed by the acquisition of 4 
copies of the left end of Ad5 genome, a region that includes 
the E1 gene. Thus, HEK293 was the first established human 
cell transformed by an adenovirus (Graham et al., 1977), 
which made possible the development of the first generation 
of recombinant adenoviruses presenting deletions in the E1 
and E3 genes, that are associated with the expression of all 
other genes involved in viral replication and inhibition of host 
immune system, respectively. 

The E1 region is divided into two parts: E1a and E1b. 
A group of mutants with deletions on region E1 was isolated 
and infected HEK293 cells in vitro to observe if adenoviruses 
were able of growing on it (Jones and Shenk, 1978, 1979a,b). 
The authors identified two mutants, one lacking E1a (deletion 
of 902 bp, around position 540-1620 bp of the genome) and 
other E1b (deletion of 2350 pb, around position 1260-3780 
bp of the genome) that were able to replicate in HEK293 cell 
lines, but neither in HeLa nor HEK cells. Concluding that E1 
gene was necessary for viral growth, which was only possible 
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in HEK293 cells, that contains the E1 gene supporting viral 
replication of the mutant adenoviruses. Later, deletions with 
a maximum of 3 kb have been made in this region to generate 
E1 deleted adenovirus vectors with a capacity of insertion up 
to 5 kb (Rosenfeld et al., 1991). 

The E3 gene has its expression activated by E1a gene 
product and encodes proteins that counteract the attack of the 
immune system and prevents programmed cell death. Thus, 
the E3 gene products are not related to viral replication, and 
therefore no complementing cell line is necessary (Wold et 
al., 1995). Viral vector with deletion of the E3 gene (from 
28kb to 30kb) was indistinguishable from wild type (WT) 
adenovirus in growth kinetics (Cladaras et al., 1985). Vectors 
deleted in the E1 and E3 genes have a storage capacity of 
approximately 8 kb.

Second-generation adenoviral vectors
Although adenoviral vectors are successful in gene 

transferring and expression, some concerns were raised. In vivo 
delivery of recombinant adenoviral vector carrying the LacZ 
gene in the liver showed low levels of transgene expression and 
induction of cellular immune response, leading to destruction 
of genetically modified hepatocytes and repopulation with 
parental cells, without the transgene (Yang et al., 1994). This 
probably occurred due to the background expression and 
accumulation of viral late genes, leading to inflammation and 
destruction of transduced cells (Gilgenkrantz et al., 1995; Yang 
et al., 1996). In view of that, new recombinant adenovirus 
needed to be developed, with new mutations on other viral 
genes. In this context, second generation adenoviral vectors 
were developed, including additional mutations or deletions 
of E2 and E4 genes. Both genes participate in the expression 
of late genes, and their absence reduced adverse effects caused 
by the expression of the late genes. Furthermore, there was 
an increased storage capacity, allowing it to accommodate 
up to 14 kb.

In 1994, the first modification of first-generation 
adenovirus was performed. Alongside E1 deletion, it 
incorporated a mutation into the E2a region, turning this 
gene temperature-sensitive (Engelhardt et al., 1994). E2a 
gene encodes a single-stranded DNA binding protein that is 
responsible for DNA synthesis. Recombinant adenovirus with 
E2a temperature-sensitive mutation has reduced late protein 
expression levels. In contrast, the E4 gene encodes two ORFs, 
ORF3 and ORF6, which participate in viral DNA synthesis 
and expression of late genes (Sandler and Ketner, 1989). ORF 
6 gene product forms a complex with E1b and mediates the 
transport of viral messenger RNA from the nucleus to the 
cytoplasm and ORF 3 gene product acts in parallel with this 
complex to enable viral DNA replication. Deletion of the E4 
gene blocks adenoviral replication and is lethal (Halbert et 
al., 1985). Differently of E2 temperature-sensitive mutation, 
deletion of the E4 gene entails the need of a cell line capable 
of complementing its absence, but without overexpressing 
cytotoxic late proteins. In 1995, a HEK293 cell line expressing 
E4 was established by introducing a full-length E4 region 
under control of the mouse alpha inhibin promoter, enabling 
the production of E1/E4-deleted adenovirus vectors (Wang 
et al., 1995). However, even with these new gene deletions, 

second-generation vectors still do not avoid completely in 
vivo immunogenicity (Lusky et al., 1998). 

Different barriers have been considered for safe and 
effective adenoviral-mediated gene therapy such as: (1) 
the severe innate and adaptative immune responses against 
vectors and transgenes that lead to severe adverse side effects 
(Tripathy et al., 1996; Harvey et al., 2002); (2) the high 
pre-existing immunity against adenovirus in the population 
(Barouch et al., 2011; Ye et al., 2018) that can hamper the 
efficacy of the treatment due to neutralizing antibodies that 
rapidly blocks the virus (Tripathy et al., 1996; Kushwah et al., 
2008; Parker et al., 2009); (3) the elimination of Ad vectors 
through liver and spleen after intravenous applications due to 
interactions between Ad vector and host proteins (Parker et 
al., 2006); (4) the natural tropism of most adenovirus through 
the attachment of the Ad fiber knob protein with CAR, which 
is expressed in a huge range of tissues making it difficult to 
transduce only specific cells (Bewley et al., 1999; Einfeld et 
al., 2001). Therefore, additional alterations in the adenoviral 
vectors have been developed.

Third-generation adenoviral vectors
To resolve some of these questions, the third and last 

generation of adenoviral vectors were created, also called 
gutless, helper-dependent (HD-Ad), or high-capacity (HC-Ad) 
vectors. This vector has all the viral genes deleted, keeping 
only the ITRs and the packaging sequence. Because of this 
modification, the HC-Ad vector needs a helper adenoviral 
vector encoding all viral genes. When both vectors are 
coinfected in a eukaryotic cell line, the helper adenovirus 
produces the structural proteins, which will be assembled 
into the capsid particle incorporating the HC-Ad genome. 
Due to the deletion of all viral genes, the helper-dependent 
adenovirus has a capacity of gene insertion up to 37 kb. The 
biggest limitation for its broader use is the incorporation of 
the helper virus genome into the capsid. Therefore, the final 
product is a mixture of HC-Ad and contaminating helper virus 
(Alba et al., 2005). The first strategy that tried to overcome this 
problem was developed by Mitani and colleaagues who used 
an Ad5 with a defective packaging signal as the helper virus, 
while the gutless vector had deletions of only L1, L2, VA, 
and TP genes. However, during viral vector production, both 
HC-Ad and helper virus were obtained (Mitani et al., 1995). 

An important advance was the development of Ad 
helper virus containing the packaging signals flanked by loxP 
sites, which were excised by the Cre recombinase, rendering 
the helper virus genome unpackageable and producing high 
titers of the vector with very low quantities of contaminating 
helper virus, which was still present at a range around 0,1% - 
10% (Parks et al., 1996). These high levels of contamination 
were due to the enzyme activity, that cannot remove 100% 
of packaging signals in the helper virus. Indeed, this system 
provides increased cloning capacity, safety, and reduced 
immunogenicity, but contamination by helper virus is still 
a problem. 

Since the development of this system, many similar 
techniques have been developed and they suffer from the same 
problems: the difficulty of vector production and the presence 
of helper virus contaminations. Another improvement in 
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Cre/loxP system was based on the reversion of the packaging 
sequence of helper adenovirus. This system provided lower 
levels of helper contaminations, around 0,02 – 0,1%, and 
improved vector production (Palmer and Ng, 2003). Other 
recombinase systems were also explored, such as the FLP/
frt system (Ng et al., 2001) and the Vika recombinase system 
(Phillips et al., 2022). However, none of these approaches 
completely eliminates the presence of the helper virus.

The Helper-virus-free strategy involves the co-
transfection of the HC-Ad with a helper plasmid. Using 
this approach, vectors expressing the human dystrophin and 
huntingtin genes were produced on large scale and efficiently 
delivered into cells and mouse models, showing therapeutic 
potential for Huntington’s disease and Duchenne muscular 
dystrophy (Lee et al., 2019). 

Comparing replicative, first-generation, and HC-Ad for 
vaccination purposes, it was observed that replicative and 
HC-Ad induced stronger humoral immune response, but not 
cellular immune response, while HC-Ad also induced lower 
ALT levels compared with replicative and first-generation 
adenoviral vectors, indicating a possible reduced liver toxicity 
(Weaver et al., 2009).

Conditionally replicative adenoviral vectors
Besides all attempts and modifications involving 

replicative-defective adenovirus, a different approach maintains 
its replication capacity. Conditionally replicating adenoviruses 
have been employed as oncolytic adenoviruses, showing 
replicative potential only in tumor cells, destroying them in 
the process and continuously disseminating and replicating 
in cancer cells. One of the first examples is the Onyx-015, 
which has an alteration in the E1B-55K gene (Bischoff et 
al., 1996). Lack of E1B-55K inhibited late viral RNA export 
from the nucleus to the cytoplasm preventing expression of 
late genes in normal cells. However, in tumor cells, the viral 
RNA is exported independently of the presence of E1B-55K 
and viral proteins expression and replication occurs (O’Shea 
et al., 2004). Oncorine (Creative Biolabs, Inc., Shirley, NY) is 
similar to ONYX-015 and was the first oncolytic adenovirus 
approved for the treatment of nasopharyngeal carcinoma in 
China (Liang, 2018). Further examples are seen in Adenovirus 
in cancer gene therapy section.

Investigation of other adenovirus types and 
modifications

All early adenoviral studies were conducted in type 2 and 
5 human adenoviruses, therefore gathered knowledge is deeper 
in these types compared to other adenoviruses. However, the 
presence of neutralizing antibodies (Dudareva et al., 2009; 
Pilankatta et al., 2010; Barouch et al., 2011; Zhang et al., 
2013b; Su et al., 2016; Zhao et al., 2018) may impair gene 
transfer mediated by them. Cotton rats previously infected 
with WT Ad5 had reduced immunization efficacy mediated 
by an Ad5 non-replicative vector (Papp et al., 1999a).

