
Citation: Yan, Q.; Shan, S.; Sun, M.;

Zhao, F.; Yang, Y.; Li, Y. A Social

Media Infodemic-Based Prediction

Model for the Number of Severe and

Critical COVID-19 Patients in the

Lockdown Area. Int. J. Environ. Res.

Public Health 2022, 19, 8109. https://

doi.org/10.3390/ijerph19138109

Academic Editors: Paul B. Tchounwou

and Giuseppe La Torre

Received: 13 May 2022

Accepted: 28 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

A Social Media Infodemic-Based Prediction Model for the
Number of Severe and Critical COVID-19 Patients in the
Lockdown Area
Qi Yan 1,2,*, Siqing Shan 1,2, Menghan Sun 1,2, Feng Zhao 1,2, Yangzi Yang 1,2 and Yinong Li 1,2

1 School of Economics and Management, Beihang University, Beijing 100191, China;
shansiqing@buaa.edu.cn (S.S.); smh_gabriella@buaa.edu.cn (M.S.); zhao_feng@buaa.edu.cn (F.Z.);
ymyang@buaa.edu.cn (Y.Y.); liyinong@buaa.edu.cn (Y.L.)

2 Beijing Key Laboratory of Emergency Support Simulation Technologies for City Operation,
Beijing 100191, China

* Correspondence: bhyanqi@buaa.edu.cn

Abstract: Accurately predicting the number of severe and critical COVID-19 patients is critical for
the treatment and control of the epidemic. Social media data have gained great popularity and
widespread application in various research domains. The viral-related infodemic outbreaks have
occurred alongside the COVID-19 outbreak. This paper aims to discover trustworthy sources of social
media data to improve the prediction performance of severe and critical COVID-19 patients. The
innovation of this paper lies in three aspects. First, it builds an improved prediction model based on
machine learning. This model helps predict the number of severe and critical COVID-19 patients
on a specific urban or regional scale. The effectiveness of the prediction model, shown as accuracy
and satisfactory robustness, is verified by a case study of the lockdown in Hubei Province. Second,
it finds the transition path of the impact of social media data for predicting the number of severe
and critical COVID-19 patients. Third, this paper provides a promising and powerful model for
COVID-19 prevention and control. The prediction model can help medical organizations to realize a
prediction of COVID-19 severe and critical patients in multi-stage with lead time in specific areas.
This model can guide the Centers for Disease Control and Prevention and other clinic institutions to
expand the monitoring channels and research methods concerning COVID-19 by using web-based
social media data. The model can also facilitate optimal scheduling of medical resources as well as
prevention and control policy formulation.

Keywords: COVID-19; prediction model; machine learning; sentiment polarity; social media

1. Introduction

Considering the COVID-19 treatment practices in countries such as China, Italy, Spain,
the United Kingdom, and the United States, severe and critical patients with COVID-19
in lockdown areas have relatively high mortality rates. Improvements in the recovery
rate of the numbers of severe and critical COVID-19 patients is a critically important
factor for effective control of the epidemic. The effective treatment of severe and critical
COVID-19 patients requires massive medical resources, including setting up intensive
care units (ICU) wards, equipping professional equipment and facilities (e.g., ventilators,
EMCO), and deploying technical medical personnel. The increasing numbers of severe
and critical COVID-19 patients are of great uncertainty, significantly disrupting the normal
clinical treatment order of hospitals. If the allocation of medical resources is not timely
and adequate, the regular and orderly treatment of patients will be seriously interrupted.
Accurate prediction of the number of severe and critical COVID-19 patients helps to solve
problems such as disordered treatment, unreasonable deployment of medical personnel,
and inability to arrange professional medical equipment and facilities in advance. Therefore,
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patient-oriented rescue measures can improve the effectiveness of treatment and help
policymakers formulate tailored policy measures for epidemic prevention and control.
Accurate prediction of the number of severe and critical COVID-19 patients is an urgent
issue to combat the epidemic of COVID-19.