In order to overcome this problem, other adenoviruses 
have been evaluated. Ad35 has a low global prevalence and 
has been further studied (Gao et al., 2003; Vogels et al., 2003; 
Nwanegbo et al., 2004). It has a tropism to cells with CD46 
receptor rather than cells expressing CAR (coxsackie and 

adenovirus receptor), but this can be overcome by construction 
of a chimeric Ad35 expressing the Ad5 fiber knob (Nanda et 
al., 2005). Several other adenoviruses with low seroprevalence 
have been engineered into non-replicative adenoviral vectors, 
such as: Ad11 (Holterman et al., 2004); Ad41 (Lemiale et al., 
2007); Ad56 (Duffy et al., 2018); Ad19a, which transduces 
dendritic cells (Ragonnaud et al., 2018); Ad20-42-42, which 
is related to type 42 but with a penton base derived from type 
20 and tropism to both CAR and CD46 receptors (Ballmann 
et al., 2021); Ad26, Ad48 and Ad50 are rare types, the Ad26 
vector was shown to be the most immunogenic and more 
interesting in vaccine development (Abbink et al., 2007). 
Ad26 uses sialic acid as a primary target in the cell (Baker 
et al., 2019).

The Ad5 can be altered to reduce the binding of 
neutralizing antibodies. The adenoviral hexon protein is a 
major component that drives the host immune response. 
Replacing the hexon of Ad5 with the one from Ad3 reduced 
neutralization of viral particles (Yan et al., 2021). As well 
exchange of the hexon gene of Ad3 with the hexon from 
Ad14 generated a chimeric vector that was not neutralized 
by antibodies against Ad3 (Su et al., 2016). Modifications of 
hypervariable regions within the hexon gene could also impair 
antibodies against Ad5 binding. A chimeric hexon protein 
from Ad5, with replacement of some regions from Ad48, 
circumvented pre-existing immunogenicity (Roberts et al., 
2006; Teigler et al., 2014). Modification of a hypervariable 
region 2 of Ad5 with the region from Ad3 also reduced 
neutralization (Gu et al., 2016). Alteration of all hypervariable 
regions from Ad5 introducing the regions from Ad43 had the 
same effect (Bruder et al., 2012). Epitope modification in 
the 5th hypervariable region of Ad5 also prevented antibody 
neutralization (Abe et al., 2009). Modification of both hexon 
and fiber proteins abrogated adenoviral vector neutralization 
(Bradley et al., 2012), and chimeric Ad5 with fiber from Ad35 
escaped neutralization (Flickinger et al., 2020).

Additionally, several adenoviruses infecting other 
mammals and capable of infecting human cells have been 
investigated, including adenovirus from bovine type 3 (Mittal 
et al., 1995), chimpanzee (ChAd) type 68 (Xiang et al., 2002), 
types 5, 6, 7 (Roy et al., 2004), C1 (Tatsis et al., 2007a) 
and Y25 (Dicks et al., 2012), rhesus monkey types 51, 52 
and 53 (Abbink et al., 2015), porcine type 3 (Bangari and 
Mittal, 2004) and simian type 21 (Roy et al., 2006). Clinical 
trial data indicated that ChAd63 is safe and induces a strong 
immune response (O’Hara et al., 2012). A vector derived from 
ChAdY25 was obtained by removal of E1 and E3 genes and 
the E4 gene was modified to optimize growth rate in human 
cell lines, generating the ChAdOx1(Dicks et al., 2012), 
making the same alterations in ChAd68 it was generated the 
ChAdOx2 (Morris et al., 2016). 

Even tough neutralization assays are important tools to 
evaluate inhibition of viral vector transduction efficiency, it 
was observed that a ChAd68 adenoviral vector modified in the 
hexon protein resisted neutralization by antisera of animals 
immunized with WT ChAd68, but failed to transduce target 
cells and express the transgene, suggesting that neutralization 
assay may not be a reliable test to predict vector transduction 
efficiency (Pichla-Gollon et al., 2009). Induction of antibody 
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response against transgene expression mediated by Ad26 
and ChAd6 and ChAd7 were lower in comparison with 
Ad5, suggesting that Ad5 is more efficient to induce high 
levels of gene expression and immune response (Chen et 
al., 2010). Another interesting data is that use of prime-boost 
regimens with combination of different adenoviral types did 
not improve immune response (Weaver et al., 2009). However, 
monkeys immunized with a combination of Ad26 and Ad5 
expressing Gag protein of Simian Immunodeficiency Virus 
(SIV-Gag) showed increased cellular immune response and 
survival after SIV challenge (Liu et al., 2009). Ad5 vectors 
elicited higher memory T cell activation magnitude, but can 
also cause functional exhaustion and reduced potency after 
boost compared to Ad26, Ad35, and Ad48 vectors (Penaloza-
MacMaster et al., 2013). This topic will be further discussed 
in the adenovirus modulation of the immune system session.

Components of the viral particle have also been modified. 
The introduction of the tripeptide arg-gly-asp (RGD) conferred 
altered tropism for the viral particle, making it capable of 
transducing dendritic cells (Worgall et al., 2004) and other 
cells expressing integrins. Replacement of the fiber protein 
with Sigma 1 from reovirus changed viral tropism to junctional 
adhesion molecule 1 (JAM1) and sialic acid (Weaver et al., 
2012). The viral particle can also be covered with different 
compounds to avoid immunologic destruction, using for 
example alginate microspheres (Sailaja et al., 2002), or coating 
with non-immunogenic polymers, such as polyethylene glycol, 
which reduces vector immunogenicity and protect the virus 
against neutralizing antibody for persistent gene expression 
(Prill et al., 2011; Sun et al., 2019b). At the same time, 
adjuvant formulations may increase immunological response 
in vaccination protocols, and formulations including chitosan 
and glycol chitosan improve intranasal immunogenicity of 
Ad5 vector (Gogev et al., 2004). 

Adenovirus gene therapy for monogenic 
diseases

The early years

Since the seminal idea of Friedmann and Roblin (1972) 
proposing gene therapy to ameliorate human genetic diseases, 
several experiments have been conducted in situ, in vivo, 
and ex-vivo to introduce a functional gene or to modulate its 
expression in a target cell. The use of viral and non-viral vectors 
for gene delivery and gene editing for permanent correction 
of patient gene defects are being explored for decades and the 
promises are starting to become reality (Bulcha et al., 2021). 

Initially, recombinant adenoviral vectors were employed 
in therapies for common hereditary respiratory diseases, due 
to their capacity of infecting lung epithelium. The first in vivo 
therapy used a replication-deficient first-generation adenoviral 
vector to deliver the alfa-1 antitrypsin gene firstly in lung 
tissues and then in rat hepatocytes, showing that adenovirus 
can be used as a vector to treat diseases affecting other sites 
beyond the lung. The rationale was to convert homozygous 
mutated hepatocytes cells into heterozygotes, which would 
not manifest the disease phenotype (Crystal, 1990; Rosenfeld 
et al., 1991; Jaffe et al., 1992). Next, recombinant adenovirus 
(Ad/CFTR) was employed for gene therapy for cystic fibrosis 

(CF) through the delivery of the cystic fibrosis transmembrane 
conductance regulator (CFTR) cDNA. Studies in human 
bronchial cells (Rich et al., 1993), human bronchial xenograft 
model (Engelhardt et al., 1993b), and nonhuman primates 
(Engelhardt et al., 1993a; Goldman et al., 1995) showed 
the feasibility and safety of this technology. Even though in 
the early 1990s there was limited knowledge regarding the 
safety and effectiveness of gene delivery by first-generation 
adenovirus vectors in humans, in 1993 it was performed the 
first clinical trial for human gene therapy with a recombinant 
adenovirus (AD2/CFTR) in three individulas. The treatment 
partially corrected the chloride transport defect characteristic 
of the CF without evidence of adverse effects (Zabner et al., 
1993). In another study, Ad/CFTR was administrated to the 
nasal and bronchial epithelium of the CF patients. At a high 
dose, transient systemic inflammation was observed after 
administration without long-term adverse effects (Crystal et 
al., 1994). At the same time, other clinical trials were initiated 
and showed similar results (Zabner et al., 1993, 1996; Crystal 
et al., 1994; Zuckerman et al., 1999).

These approaches of gene therapy for genetic diseases 
seemed promising until 1999 when a patient died after 
treatment with a second-generation Ad5 vector carrying the 
human ornithine transcarboxylase (OTC) cDNA for OTC 
deficiency (Raper et al., 2003). The 18 years old patient was 
the only one among other 17 OTC deficient patients who 
died 96 h after gene transfer due to a systemic inflammatory 
response syndrome. The other patients experienced only flu-
like symptoms. A recent study showed that the presence of a 
complex of pre-existing Ad5 antibodies and the Ad-therapeutic 
vector could enhance vector transduction and activation of 
dendritic cells, which may have contributed to the systemic 
lethal inflammation of that patient (Somanathan et al., 2020). 
This adverse result rocked the gene therapy research and 
delayed advances for some time. 

The use of HC-Ad was able to overcome some of the 
limitations of first and second-generation vectors and was 
employed in some strategies. In nonhuman primate models, the 
expression of the baboon alpha-fetoprotein transgene delivered 
by a HC-Ad persisted up to 7 years without adverse effects, 
declining to about 10%/year (Brunetti-Pierri et al., 2013). In 
a mouse model of primary kidney disease hyperoxaluria type 
1, HC-Ad transferred the alanine-glyoxylate aminotransferase 
gene under control of a liver-specific promoter, improving 
the clinical condition of the animals for at least 24 weeks 
(Castello et al., 2016). In another study, primary dystrophin-
deficient mouse myoblasts were successfully transduced with 
an adenoviral vector carrying the full-length murine dystrophin 
cDNA under control of a muscle-specific promoter and a lacZ 
reporter construct (Kochanek et al., 1996). 

Pre-clinical and clinical trials

Next, we present pre-clinical and clinical results of 
some monogenic disease therapies using adenoviral vectors. 
Hemophilia A and B gene therapy has been investigated since 
the 1990’s (High, 2003), they are X-linked genetic diseases 
caused by mutations in the coagulation factors XIII and IX 
genes, respectively. The portal infusion of a first-generation 
Ad with the canine factor IX gene transiently corrected (1-2 



Araújo et al.6

months) the canine hemophilia B (Kay et al., 1994). However, 
longer expression (5 months) of the beta domain of factor 
VIII was observed after lower doses of Ad administration to 
correct mice hemophilia A (Connelly et al., 1996). In following 
studies using a HC-Ad, the correction of canine hemophilia 
B and A without toxicity or thrombocytopenia was obtained 
(Chuah et al., 2003; Ehrhardt et al., 2003). Interestingly, 
mice neonatal gene therapy to express factor VIII lasted for 
one year, even with the quick decline of its levels. Despite 
re-administration of the HC-Ad was well tolerated, immunity 
to adenovirus persisted (Hu et al., 2011). An option for long-
term expression of these genes was the use of a transposase for 
the therapeutic gene integration. For hemophilia B, a HC-Ad 
stabilized through the Sleepy beauty transposase (SB) showed 
sustained expression of human coagulation factor IX for more 
than six months in mice (Yant et al., 2002). A hyperactive SB 
(SB100X) corrected hemophilia B in mice and canine models 
by somatic integration in the liver (Hausl et al., 2010). 

Only one clinical study used a HC-Ad expressing the 
B domain of factor VIII under albumin promoter for liver-
specific expression. The study was stopped because the first 
patient developed systemic side effects, probably due to the 
high production of inflammatory cytokines and the factor 
VIII levels were about 1% (Mannucci, 2002). 

Regarding CF gene therapy, in a CFTR-knockout mouse 
model, the in-uterus expression of Cftr mediated by an Ad 
vector did not improve the survival of the animals (Davies 
et al., 2008). One of the problems is that CAR localizes to 
the basal membrane of the airway epithelium, thus limiting 
the capacity of the Ad vector to transduce the target cells 
(Walters et al., 1999). The use of lysophosphatidylcholine 
(LPC) formulation during the application of HC-Ad to the 
lung facilitated access to CAR and improved the gene transfer 
efficiency of mice, pigs, and ferrets’ epithelia. (Yan et al., 
2015; Cao et al., 2018). In another study, the treatment with 
the pharmacological drug cyclophosphamide was shown 
to overcome the immunological response to HC-Ad-CFTR 
allowing the sustained expression of Cftr when the vector 
was repeatedly delivered to the mouse airways. The treatment 
reduced the expression of T cells and their infiltration into 
mouse lung tissues, as well as adenovirus antibody and 
neutralizing activity (Cao et al., 2020). The incorporation 
of the transposons piggyBac into the HC-Ad led to efficient 
expression of the transgene in pig´s lungs (Cooney et al., 
2018). In 2015 the largest clinical trial liposomes-mediated 
delivery of the CFTR gene showed a modest stabilization of 
the lung function but not sufficient to improve lung function. 
Consequently, development of efficient vectors that are able to 
transduce lung cells and animal models for CF gene therapy 
are still needed (Alton et al., 2015; Yan Z et al., 2019).

Gene therapy using adenovirus has been attractive 
for the treatment of liver diseases because of the many 
metabolic functions of the liver, the hepatocyte Ad tropism, 
and the high capacity to produce and secrete proteins in 
circulation (Maestro et al., 2021). In a model of neonatal 
bovine citrullinemia, an inborn error of metabolism caused 
by the deficiency of argininosuccinate synthetase (ASS) that 
leads to hyperammonemia, the systematic administration of a 
first-generation Ad human ASS allowed the liver transduction 

and partially corrected the defect (Lee et al., 1999). The 
deficiency of ornithine transcarbamylase (OTC) is another 
liver disease, X-linked, associated with the urea cycle that 
leads to hyperammonemia encephalopathy. A mouse model 
with an earlier Ad vector and CMV promoter corrected the 
Otc deficiency for two months (Ye et al., 1996). Combining 
HC-Ad, specific tissue promoter, and post-transcriptional 
enhancement sequences allowed overexpression of Otc and 
long-term correction of the deficiency in mice without toxicity 
(Mian et al., 2004). However, after the first clinical trials for 
OTC and the fatal outcome described above (Raper et al., 
2003), no other clinical trials for OTC with adenovirus have 
been conducted.

Adenoviral vectors, more specially HC-Ads, are widely 
used as experimental therapeutic vectors, but in clinical trials 
for genetic diseases, most promisor gene therapy is by using 
adeno-associated virus or lentiviral vectors. Several phases 
1, 2 and 3 clinical trials for replacement therapy have been 
concluded or are ongoing for hemophilia (Perrin et al., 2019; 
Batty and Lillicrap, 2021), CF (Guggino and Cebotaru, 
2020), Pompe (Unnisa et al., 2022) and other diseases (see 
ClinicalTrials.gov).

Ex-vivo and gene editing

The ex-vivo gene therapy consists of modified cells 
outside the body to express a therapeutic gene and subsequently 
implant them back into patients. This therapy has been useful 
for inherited rare blood disorders e.g beta-thalassemia, sickle 
cell disease (SCD), and other hematological diseases. In 
these cases, the patient’s hematopoietic stem cells (HSC) are 
collected, transduced with a vector carrying the therapeutic 
gene and injected back into the patients (Tambuyzer et 
al., 2020). This technique has several challenges including 
insufficient HSC obtained from the patient, genotoxicity and 
limitations of the viral vectors, loss of HSC multipotency 
during ex vivo manipulation, reduced number of transduced 
cells for reimplantation, technical complexity and high cost 
(Li and Lieber, 2019; Telen et al., 2019). However, in the last 
years great advances in this area have been made.

The ex-vivo Ad transduction into human conjunctival 
epithelium and cornea, showed sustained expression of reporter 
genes, interleukin 10 and others, suggesting that this strategy 
could be employed to suppress immune-mediated disorders 
(Oral et al., 1997; Shen et al., 2001; Qian et al., 2004). For 
Sickle cell disease (SCD), a monogenic disorder caused by a 
mutation in the beta-globin gene (beta S allele) compromising 
the production of normal adult hemoglobin (Vichinsky et 
al., 2000), gene therapy approaches include the ex-vivo 
transduction of the HSPC for expressing the intact beta-globin 
gene, anti-sickling beta-globin, or the fetal gamma-globin. In 
mice models, ex-vivo HSPC transduction of a HC-Ad5/35 
vector carrying SB100x transposase-mediated gamma-globin 
gene and transplantation into irradiated mice reached 95% 
of gamma-globin–positive peripheral red blood cells (Wang 
et al., 2020). This result complemented the in vivo model 
that resulted in an incomplete correction of the thalassemia 
phenotype in mice (Wang H et al., 2019; Wang et al., 2020). 

Gene-addition strategies have been optimized over 
the past few decades and the genome editing tools based on 
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clustered regularly interspaced short palindromic repeats 
(CRISPR), transcription activator-like effector nucleases 
(TALENs) and zinc-finger nucleases (ZFNs) are being widely 
used for modifying HSC and other cells genome for gene 
therapy (Maggio et al., 2016; Yin et al., 2017; Stephens et 
al., 2019; Bandara et al., 2021). These strategies precisely 
target the gene of interest and can fix or “cure” the disease. 
However, a hurdle to be overcome is the off-target activities 
on unintended sites. A study showed a low scarless homology-
directed genome editing of the modified cells by applying 
these nucleases together with an Ad donor DNA delivery 
compared with lentiviral or non-viral vectors templates 
(Holkers et al., 2014). 

The reactivation of the fetal hemoglobin HbF coded by 
the gamma-globin gene by knocking out its repressor BCL-11A 
(Brendel et al., 2016; Li et al., 2018a) or the binding sites in 
the globin gene (Traxler et al., 2016), and the correction of 
the beta S mutation has been the strategy for the CRISPR/
Cas9-mediated gene therapy for SCD (Dever et al., 2016). 
Recently, a HC-Ad5/35 vector expressing the CRISPR/Cas9 
platform (Li et al., 2018b) repressed the binding region within 
the gamma-globin promoter after transduction of HSPCs from 
a thalassemic mice models (Li et al., 2021). The transplantation 
of the modified HSCs into the irradiated animal as well as 
the in vivo intravenous injection of the vector into the mice 
showed efficient target site disruption and relevant switch from 
human beta- to gamma-globin expression that was sustained 
after a secondary transplantation of HSPCs, without observed 
hematological abnormalities in the long-term follow up (Li 
et al., 2021).

In an ex-vivo approach for hemophilia B, a HC-Ad5 
vector containing an inducible gene-specific CRISPR/Cas9 
system together with an adeno-associated virus containing the 
modified donor, and a HC-Ad5 vector with all the components 
were used to transduce liver cell lines stably expressing 
mutated canine factor IX gene (carrying a point mutation). 
Interestingly, the single vector showed 6% of efficiency, 
which was superior to the two-vector strategy, thus CRISPR/
CAS9 viral vector delivery is promising for the correction 
of mutated factor IX in disease models (Gao et al., 2019). 

Despite some hurdles, advances in in-vivo, ex-vivo, and 
genome edition using adenovirus-delivery as a single vector 
(Palmer et al., 2020) or combined (Lino et al., 2018) with other 
vectors are promising for genetic diseases gene therapy and 
may provide more gene therapy products in the near future.

Adenovirus in cancer gene therapy
Cancer is a disease characterized by genetic alterations, 

uncontrolled cell functions, and loss of original cell 
characteristics (Hanahan and Weinberg, 2000). In 2020, it 
was estimated 19.3 million new cases and 10 million cancer 
deaths worldwide (Sung et al., 2021), it is considered one of 
the leading causes of death in the world (Bray et al., 2021). 
Despite all acquired knowledge, cancer treatment is still a 
challenge for several types of tumors (Wang et al., 2018). 
Conventional therapy based on chemo- and radiotherapy alone 
are not always successful (Wang et al., 2018). Hanahan and 
Weinberg have described the hallmarks of cancer and each 
one of them is a relevant factor in tumor development and are 

key targets for cancer therapy (Hanahan and Weinberg, 2000, 
2011; Hanahan, 2022). Gene therapy using adenoviral vectors 
appears to be an interesting option for treating cancer as it can 
restore or inhibit pathways that were lost or modified during 
tumorigenesis (Sun et al., 2019a). Most of the approaches 
described in this section employed first generation adenoviral 
vectors or oncolytic adenoviruses. In Figure 2 we show a 
summary view of different approaches of gene therapy in 
cancer treatment. 

Targeting cell proliferation and growth suppressors 
evasion

One of the most remarkable tumor cell characteristics 
is the ability of uncontrolled proliferation (Hanahan and 
Weinberg, 2011). Modulation of pathways and genes that 
control processes involved in cell cycle, proliferation, growth, 
and survival are commonly seen in cancer, mainly related 
to tumor suppressors’ inhibition and oncogenes activation 
(Park et al., 2020). 

The search for reestablishing phosphatidylinositol 
3-kinase/protein kinase B (PI3K/AKT) pathway normal 
regulation is one of the adenovirus gene therapy aims. This 
pathway in normal cells induces cell growth and proliferation 
and inhibits apoptosis (Fresno Vara et al., 2004). Different 
alterations contribute to PI3K/AKT pathway constitutive 
activation in cancer, including rat sarcoma virus proto-
oncogene (RAS) constitutive activation, and loss of the pathway 
negative regulator, phosphatase and tensin homolog (PTEN) 
(Fresno Vara et al., 2004; Hanahan and Weinberg, 2011; 
Santarpia et al., 2012; Park et al., 2020). 