The purpose of this study is to predict the number of COVID-19 severe and critical
patients in a lockdown area (Hubei Province, China) via data from the social media plat-
form, Sina Weibo. Social media, also named social sensor, has the advantages of timeliness,
openness, and easy access. Nguyen et al. (2020) studied the influence of customer emotions
transited in social media on the investment strategies of investors and enterprise value [1].
He et al. (2018) investigated the way non-local enterprises utilized social media to pro-
mote effective purchases and to improve customer relationships after a crisis in public
relations [2]. Severe and critical COVID-19 patients in the lockdown area are also popular
topics on social media. People post their needs and concerns on social media, so that the
“infodemic” quickly generates and spreads. Such social media data can reflect valuable
information on severe and critical COVID-19 patients in a timely and effective manner,
including the number of patients and the emotional intensity of patients. Recognizing,
understanding, and controlling the “infodemic” helps to predict the development of the
epidemic. This study uses social media data to build a prediction model with a forecast
horizon, to predict the number of severe and critical COVID-19 patients in the lockdown
area. The prediction model is capable of solving the predict uncertainty issues, and the
forecast horizon of the model can save time for medical institutions, medical staff, and
policymakers in advance to properly predict the disease epidemic and formulate prevention
measurements.

This study contributes to the existing literature in three aspects. First, in terms of the
research perspective, this study uses social media data to predict the number of severe
and critical COVID-19 patients in the lockdown area, which is also a popular topic on
social media. Second, in terms of research data, this study uses both real-time social
media data and published consensus data on severe and critical patients for making
predictions. Social media data are advantageous as they involve large numbers of people’s
sensors, provide timely information, and facilitate intense public discussion and public
attention. Third, in terms of the research method, it proposed an improved machine
learning prediction model based on the Hidden Markov model (HMM). This model can
accurately predict the number of severe and critical COVID-19 patients in the lockdown
area. Currently, more studies are focusing on exploring and predicting the severity of the
COVID-19 epidemic. For example, Menni et al. (2020) used a symptom tracker to predict
the number of potentially infected people by establishing a logistic regression model.
COVID-19 symptom data in their study was collected through a smartphone app [3].
Yan et al. (2020) proposed a logically straightforward and easy decision rule to predict
patients at the highest risk. Data were sourced from a blood sample database of COVID-19
infected patients in Wuhan, China [4]. Based on an exponential growth model, Tsang
et al. (2020) estimated the impact of different definitions of COVID-19 confirmed cases on
the epidemic’s curve and transmission parameters and further predicted the number of
new infections [5]. Based on a stochastic propagation dynamics model, Kucharski et al.
(2020) predicted the dynamics of the outbreak and the future downward trend of the
COVID-19 epidemic [6]. Yang et al. (2020) constructed an improved Susceptible-Exposed-
Infectious-Removed (SEIR) model and Long-Short-Term-Memory (LSTM) neural network
to predict the development trend of the COVID-19 epidemic under public health policy
interventions [7]. The study used data from confirmed diagnoses published daily in China
and travel data for public transportation. Based on consensus data of confirmed cases,
Leung et al. (2020) proposed the Susceptible–Infectious–Recovered model to study the
impact assessment of the dissemination and severity of COVID-19 under public health
interventions outside Hubei, China [8]. Based on Wuhan’s real-time mobility data and
detailed consensus data of COVID-19 infection cases, Chinazzi et al. (2020) explored the
role of imported COVID-19 infection cases in the spread of Chinese cities and measured the
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impact of lockdown measures on the COVID-19 epidemic; their study results showed that
the interventions implemented in China achieved plausible progress in slowing down the
spread of COVID-19 locally [9]. Tian et al. (2020) also investigated the spread and control
of the COVID-19 epidemic with data including case reports, human activities, and public
health interventions; they found that the national emergency response appeared to combat
the growth of the COVID-19 epidemic in China, to a large extent, and limit the scale of the
epidemic, avoiding hundreds of thousands of potential cases by February 19 (day 50) [10].
In addition, Jia et al. (2020) measured the risk of regional outbreaks from the perspective
of population mobility using mobile phone data [11]. By collecting clinical data from
two New York hospitals, Cummings et al. (2020) studied epidemiological characteristics
and evolution of severe and critical patients [12]. Álvarez-Mon et al. (2021) created an
individualized analysis model of the risk of ICU admission or death for COVID-19 patients
as a tool for the rapid clinical management of hospitalized patients in order to achieve
resilience of medical resources [13]. To predict the time of the outbreak peak and the ICU
beds required, Moghadas et al. (2020) simulated a COVID-19 outbreak by parameterizing
U.S. demographics [14]. The results showed that the ICU capacity was insufficient in
responding to this rapid outbreak. Policies that encourage self-isolation, may delay the peak
of the epidemic and provide a time window for emergency mobilization to expand hospital
capacity. Mohsin et al. (2021) identified several vital lifestyles and comorbidity-related
risk factors of severe-critical COVID-19 [15]. HMM has gained growing popularity in the
fields of bioinformatics, fault diagnosis, and disease prediction. Based on HMM, Perveen
et al. (2019) used primary electronic health care cases to predict the risk of developing
diabetes within 8 years and identify various factors affecting the risk of disease [16]. Barra
et al. (2020) proposed a method for quantifying the number and duration of migraine
attacks based on the patient’s diary [17]. This model enables researchers to procure data
with high inter-study validity. In addition, social media data have become one of the
important data sources for scientific research [18], and the significant amount of hidden
but valuable information it contains is worth mining and analyzing. Deng et al. (2018)
comprehensively investigated the relationship between microblog sentiment and stock
returns at the market and individual stock levels [19]. Roy et al. (2020) constructed an
algorithm model called the “Suicide Artificial Intelligence Prediction Heuristic”, to predict
the future risk of suicidal thoughts by analyzing public Twitter data [20]. Gan et al. (2022)
studied differences in posting patterns and user behaviors between men and women during
the COVID-19 epidemic through social media [21].