Induction of PTEN expression mediated by adenovirus 
(Ad-PTEN) in several types of cancer demonstrated to be 
effective to downregulate PI3K/AKT pathway, consequently 
contributing to apoptosis induction, migration, and growth 
inhibition in tumor cell lines and tumor suppression in vivo 
(see summary data in Table S1). Nonetheless, this effect is 
more effective in cell lines with loss or mutated PTEN in 
comparison to tumor cells carrying WT PTEN (Tanaka and 
Grossman, 2003; Hamada et al., 1999; Tanaka et al., 2005; 
Rosser et al., 2004). Different studies analyzed the combination 
of Ad-PTEN with other therapeutic agents to potentialize its 
antitumor effect. Ad-PTEN enhanced the doxorubicin efficacy 
in bladder and prostate cancer (Tanaka and Grossman, 2003; 
Tanaka et al., 2005) and sensitized tumor cells to cisplatin 
(Li D et al., 2013; Wu et al., 2015), docetaxel (Liu Z et al., 
2012), to a PI3K inhibitor (Ren et al., 2012), radiotherapy 
(Pappas et al., 2007; Rosser et al., 2004), to TIMP-2 (Lu 
et al., 2004) and caffeine (Saito et al., 2003). To provide 
specificity to tumor cells, PTEN has been conjugated to the 
epithelial cell adhesion molecule (EpCAM), which resulted 
in better antitumor effects in liver cancer in vivo and in vitro 
(Liu Z et al., 2018). Oncolytic adenoviruses expressing 
PTEN under control of a specific promoter to prostate cancer 
have conferred almost complete tumor regression and high 
specificity in prostate cancer in vitro and in a murine model 
(Ding et al., 2012). 

Meanwhile, different studies have focused on adenoviral 
gene therapy for RAS blockage. The RAS gene family (H-RAS, 
K-RAS, and N-RAS) is one of the most altered genes in cancer 
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(Zinatizadeh et al., 2019), which is involved in proliferation, 
survival, angiogenesis, and cell motility (Santarpia et al., 
2012). Several strategies using adenovirus have been employed 
in an attempt to decrease RAS activity in cancer, such as the 
expression of neutralizing anti-RAS antibody (van Etten et al., 
2002; Yang et al., 2016), gene silencing using antisense and 
small interference RNAs (siRNA) (Nakano et al., 2001; Chen et 
al., 2005; Zhang et al., 2006), induction of a dominant-negative 
mutant form of RAS (Senmaru et al., 1998; Watanabe et al., 
2001; Stoll et al., 2005), and ribozymes against RAS (Irie et al., 
1999; Tsuchida et al., 2000; Zhang et al., 2000; Wang et al., 
2002) resulting in antitumor effects in vivo and in vitro (Table 
S1). Combinatory treatment using cytokines and RAS-targeted 
therapy resulted in synergistic tumor inhibition, as seen in 
pancreatic cancer using Interferon-alpha (IFN-α) (Hatanaka 
et al., 2004) and in colon cancer, with Interleukin-27 (IL-27) 
(Lebedeva et al., 2007). Additionally, oncolytic adenovirus 
expressing anti-RAS antibody conferred specificity and high 
antitumor efficacy in cell lines from different cancer types 
(Pan et al., 2017). Another approach used for targeting tumor 
cells was the use of cytokine-induced killer (CIK) cells as 
vehicles for adenoviral delivery. CIK cells carrying adenovirus 
expressing anti-RAS antibody guaranteed tumor specificity in 
glioma, lung, and colon cancer (Liu et al., 2018; Lin et al., 
2019; Qian et al., 2021). Although, in a liver cancer model, 
CIK cells delivery did not demonstrate tumor specificity and 
adenoviruses were detected in different organs, even though 
antitumor activity was achieved (Dai et al., 2021). 

The retinoblastoma pathway (pRb) has also been a target 
of adenovirus cancer gene therapy. pRb inhibits proliferation 
by direct interaction with the transcription factor, E2 promoter 
binding factor (E2F). It releases E2F to trigger the cell cycling 
when it is phosphorylated and P16, known to be a tumor 
suppressor gene, prevents pRb phosphorylation and therefore 
cell cycle progression (D’Arcangelo et al., 2017). P16 is found 
to be mutated or deleted in different types of cancer (Yang Z 
et al., 2016) and the restoration of its expression mediated by 
adenovirus (Ad-P16) resulted in antitumor effect in different 
tumor cell lines with functional pRb protein, but none or 
reduced activity in cell lines with mutated or null pRb (Grim 
et al., 1997; Craig et al., 1998; Campbell et al., 2000) (Table 
S2). Ad-P16 also increased radiotherapy efficiency in head and 
neck cancer (Rhee et al., 2003) but conferred chemoresistance 
to cisplatin and paclitaxel in a P16-negative bladder cancer 
cell line (Grim et al., 1997). 

Directly modulating pRb expression, it was observed 
that the induction of WT pRb only had an antitumor effect 
in cell lines that lost the RB gene (Fueyo et al., 1998) or in a 
heterozygous RB (+/-) mouse (Riley et al., 1996), but had no 
relevant effect in cervical cancer cells with inactivated pRb 
caused by Human Papillomavirus (HPV) infection (Ip et al., 
2001). On the other hand, the adenoviral induction of a hypo-
phosphorylated pRb variant resulted in tumor suppression 
in WT pRb cell lines (Roig et al., 2004), demonstrating that 
pRb-based therapy should consider not just the presence but 
also functionality of pRb in the tumor. 

Besides P16, the same gene locus INK4A/ARF also 
encodes P14ARF, another tumor suppressor that leads to cell 
cycle arrest and indirectly promotes p53 activation (Deng et 

al., 2002; Agrawal et al., 2006). The induction of P14ARF 
expression by adenoviral vectors (Ad-p14ARF) demonstrated 
promising results, but the presence of the TP53 WT gene 
appears to be essential for its higher antitumor efficacy 
(Yang et al., 2000; Deng et al., 2002; Kim et al., 2004). The 
combination of Ad-p14ARF with an adenovirus expressing 
p53 synergistically increased the cytotoxic effect even in 
null TP53 cell lines (Lu et al., 2002; Tango et al., 2002), 
indicating that this strategy may be a good alternative for 
tumors lacking p53. 

Interestingly, another relevant pathway altered in 
cancer is the Janus kinases/signal transducer and activation 
of transcription (JAK/STAT). It is activated by cytokines and 
can control immune signaling, growth, apoptosis, tissue repair, 
hematopoiesis, etc (Lin, 2010; Owen et al., 2019). STAT3 
is considered an oncogene and the JAK/STAT pathway is 
often constitutively activated in cancer (Lin, 2010). The use 
of adenovirus expressing suppressors of cytokine signaling 
(SOCS) induces a negative feedback control leading to this 
pathway inactivation (Liu et al., 2013b). This strategy was 
effective against several types of cancer cells, in addition to 
improve radiosensitivity (Lin, 2010; Sugase, et al., 2018; 
Liu et al., 2013b).

MYC is another important gene found frequently altered 
in cancer (Dang,2012), which participates in cell growth 
regulation (Stine et al., 2015). In tumors, MYC is usually 
amplified, leading to its constitutive activation (Stine et al., 
2015). Different strategies have been developed for MYC 
inhibition, such as adenovirus expressing antisense c-MYC 
(Chen et al., 2001; Xie et al., 2009) or shRNA anti-MYC 
(Li Y et al., 2013) leading to tumor inhibition in vivo and in 
vitro (Table S1). Other targets involved in cell proliferation 
and survival employed in adenovirus gene therapy include 
survivin inhibition (Fei et al., 2008; Shen et al., 2009), Ki-67 
silencing (Zheng et al., 2009; Liu J et al., 2012), and epidermal 
growth factor receptor (EGFR) expression (Yan et al., 2020). 

These data suggest that it is important to take advantage 
of altered genes that are contributing to the uncontrolled 
proliferation and survival phenotype. One main problem 
is that the same therapy is not necessarily effective against 
tumors harboring different alterations of a pathway or even 
mutations of the same gene. In this case, the status of the 
target gene should always be considered. 

Inducing tumor cell death and suicide gene therapy

Evading cell death is an important tumor hallmark and 
loss of death regulators is frequent in cancer (Hanahan and 
Weinberg, 2011). Several studies have focused on restoring 
death activators in an attempt to induce tumor cell death. 
Adenovirus expressing tumor necrosis factor receptor 
superfamily member 6 (FAS) ligand (Ad-FASL) contributed 
to cell death induction in different types of tumors (Zheng 
et al., 2005; Sudarshan et al., 2005; ElOjeimy et al., 2006). 
Interestingly, the expression of caspase or pro-caspase 3 
mediated by adenovirus did not have an effect on apoptosis 
induction in glioma (Shinoura et al., 2000), liver (Yamabe 
et al., 1999) and prostate cancer (Li et al., 2001). High death 
rates were only achieved in combination with Ad-FASL 
(Shinoura et al., 2000) or the chemotherapy etoposide as a 
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death stimulus (Yamabe et al., 1999). In contrast, pro-caspase 
7 induction resulted in cell death but only in two of five cell 
lines tested (Li et al., 2001). Overexpression of B-Cell CLL/
Lymphoma 2 (BCL-2) pro-apoptotic family members such 
as BCL2 Antagonist/Killer 1 (BAK) and BCL2 Associated X 
(BAX) also demonstrated effective antitumor capacity through 
apoptosis induction (Table S3) and improvement of radio- and 
chemotherapy sensibility after Ad administration (Arafat et 
al., 2000; Tsuruta et al., 2001). Nonetheless, Ad-BAK was 
not able to induce cell death in a breast caspase-3 deficient-
cell line (Pataer et al., 2000). Exploring tumor specificity, 
Ad-BAX under control of vascular endothelial growth factor 
(VEGF) promoter conferred a higher antitumor effect under 
hypoxic conditions in lung cancer (Kaliberov et al., 2002). 
In prostate (Lowe et al., 2001) and ovarian cancer (Tai et al., 
1999), Ad-BAX under control of specific promoters conferred 
specificity and high cytotoxicity. The effect of BAX expression 
was also studied in combination with IL-24 (Li et al., 2010) 
through an adenovirus expressing the TNF-related apoptosis-
inducing ligand (TRAIL) and with the chemotherapeutic agent 
Gemcitabine (Wack et al., 2008). In all cases, the antitumor 
effect was improved synergistically.

P53 is another important protein that controls cell 
apoptosis, inducing cell death in response to stressful stimuli, 
besides several other processes related to tumor suppression. 
P53 is the tumor suppressor most frequently mutated in cancer 
(Bieging et al., 2014) and its restoration has been extensively 
used in gene therapy mediated by adenovirus (Ad-P53) in 
different types of cancer (reviewed before by Tazawa et 
al., 2013). In prostate cancer, for example, several studies 
have employed Ad-P53 gene therapy and showed antitumor 
activity (Tamura et al., 2018). Adenovirus expressing P53 
under control of a P53-responsive promoter demonstrated 
effective tumor suppression (Tamura et al., 2016), which is 
potentialized when the arginine-glycine-aspartic acid (RGD) 
motif is incorporated in the adenoviral fiber protein, leading 
to a higher tumor cell death effect (Tamura et al., 2017) and 
higher chemotherapy sensitivity (Tamura et al., 2020). In colon 
cancer, the same strategy, Ad-P53 containing RGD and P53-
responsive promoter, was only effective in P53 WT or null 
cell lines and in a mutant TP53 tumor cell, the combination 
with IFNβ was necessary to induce cell death (Del Valle 
et al., 2021). Several clinical trials employed adenovirus-
expressing P53 for treating different types of cancer and for 
safety confirmation (See on clinicaltrials.gov). Currently in 
2002, a phase II clinical trial is combining Ad-P53 with an 
approved immune checkpoint inhibitor in a cohort of 40 head 
and neck cancer patients and other tumors. 

Such studies resulted in Gendicine® (Shenzhen SiBiono 
GeneTech, Guangdong, China), an adenoviral p53 gene therapy 
approved in China for treating Head and neck cancers in 2003. 
It was also the first approved gene therapy drug, which confers 
higher survival rates and improved treatment compared to 
conventional therapies (radio and chemotherapy) with no 
severe side effects (Zhang et al., 2018a). Besides head and 
neck, gendicine can also be used for treating lung, ovarian, 
liver and other cancers (Zhang et al., 2018a). Other two 
adenoviral vectors expressing p53 have been investigated by 

pharmaceutical companies, Advexin® (Introgen Therapeutics, 
Multivir, Inc, both of Houston, TX) and SCH58500 (Merck 
& Co, Schering-Plough, Kenilworth, NJ). 

Downstream targets of P53 have been investigated as 
well, including adenoviral vectors expressing P53 upregulated 
modulator of apoptosis (PUMA) and NADPH oxidase activator 
(NOXA), other two members of the BCL-2 family that 
participate in P53-mediated apoptosis (Agrawal et al., 2006; 
Elmore, 2007), in different tumor types (Table S3).

A different method for inducing cell death is through the 
expression of suicide genes in tumor cells (Düzgüneş, 2019). 
The best described is the herpes simplex virus thymidine 
kinase/ganciclovir (HSVtk/GCV) system, in which HSVtk 
converts the prodrug ganciclovir into a nucleoside analog 
consequently occasioning cell cycle arrest and cell death 
(Beltinger et al., 1999). The use of adenovirus carrying HSVtk 
in tumor cells has shown a relevant antitumor effect with 
high cytotoxicity to ganciclovir in a variety of pre- clinical 
trials (Table S3). Clinical trials using adenovirus-expressing 
HSVtk in combination with GCV demonstrated its safety 
and efficacy in liver cancer (Sangro et al., 2010) and glioma 
patients in combination with radio- and chemotherapy (Chiocca 
et al., 2011; Ji et al., 2016). The system cytosine deaminase 
/5’-Fluorocytosine (CD/5’-FC) was also explored in adenovirus 
gene therapy. In this case, CD converts the prodrug 5’-FC 
into a toxic molecule (Düzgüneş, 2019). The combination 
between the systems TK and CD carried to tumor cells by 
adenoviruses led to a synergistic antitumor effect in gastric 
cancer (Luo et al., 2012). In pancreatic cancer preclinical 
studies, AdHSVTk/CD increased the radiotherapy effect 
(Freytag et al., 2007) and a phase I clinical trial demonstrated 
tolerability in combination with gemcitabine chemotherapy 
(Lee et al., 2020). HSVtk/GCV and CD/5’-FC in prostate 
cancer also appeared to be safe in phase I clinical trials 
(Freytag et al., 2003; Barton et al., 2008). 

Restoring the expression of tumor suppressors or 
inducing cell death by different means is essential in any 
strategy to destroy the tumoral cell mass. Therefore, it is 
natural that the first available product and several clinical 
trials assays are intended to promote direct tumor cell death 
and recruitment of the immune system to eliminate any 
remaining cells.

Inhibiting angiogenesis

Angiogenesis is the construction of new blood vessels 
coming from pre-existing vessels, which is induced by tumor 
cells signaling and essential for tumor growth and metastasis 
dissemination (Chen et al., 2000). The most utilized anti-
angiogenic proteins in gene therapy are statins as endostatin 
and angiostatin (Chen et al., 2000). Both molecules are natural 
fragments of larger proteins (endostatin from XVIII collagen 
and angiostatin from plasminogen) and their anti-angiogenic 
capability may be due to VEGF downregulation, a well-known 
molecule responsible for angiogenesis induction (Hajitou et 
al., 2002). Different studies evaluated the antitumoral ability 
of adenovirus expressing endostatin, angiostatin, and different 
fragments of plasminogen, demonstrating to be effective 
against the angiogenic phenotype of endothelial cells in vitro 
and tumor suppression in vivo, influencing mainly tumor 
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vessels formation, cell migration, invasion, and metastasis 
(Table S4). 

Several mechanisms using adenovirus were proposed to 
decrease VEGF expression in cancer: antisense-VEGF (Im et 
al., 2001), soluble forms of VEGF receptor (VEGFR/Flt-1 or 
VEGFR2/Flk-1) (Kong et al., 1998; Takayama et al., 2000; 
Hoshida et al., 2002; Yoshimura et al., 2004; Schmitz et al., 
2005; Wu et al., 2006) and the vascular endothelial growth 
inhibitor (VEGI) fused with endostatin (Pan et al., 2004) are 
examples of molecules used in gene therapy that showed a 
reduction on neovascularization, increase in apoptosis and 
tumor suppression in vivo (Table S4). 

In addition, hepatocellular growth factor (HGF) plays 
a role in tumor malignant phenotype (Saimura et al., 2002). 
Several studies using Ad carrying its antagonist Nk4 showed 
anti-proliferative and anti-angiogenic activity in different 
types of cancer (Table S4). Other examples of adenoviral 
gene therapy focusing on antiangiogenic mechanisms includes 
the expression of pigment epithelium-derived factor (PEDF) 
(Mahtabifard et al., 2003; Wang et al., 2003; Merritt et al., 
2004; Guan et al., 2007); endothelium-specific receptor 
tyrosine kinase (Tie2) (Lin et al., 1998; Popkov et al., 2005); 
fragments and alterations of thrombospondin 1 (Liu et al., 
2003); angiotensinogen (Bouquet et al., 2006); human 16k 
PRL (Nguyen et al., 2007); amino-terminal fragment of 
urokinase (ATF) (Li et al., 1999); fibroblast growth factor 
receptor (FGFR) (Compagni et al., 2000) and platelet factor 
4 (PF4) (Tanaka et al., 1997). 

All mechanisms mentioned above indicated that gene 
therapy using antiangiogenic molecules provides high 
anticancer efficacy in pre-clinical assays, resulting in tumor 
growth suppression in almost all cell lines and in vivo models 
studied. It is also important to note that this strategy does not 
depend on a specific mutation or is restricted to a specific 
type of cancer. The expression of pro-angiogenic factors and 
stimulation of tumor blood vessel formation are frequently 
found in cancer, being an interesting target for cancer treatment 
of solid tumors. 

Focusing on invasion and metastasis

The tumor malignant phenotype is also characterized 
by adjacent tissue invasion and metastasis to distant sites 
(Jiang et al., 2015a). These mechanisms are regulated mainly 
by the degradation of molecules responsible for cell to cell 
and cell to matrix adhesion, stimulus of cell migration, and 
through epithelium-mesenchymal transition (EMT) (Jiang 
et al., 2015b). Adenoviruses expressing extracellular matrix 
(ECM) compounds like connexin 43 (Cx43) (Liu et al., 
2015) or downregulating CD44 via short hairpin (sh) RNA 
(Lee et al., 2017) contributed to the reduction in invasiveness 
capability in cancer cells in vitro (Table S5). Additionally, 
several studies evaluated different mechanisms to inhibit 
matrix metalloproteinases (MMPs) that are responsible for 
ECM degradation. Using adenovirus expressing siRNA against 
MMP2 (Chetty et al., 2006; Tsung et al., 2008) or a ribozyme 
against MMP-13 mRNA (Ala-Aho et al., 2004) resulted in 
its downregulation in tumor cells, consequently leading to 
reduced invasion and migration. Natural inhibitors of MMPs, 
like tissue inhibitors of MMPs (TIMPs), were also explored. 

Adenovirus expressing TIMP-1, -2, or -3 demonstrated high 
antitumor effect mainly by reducing angiogenesis, invasion, 
and metastasis (Table S5). Other different methods for MMPs 
inhibition include the expression of cystatin C (Kopitz et 
al., 2005) and the urokinase plasminogen activator receptor 
(uPAR) (Lakka et al., 2001, 2003; Rao et al., 2005). 

Focusing on EMT as a therapeutical target, one important 
protein is Mothers against decapentaplegic homolog 4 (Smad4), 
which is involved in cell differentiation and is found mutated 
in several cancers (Duda et al., 2003; Xiao et al., 2020). Its 
overexpression mediated by an adenoviral vector in pancreatic 
tumor cells did not affect proliferation in vitro but resulted 
in tumor growth and angiogenesis inhibition in vivo (Duda 
et al., 2003). In colon cancer, using oncolytic adenovirus, 
Smad4 expression promoted cell proliferation inhibition in 
vivo and in vitro, and reduced spheroids formation efficiency 
(Xiao et al., 2020).

Similar to targeting angiogenesis, invasion and metastasis 
are common features of cancer, seen in almost all types of 
tumors. Adenovirus gene therapy using key molecules involved 
in these processes, such as TIMPs or certain ECM compounds, 
seems to be another intelligent strategy for reducing the tumor 
malignant phenotype without limitations regarding tumor 
type, mutations, or alterations in important pathways that 
diverge among tumors. 