2. Materials and Methods
2.1. Data Description

This paper aims to predict the number of perceived severe and critical COVID-19
patients from web-based social media data combined with officially published data and
improve the predictions of severe and critical patient numbers in the lockdown area. The
lockdown in Hubei Province began on 23 January 2020, and ended on 24 March 2020. Hubei
Province began publishing consensus data on severe and critical patients on 20 January 2020,
which are taken from public datasets that are freely available online. Therefore, the period
for data collection in this study was from 0:00 on 20 January 2020 to 24:00 on 24 March 2020.
To measure the prevalence of COVID-19 on social media, we collected and analyzed social
media data through Sina Weibo (one of the largest web-based social media platforms in
China) API (Application Programming Interface). We purchased the data collection service
from Gooseeker. Gooseeker is an authorized API of Sina Weibo. Specifically, this study
collected social media data that contains at least one of the following keywords including
“FEVER”, “GETTING HEAT”, “INFECT”, “PNEUMONIA”, “COUGH”, “VIRUS”, and
“ISOLATION”. The post should be released from 20 January 2020 to 24 March 2020, by
a blogger that is registered in Hubei Province. The whole data set amounts at 1,076,174
items, and each social media text contains information such as content, blogger name,
posting time, and URL. The geographical distribution of social media data is shown in
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Figure 1. Social media data contains COVID-19-related microblogs published by two types
of patients: bloggers who already knew about self-infection and others who experienced
similar COVID-19 symptoms but were unsure about infection. As a social sensor, social
media data can reflect the characteristics and emotions of COVID-19 patients or potential
patients in reality.
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Figure 1. Geographic distribution of the number of perceived severe and critical COVID-19 patients
and the number of confirmed cases by region in Hubei Province. Note: (a) Number of confirmed
COVID-19 patients in Hubei Province during the lockdown period reported by consensus statistics.
(b) Number of severe and critical patients related social media texts (abbreviated as SC-related
social media texts) in Hubei Province during the lockdown period. The darker colors in the map
indicate a larger number of COVID-19 patients in the region, indicating a more severe epidemic and a
higher number of confirmed patients. In both maps, Wuhan is the darkest region, indicating that the
epidemic situation shown by the number of SC-related social media texts is highly consistent with
the actual situation. In Shiyan, Xiangyang, Suizhou, Jingmen, Enshi, Xianning, Huangshi, and other
cities, there is a correlation between the number of SC-related social media texts and the cumulative
number of confirmed COVID-19 patients, which shows a similar color change trend in the map;
this indicates that the geographical distribution of the number of SC-related social media texts can
effectively reflect the severity of COVID-19 in different regions. The number of SC-related social
media texts in Xiaogan, Huanggang, Jingzhou, and other regions reflects the degree of the epidemic
situation to be lower than the actual diagnosis, and higher than the actual diagnosis in Yichang. The
trend difference in some cities may be due to inconsistencies in the number of COVID-19 patients and
severe and critical COVID-19 patients. Since the information on geographic location collected from
social media only contains 13 prefecture-level cities, data for the three county-level cities of Xiantao,
Qianjiang, and Tianmen are considered as one area when merged with Jingzhou, and data for the
Shennongjia forest area are considered as one area when merged with Shiyan.