Modulating immune signaling

Tumor cells are modulated by both adaptive and innate 
immune systems. Induction of inflammation may promote 
tumor progression by secretion of growth and survival 
signaling molecules, and other factors that contribute to tumor 
establishment. In contrast, by immune surveillance, immune 
cells can destroy cancer cells (Hanahan and Weinberg, 2011). 
Cancer cells can evade immune destruction in the tumor 
microenvironment and support pro-malignant inflammation 
(Hanahan and Weinberg, 2011). 

One of the aims of adenovirus gene therapy is 
inducing the expression of immune components in the tumor 
microenvironment, such as inflammatory cytokines, that can 
regulate important cell pathways or activate the immunologic 
response, consequently triggering cell death or immune-
mediated destruction (Waldmann, 2018). Different cytokines 
are in clinical trials and some of them are already approved 
for cancer treatment. Although, one important implication 
involving cytokines in cancer therapy is the low concentration 
of these molecules in the tumor site and that a large quantity of 
systemic cytokines usually provokes high toxicity (Waldmann, 
2018). The use of adenovirus to target tumor cells may be 
an optimist alternative to increase the efficiency of cytokine 
delivery in cancer and reduce systemic toxicity.

Examples of adenovirus immunotherapy include the 
expression of tumor necrosis factor family members (TNF), 
like TNFα and TRAIL. These molecules are capable of inducing 
tumor growth suppression when expressed in tumor cells by 
oncolytic or non-replicative adenovirus (Table S6). In some 
cases, oncolytic adenoviruses carrying TRAIL had a higher 
cytotoxic effect in comparison to virotherapy alone (Shim 
et al., 2010; Cao et al., 2011b; Yang et al., 2015; Zhou et 
al., 2017), and improved chemotherapy treatment in bladder 
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cancer (Mao et al., 2014). In addition, transduction of TRAIL 
gene to mesenchymal stem cells (MSCs) in co-culture with 
esophageal cancer cell lines promoted tumor cell apoptosis 
(Li et al., 2014). 

The interferon (IFN) cytokine family is also used for 
cancer treatment. Induction of IFNα, -β, or -γ expression in 
tumor cells demonstrated a high antitumor effect in several 
types of cancer in vivo and in vitro (Table S6). Interestingly, 
treating cancer with Ad-IFNα resulted in higher IFNα 
concentration in tumors than in systemic circulation (Ohashi 
et al., 2005), and promoted regression of non-treated distant 
tumors as well, also inducing T-cells and natural killer cells 
recruitment to tumor site (Hara et al., 2007). IFNβ in an 
oncolytic adenovirus improved treatment (He et al., 2008; 
Park et al., 2010) and adenovirus expressing IFNγ showed 
low systemic toxicity (Xie et al., 2013; Zhao et al., 2007). 

Interleukins, such as IL-24, induce apoptosis and 
suppress growth in several tumor types (Chang et al., 2011). 
Ad-IL-24 promoted tumor suppression (Chang et al., 2011) 
and had its antitumor effect enhanced by radiotherapy in 
nasopharynx and breast cancer (Liu et al., 2013a; Zhao et al., 
2013). Furthermore, combination of IL24 and Oncostatin M 
(OSM) increased antitumor activity in comparison to isolated 
treatment in melanoma (Xu et al., 2014) and liver cancer, 
combining two different oncolytic adenoviruses expressing 
IL-24 or SOC3S resulted in higher tumor suppression when 
compared to alone treatments or with an empty oncolytic 
adenovirus (Cao et al., 2011a). 

IL-12 is another important cytokine that acts as an 
important mediator for cancer immune destruction as it can 
activate NK and T cells, but it is toxic when administered 
systemically (Mirlekar and Pylayeva-Gupta, 2021). Several 
studies using adenovirus encoding IL-12 alone demonstrated 
a potent antitumor effect in pre-clinical and clinical trials 
(reviewed before by Hernandez-Alcoceba et al., 2016). The 
combination of IL-12 oncolytic adenovirus in CIK cells in liver 
cancer generated higher cytotoxic effect than each separated 
treatment (Yang et al., 2012) and combination with a TGFβ 
inhibitor in melanoma cells promoted increased antitumor 
immune response as well, leading to CD4+, CD8+ T and NK 
cells activation and IFNγ secretion in the tumor site (Jiang 
et al., 2017). Importantly, the combination of IL-12 with 
suicide gene therapy, such as HSVtk/GCV and CD/5’-FU 
seems to enhance the antitumor effect in pre-clinical and 
clinical studies in comparison to suicide gene therapy or IL-12 
alone, increasing the presence of IL-12, IFNγ, in serum and 
tumor and inducing a specific antitumor immune response 
by NK cells and cytotoxic T cells activation in mouse model 
and in a phase I clinical trial (Freytag et al., 2013; Barton et 
al., 2021). Moreover, using IL-12 oncolytic adenovirus with 
selective replication in hypoxic conditions generated better 
antitumor response against pancreatic cancer in comparison 
to non-replicative adenovirus (Bortolanza et al., 2009). 

Differently from IL-24 and IL-12, IL-2 has already been 
approved by the Food and Drug Administration (FDA) for 
cancer treatment. It has also been demonstrated to be effective 
when delivered by an adenoviral vector in breast cancer using a 
specific promoter (Chaurasiya et al., 2016). Other interleukins 
have also been tested in gene therapy against cancer, such 

as IL-15 oncolytic adenovirus in breast carcinoma (Yan Y 
et al., 2019), and AdIL-3 in prostate cancer in combination 
with radiotherapy (Oh et al., 2004).

Several clinical trials evaluated the use of adenoviruses 
expressing cytokines for cancer treatment. A phase I clinical 
trial using Ad-IL12 for advanced digestive tumors demonstrated 
low toxicity, but only 29% of the patients presented disease 
stabilization and partial remission of the tumor in one patient. 
In addition, tumor immune infiltrate (CD4+ and CD8+ T cells) 
was observed in four of ten patients (Sangro et al., 2004). 
In advanced cancer patients, Ad-IL-24 was able to induced 
apoptosis in all tumors (Tong et al., 2005). 

Using IL-2, adenoviral gene therapy in prostate cancer 
patiets was well tolerated; inducing tumor lymphocytic 
infiltration, increase in IFNγ and IL-4 secretion within the 
tumor, and decrease in prostate specific antigen (PSA) levels 
(Trudel et al., 2003). In melanoma and other solid tumors 
patients, Ad-IL-12 also induced tumor lymphocytic infiltration 
(Dummer et al., 2008). Another phase I study demonstrated 
safety, no severe adverse side effects and no presence of 
systemic IL-2. However, only 24% of the metastatic breast 
cancer and melanoma patients resulted in tumor regression 
and tumor lymphocytic infiltration (Stewart et al., 1999). 
Additionally, an oncolytic adenovirus expressing TNFα and 
IL-2 is being currently (2022) tested in phase I clinical trials 
(See in clinicaltrials.gov). 

Different approaches for inducing an immune response 
against tumor cells using adenoviral vectors include the 
expression of CD40 ligand to promote the activation of 
adaptive immune response (Hanyu et al., 2008; Vardouli et 
al., 2009; Iida et al., 2010); NF-κB inhibition through the 
expression of its inhibitor, IκBα (Sumitomo et al., 1999; 
Mukogawa et al., 2003); and the expression of pathogen-
associated molecular patterns (PAMPs) to trigger innate 
immune responses (Tosch et al., 2009). Oncolytic adenovirus 
expressing immunomodulatory genes like GM-CSF has the 
potential to destroy tumor cells and at the same time modulate 
the immune system in the tumor microenvironment, having 
been evaluated in clinical trials (Ranki et al., 2016).

Therapeutic targets that involve the activation of the 
immune response within the tumor microenvironment may 
contribute to the activation of important pathways that lead 
to immune cell death and amplification of the destruction 
of the tumor. The use of adenovirus as gene carriers solves 
the problem of systemic contamination that leads to non-
desired immune effects. Adenoviruses can increase the 
cytokine levels within the tumor, and decrease the systemic 
circulation. However, the use of non-replicative adenovirus 
expressing cytokines alone was not always successfull, but the 
combination with oncolytic adenovirus, radio-, chemotherapy 
or other therapies potentialized the antitumor effect. 

Use of adenoviral vectors as vaccines 
Replicative adenovirus was firstly used in the 1960s 

as a vaccine against respiratory disease in an enteric-coated 
tablet to elicit immune response in the intestinal tract, this way 
avoiding respiratory symptoms (Couch et al., 1963). Since 
these vaccines showed to be safe in humans, recombinant 
adenovirus started to be considered as a possible tool for 
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vaccine development against other viral infections, like 
Hepatitis B virus and Human Immunodeficiency virus (HIV) 
(Morin et al., 1987).

Adenovirus against HIV

The first articles proposing adenoviral vectors for HIV 
were published in the 1990s and parallel studies on Simian 
Immunodeficiency virus (SIV) were performed, however, in 
this review, we are focusing only on HIV results. 

Initially, replicative Ad4, Ad5, and Ad7 were used to 
carry the sequence of HIV-1 envelope glycoprotein gene 
(env), or gag-protease gene (Chanda et al., 1990; Natuk et 
al., 1992; Natuk et al., 1993). These vectors were evaluated 
in dog, rhesus monkey and chimpanzee models and were 
capable of eliciting neutralizing antibodies against HIV 
(Natuk et al., 1992, 1993; Lubeck et al., 1994; Casimiro 
et al., 2003a). Alternatively, using the same vectors with 
HIV gp160 sequence, chimpanzees were protected against 
virus challenge (Lubeck et al., 1997). Interestingly, cellular 
response was also achieved using non-replicative Ad5 to 
deliver HIV1 gag gene, a safer vaccine model (Casimiro et 
al., 2003b). After this, replicative-defective adenoviruses were 
extensively used and the results discussed next are from these 
first-generation vectors.

Using a vaccination protocol of DNA vaccine prime and 
Ad5 or Ad5/35 expressing env gene as a boost in mice, the 
authors observed it induced high levels of IFNγ-secreting cells 
(Takakura et al., 2005), neutralizing antibodies (Mascola et 
al., 2005) and protection against a recombinant HIV-vaccinia 
virus (Xin et al., 2005). Similar results were obtained using 
other heterologous systems, such as Ad5/poxvirus vectors 
with HIV gag in rhesus macaques (Casimiro et al., 2004); 
Ad5 or Ad7 followed by HIV gp120 protein immunization 
in chimpanzees (Gómez-Román et al., 2006); DNA/Ad5/
protein in rhesus macaques (Vinner et al., 2006) or guinea 
pigs (Shu et al., 2007); DNA/Ad5/Sendai virus carrying HIV 
gag tested in mice and rhesus macaques (Yu et al., 2008) and 
lentivirus/Ad5 in mice (Asefa et al., 2010).

After tests in several animal models, the first phase 
I clinical trials started to show results, healthy adults were 
inoculated with a mixture of 4 recombinant Ad5 for 3 different 
clades of HIV1 (Catanzaro et al., 2006) or Ad5 with HIV-1 
Clade B gag/pol/nef (Priddy et al., 2008) and there were no 
major concerns about safety. Around 2007 some clinical trials 
resulted in no protection against HIV, while other clinical 
trials indicated possible problems involving previous Ad5 
infection, emerging evidence showed that previous exposure 
to adenovirus could impair vaccine efficacy (Steinbrook, 
2007; Quirk et al., 2008; Sekaly, 2008; Yu et al., 2008). Even 
worse, Ad5 seropositive individuals vaccinated could have 
a more permissive environment for HIV infection (Perreau 
et al., 2008; Benlahrech et al., 2009; D’Souza and Frahm, 
2010; Hu et al., 2014), despite some controversial results 
(O’Brien et al., 2009; Curlin et al., 2011; Kaner et al., 2012). 
In spite of the increased susceptibility to HIV infection, 
later analysis showed no difference in disease progression 
between Ad5 vaccinated and placebo groups (Fitzgerald et 
al., 2011). One explanation for such increased susceptibility 
for HIV infection in the Ad5 vaccinated individuals is that 

stimulus with Ad5 in preexistent Ad5-seropositive individuals 
may trigger expansion of a specific HIV susceptible CD4+ 
population with increased CCR5 expression, the co-receptor 
used by HIV to infect the cells (Benlahrech et al., 2009) and 
that have a Th17-like phenotype (Hu et al., 2014).

Because of the negative results, alternatives were 
investigated and other types of adenoviruses in animal models 
started to be employed (Michael 2012), for example using 
chimpanzee adenovirus (ChAd) (Santra et al., 2009); ovine 
adenovirus (OAd) (Bridgeman et al., 2009); Ad26 expressing 
HIV-1 Gag, Pol, and Env antigens (Barouch et al., 2010); 
Ad4-Env (Alexander et al., 2013) or even edited/mutated 
Ad5 (Gabitzsch et al., 2009; Hidajat et al., 2010). Other 
prime-boost regimens were developed, like combinations of 
Bacillus Calmette-Guérin (BCG)/OAd/poxvirus (Hopkins et 
al., 2011); Ad26/Ad35 (Barouch et al., 2012; Kaufman et al., 
2012); ChAd/DNA/modified Vaccinia virus Ankara (MVA) 
(Roshorm et al., 2012); Ad35/MVA (Ratto-Kim et al., 2012). 
Additionally, second-generation adenoviruses were also used, 
based on Ad5 (Thomas et al., 2013). The delivery route of 
vaccination could be an alternative as well, as respiratory 
aerosolization delivery (Kaufman et al., 2010) or sublingual 
vaccination appeared to enhance CD8+ T cells activation, 
especially in mucosal sites (Appledorn et al., 2011).

Clinical trials in healthy adults were conducted for Ad35 
containing multiple HIV genes (Keefer et al., 2012; Kopycinski 
et al., 2014; Omosa-Manyonyi et al., 2015); Ad26-Env (Baden 
et al., 2013, 2015; Barouch et al., 2013; Esparza, 2013); Ad5 
modified with Ad48 hexon expressing HIV env (Ad5HVR48-
Env) (Baden et al., 2014); a heterologous system with DNA, 
followed by ChAd and MVA, all carrying a fusion of all 
HIV conserved antigens (Hayton et al., 2014); a regimen of 
prime-boost with Ad35/Ad5 (Fuchs et al., 2015; Crank et al., 
2016; Walsh et al., 2016b); Ad26/Ad35 (Baden et al., 2016) 
or Sendai virus/Ad35. In a phase 3 trial, DNA prime with Ad5 
boost showed no efficacy in a high risk for HIV1 infection 
population (Nyombayire et al., 2017), however high levels of 
specific CD8+ T cells were described to be associated with a 
lower risk of HIV infection (Janes et al., 2017). Recently, an 
Ad26 expressing Env/Gag/Pol in a 2b Clinical trial failed to 
confer high protection against HIV, showing about 25% of 
vaccine efficacy (CISION PR Newswire, 2022). Several other 
studies with other prime-boost formulations are underway 
and may provide better results. 

Adenovirus against coronavirus

Another beneficiary of adenoviral vectors development 
is the vaccine against coronavirus. The first adenoviral vector 
that provided protection against a coronavirus was tested in 
pigs in 1994. The non-replicative Ad5 was used to carry the 
glycoprotein S (Spike) of porcine respiratory coronavirus 
(PRCV) and elicited mucosal immunity in pigs (Callebaut 
et al., 1993). The animals produced neutralizing antibodies 
against PRCV (Callebaut and Pensaert, 1995; Callebaut et al., 
1996). Another adenoviral vector was constructed carrying 
haemagglutinin-esterase (HE) of bovine coronavirus (BCV) 
and tested in cotton rats; it induced systemic and mucosal 
immune responses after immunization (Baca-Estrada et 
al., 1995). In the following years, other adenoviral vectors 
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expressing coronavirus proteins from different animal species 
were tested including transmissible gastroenteritis coronavirus 
(TGEV) (Torres et al., 1995; Torres et al., 1996).

The outbreak of severe acute respiratory syndrome 
coronavirus (SARS-CoV-1) in 2003 stimulated researchers to 
find effective vaccines against coronavirus infecting humans. 
Pre-clinical studies in mice and rats showed potent immune 
responses against the nucleocapsid (N) and Spike (S) proteins 
of SARS-CoV-1 after their delivery by an Ad5 vector (Liu et 
al., 2005; Zakhartchouk et al., 2005; See et al., 2006; Shim 
et al., 2012). Chimpanzee adenovirus C7 (ChAdC7) vector 
was also tested and elicited immune response against SARS-
CoV1 in mice (Zhi et al., 2006). 

In 2012, a new outbreak was caused by the Middle East 
respiratory syndrome coronavirus (MERS-CoV). Since then, 
there have been several studies showing neutralizing antibodies 
produced in mice immunized with human Ad5, Ad26, Ad41 
or ChAd carrying the S gene (Kim et al., 2014; Guo et al., 
2015; Alharbi et al., 2017; Jung et al., 2018; Jia et al., 2019; 
Dolzhikova et al., 2020). ChAd-S was later tested in camels, 
the natural host of MERS-CoV, and induced production of 
neutralizing antibodies (Alharbi et al., 2019).

ChAd vectors, including ChAdOX1 developed by 
researchers from Oxford University, were then redirected to be 
used against the new pandemic coronavirus, SARS-CoV-2 in 
2020. In rhesus macaques, mice, hamster and ferret’ models, 
the ChAd vectors carrying the S gene were able to induce 
robust immune responses and protect animals from pneumonia, 
results that greatly contributed to fast-track vaccines to the 
first clinical trials (van Doremalen et al., 2020; Hassan et al., 
2020; 2021a,b; Marsh et al., 2021; Bricker et al., 2021). The 
same effects were observed in rhesus macaques and hamsters 
using human Ad26 as a carrier for the S gene (Mercado et al., 
2020; Tostanoski et al., 2020; He et al., 2021), and in mice 
and macaques using Ad5 (Wu et al., 2020; Feng et al., 2020; 
Kim et al., 2021; King et al., 2021). In parallel, other vectors 
have been tested, such as simian adenovirus types 23 and 49 
(Luo et al., 2021), gorilla adenovirus 32 (Capone et al., 2021) 
and rhesus adenovirus type 52 (Tostanoski et al., 2021).

Clinical trials were done in healthy adult volunteers 
using ChAd against MERS-CoV (Folegatti et al., 2020a). In 
order to protect from SARS-CoV-2 and prevent development 
of COVID19 disease, Ad5 (Zhu et al., 2020; Guzmán-Martínez 
et al., 2021; Wu et al., 2021) (CT1, CT8, CT12), ChAdOx-1 
(Folegatti et al., 2020b; Ramasamy et al., 2020), Ad26 
(Tukhvatulin et al., 2021), or Ad26 and Ad5 as a prime-boost 
system (Logunov et al., 2020) have been employed; also 
ChAd was tested in health care workers (Benning et al., 2021; 
Havervall et al., 2021; Lee et al., 2021); Ad5 was evaluated 
in children above 6 years old (Zhu et al., 2021); and ChAd in 
heart transplanted individuals (Tanner et al., 2022). Showing 
its safety and effectiveness.

In phase 3 clinical trials, the heterologous prime-boost 
system using Ad26 and Ad5 as vectors presented an efficacy of 
91,6% against COVID-19 (Logunov et al., 2021); injection of 
Ad26 alone, showed efficacy of 81.7% against severe-critical 
COVID-19 after 28 days of immunization (Sadoff et al., 2021). 
Using one dose of Ad5 alone, efficacy against symptomatic 
infection was 57.5% (Halperin et al., 2022).

After vaccines roll out in the real world, some safety 
concerns emerged in rare cases of adverse events. There is 
some evidence that intramuscular adenovirus application can 
induce thrombotic thrombocytopenia in susceptible individuals 
(McGonagle et al., 2021), and other similar blood disorders in 
rare cases after ChAd and Ad26 vaccination (Lundstrom et al., 
2021; Sorensen et al., 2021; Trogstad et al., 2021; Walter et al., 
2021). This started a series of researches involving adenovirus 
modifications and changes in the route of application, like 
intranasal to overcome such events.

Adenovirus against tuberculosis and other bacteria

The adenovirus system has been tested and used against 
several other pathogens, not just for viruses. One example 
is tuberculosis (TB). For several years, alternative vaccines 
against TB have been studied, because the protection mediated 
by Bacillus Calmette-Guérin is not sufficient to control TB 
spread. Initially tested in mice models, recombinant adenoviral 
vaccines carrying immunogenic epitopes of Mycobacterium 
tuberculosis (AdAg85A) appeared to be a good option. It 
showed better immune protection administered intranasally 
when compared to BCG (Wang et al., 2004), it worked as a 
booster also for BCG prime alone (Santosuosso et al., 2006; Li 
et al., 2015), as well as when followed by modified Vaccinia 
virus Ankara vectors (You et al., 2012; Betts et al., 2012; 
Stylianou et al., 2015; Kou et al., 2018). 

Going further in other animal models that are susceptible 
to Mycobacterium infection, a recombinant adenovirus 
expressing multiple antigens (Ag85A, TB10.4, TB9.8 and 
Acr2) increased BCG protection after M. caprae challenge 
(Pérez De Val et al., 2013); in guinea pigs after M. tuberculosis 
exposure, AdAg85A boost led to increased survival compared 
to BCG administration alone (Xing et al., 2009). A similar 
result was observed in cattle using BCG as prime, AdAg85A 
as a booster and tested against M. bovis challenge (Dean et 
al., 2014). Interestingly, in rhesus macaques using BCG as 
prime and a boost of Ad5 vector caring TB antigens (M72, 
ESAT-6/Ag85b, or ESAT-6/Rv1733/Rv2626/RpfD) showed 
no enhanced protection against infection compared to BCG 
used alone (Darrah et al., 2019), and the same result was 
observed using a regimen of prime-boost strategy with ChAd3 
and MVA (Vierboom et al., 2020).

Clinical trials using an Ad35 deficient vector carrying 
a fusion protein of three M. tuberculosis antigens (Ag85A, 
Ag85B and TB10.4) were performed on several target groups 
and showed to be safe in healthy volunteers (Hoft et al., 2012; 
Sheehan et al., 2015; Tameris et al., 2015); infants 6-9 months 
(Kagina et al., 2014) and in subjects with TB latent infection 
(Walsh et al., 2016a; van Zyl-Smit et al., 2017). In addition, 
a phase 1b trial using Ad5-Ag85A in healthy volunteers 
showed higher levels of mucosal immune cells by aerosol 
administration than by muscle injection (Jeyanathan et al., 
2022). No results about efficacy are available yet.

The adenoviral delivery system carrying bacterial 
proteins has also been used in the research of vaccines 
for other bacteria of medical importance. Against Bacillus 
anthracis, the agent of Anthrax, an Ad5 was constructed 
and tested via intranasal or intramuscular in mice and rabbits 
showing high survival rates after challenge (Tan et al., 2003; 



Adenoviral gene therapy 15

Kasuya et al., 2005; McConnell et al., 2006; Zhang et al., 
2013a; Wu et al., 2014; Krishnan et al., 2015). Ad5 was used 
against Haemophilus influenza as well and tested in chinchillas 
(Winter and Barenkamp, 2010), for Leptospira interrogans 
Ad5 was tested in gerbils (Branger et al., 2001), for Listeria 
monocytogenes (Christensen et al., 2013), Pseudomonas 
aeruginosa (Worgall et al., 2005) and Yersinia pestis (Kilgore 
et al., 2021) the tests were done in mice, all showing immune 
response activation.

Prevention of other diseases

The possibilities for adenoviral vectors usage are endless, 
several other studies are underway for malaria (Ewer et al., 
2015; Hollingdale et al., 2017); Ebola (Matz et al., 2019) and 
Marburg virus (Dulin et al., 2021), Influenza virus (Kerstetter 
et al., 2021), Dengue virus (Khanam et al., 2009; George 
and Eo, 2011), Chikungunya virus (Campos et al., 2019; 
Folegatti et al., 2021) and Zika virus (Bullard et al., 2020; 
López-Camacho et al., 2020), Hepatitis B virus (HBV) (Zhang 
et al., 2018b; Chinnakannan et al., 2020), Hepatitis C virus 
(HCV) (Agrawal et al., 2019; Hartnell et al., 2020), Human 
Respiratory Syncytial virus (HRSV) (Gomi et al., 2018; 
Cicconi et al., 2020; Williams et al., 2020), Nipah virus (NiV) 
(van Doremalen et al., 2019), Human Papillomavirus (HPV) 
(Li et al., 2016; Wu et al., 2018), Rotavirus (Xie et al., 2015) 
and many more. Adding to this, veterinary application, against 
pathogens like Foot-and-mouth disease virus (FMD) (Diaz-San 
Segundo et al., 2017), Rift Valley fever virus (Stedman et al., 
2019), Rabies virus (Wang et al., 2019b), Rabbit hemorrhagic 
disease virus (RHDV) (Jiang et al., 2018), African Swine 
Fever virus (Lokhandwala et al., 2017), Porcine Reproductive 
and Respiratory Syndrome virus (Zhu et al., 2014), Feline 
Immunodeficiency virus (Gonin et al., 1995) and much more. 
In addition, for Ebola, several formulations are in advanced 
clinical trials and some are already approved by many health 
regulatory agencies, including vaccines based on Ad26, Ad5 
and ChAd3 (Woolsey and Geisbert, 2021).

Modulation of immune system by adenovirus

One interesting aspect of adenovirus usage is the 
capability of immune modulation by choosing the inoculation 
route and by virus modifications. For example, mice 
immunized intraperitoneally with a replication-defective 
adenovirus elicited an IgGa immune response against the 
hexon, while intravenous application triggered an antibody 
isotype variation (Gahéry-Ségard et al., 1997). Adenoviral 
intranasal immunization induced higher levels of specific 
IgA on airway mucosa, higher systemic IgG1/IgG2a ratio 
and lower levels of IFN-γ secreting cells compared to 
subcutaneously application (Papp et al., 1999b). Surprisingly, 
orally administered adenovirus, elicited systemic immune 
response rather than mucosal (Oomura et al., 2006). Moreover, 
combination of different routes can help to obtain a stronger 
immune response. In a study model for HRSV, a regimen 
of oral prime and intranasal Ad vaccine boost was able to 
enhance immune response compared to each individually 
(Fu et al., 2010).

Intramuscular injection generated high levels of CD8+ T 
cell, probably due to adenovirus’ ability to express considerable 

high quantities of antigens (Yang T et al., 2003) plus its 
costimulatory effects in antigen-presenting cells (APCs), 
promoting activation and maturation of dendritic cells (DC) 
and inducing prolonged CD8+ T lymphocytes activation (Rea 
et al., 1999; Hensley et al., 2005; Tatsis et al., 2007b). The 
same advantage of adenovirus to induce high expression levels 
can have a downside effect, this presentation for long periods 
can provoke T cells exhaustion, a state of dysfunctional role 
common in processes of chronic inflammation, fortunately, 
CD8+ T cells appeared to still work against virus challenge 
despite the exhausted phenotype (Yang et al., 2006). There 
is a possibility that the exhausted T cells are related to the 
immunization route since systemic immunization induced 
impaired T cells but the same was not observed in the peripheral 
route (Holst et al., 2010). Furthermore, in an HBV vaccination 
mice model, repeated vaccination with short intervals for a 
long period did not inhibit T cells induction, leaving a doubt if 
the exhausted phenotype is really impairing immune response 
(Boukhebza et al., 2014).

Another aspect of adenovirus infection and immune 
responses is controlled by the different receptors that each 
subtype preferably interacts with. Most Ad types use CAR 
to enter cells, others CD46, a receptor presented in DC cells 
that contribute to its infection and together with Toll Like 
Receptor 9 (TLR9) activation induces these cells to produce 
IFN-α (Iacobelli-Martinez and Nemerow, 2007; Perreau et al., 
2012). Therefore, the choice of adenovirus type is important. 
For example, Ad3 can be found in the liver and lung, while 
Ad37 in the spleen after intravenous administration; Ad3 and 
Ad4 can even be toxic for the liver (Appledorn et al., 2008). 
Additionally, responses can be type-specific, Ad28 and Ad35 
are more efficient in infecting and activating DC cells than 
Ad5, but they also induce more IFN-α and that can reduce 
their effectiveness in vivo, which can be overcome by higher 
Ad doses to increase the duration of CD8+ T cells response 
(Johnson et al., 2012).

Regarding innate immunity, it is important to emphasize 
that it is not a single TLR that is responsible for immune 
activation, apparently, multiple pathways are being activated by 
Ad, since knock out of each TLR individually did not change 
CD8+ response but absence of Myd88, an adaptor of TLR 
pathway, reduced it (Rhee et al., 2011). In addition, specific 
activation of TLR4 is described as an important step to trigger 
an effective humoral immune response by Ad vectors (Li R 
et al., 2018). TLR4 agonists can also enhance activation of 
CD4+ and CD8+ T cells and pro-inflammatory cytokines when 
used as an adjuvant to Ad vaccination (Lebedeva et al., 2018).

Cytokine production has different modulatory activities 
depending on Ad type; Ad26, Ad35 and Ad48 use CD46 
receptor induce more IFN-γ, 10-kDa gamma interferon-
induced protein (IP-10), interleukin 1 receptor antagonist 
(IL-1RA) and IL-6, all related to a proinflammatory pattern, 
compared to Ad5, a type that uses CAR receptor (Teigler et 
al., 2012). 

An additional layer to consider when using adenoviral 
vectors is related to previous immune responses to the specific 
type used, since prior exposure to the Ad can interfere with 
its capability to induce an immune response, especially in 
homologous prime-boost regimens (Yang Z et al., 2003; 
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Schuldt et al., 2012). However, usage of different types of 
adenoviruses can overcome this problem, as exemplified 
by researchers’ experiments with isotypes of defective 
chimpanzee adenovirus applied in a heterologous prime-boost 
immunization; they showed induction of a high frequency of 
specific CD8+ T cells (Pinto et al., 2003). Moreover, usage of 
rare Ad types can contribute to activation of phenotypically 
different T cells triggering polyfunctional immune responses 
(Liu et al., 2008). In conclusion, to use the full potential of 
Ad vectors, all aspects of their interaction with the immune 
system need to be evaluated and extensively studied, especially 
considering the different applications in gene therapy, cancer 
treatment and vaccine development.

Conclusion
Adenovirus is a double-stranded DNA virus that does 

not integrate the host genome, remaining episomal. Gene 
transfer mediated by adenoviral vectors is not sustained for 
long periods, unless it has been altered to be able to integrate. 
This limits its application for monogenic diseases treatment. 
However, for cancer gene therapy, transgene expression has 
to last only long enough to mediate the tumor cells death, the 
choice of the transgene has to take into account the tumor 
cell and microenvironment, limiting its nutritional supply, 
preventing proliferation, inducing cell death and recruiting 
and activating immune cells capable of destroying the tumor 
cells and averting dissemination to other sites. The recent and 
broad use of adenoviral vectors as vaccination tools in the 
COVID-19 crisis has put this technology in the spotlight and 
overall, it had success, there are some issues to be solved and 
questions to be answered, like if the individuals vaccinated 
with adenoviral vectors will develop neutralizing antibodies 
that will impede its future use. In Figure 3 we discuss the 
distribution of clinical trials involving adenoviral technology. 
It has been a long and bumpy road along the way. But the 
continuous effort in this research field may warrant new 
successful therapies and vaccines.
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