2.2. Research Model

Based on HMM, this study builds a supervised machine learning model by considering
the consensus data of severe and critical COVID-19 patients, the number of perceived
severe and critical patients from social media, and the sentiment polarity of COVID-19-
related social media texts; this model can realize the phased and horizontal prediction of
severe and critical patient numbers in the lockdown area. The innovation of this study
lies in three aspects. First, we construct an improved prediction model based on HMM.
Many studies [22–25] have shown that machine learning works better in analyzing and
processing nonlinear data. Compared with the time series model and regression model,
HMM is a data-driven algorithm and has a substantial capacity to approximate nonlinear
functions which can be used to satisfactorily predict nonlinear, time-varying data; moreover,
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it is not necessary to choose the form of function artificially in HMM, which helps to
explore the rules that are difficult to be found in the traditional linear regression model.
Therefore, HMM can better adapt to the characteristics of complex data structure, which
is consistent with our data feature in this paper; this machine learning model can realize
the phased and prospective prediction of COVID-19 severe and critical patients in the
lockdown area. The forecast horizon in the model guarantees more time for clinical
treatment preparation. The model helps to make multiple predictions at various time
points during the lockdown period. Second, by mining COVID-19-related information
in social media data, we identified two key prediction indicators driven by social media
data: the number of perceived severe and critical COVID-19 patients and the sentiment
polarity of COVID-19-related social media texts. Compared with the studies that used
official published data, it was verified that these two indicators improve the accuracy of
the prediction of quantity. Third, we propose a COVID-19 prevention and control method,
which can help the medical system to formulate treatment plans by predicting the number
of severe and critical patients, dispatching medical personnel, and formulating prevention
and control policies to enhance the quality of work; it can assist medical staff to perform
early detection and intervention on patients, effectively reducing the case fatality rates as a
result. Thus, this study provides a theoretical and methodical framework to utilize social
media data in the prevention and control of the COVID-19 epidemic.

Note: Figure 2 depicts the four steps of constructing the two crucial prediction indi-
cators of NPSCPt. and TSPIt. The first step is data preprocessing and the acquisition of
seed words. The second step is to extract and expand the feature dictionary of COVID-19
severe and critical patients. The third step is to calculate the number of perceived severe
and critical patients and the output NPSCPt. The fourth step is to calculate sentiment
polarity and the output TSPIt and TSPISC

t . The specific process of each step is shown in
Figures 3–6.
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NPSCP is the abbreviation for the number of perceived severe and critical patients
in social media data. NPSCPt is defined as NPSCP of the t-period. The severe and critical
patients are identified based on the constructed feature dictionary. When calculating the
number of severe and critical social media texts in the t-period, the specific logic is that
if there is a word in the social media text that matches any of the words in the feature
dictionary, the social media text is recognized as a severe and critical text published by the
patient or related parties. The detailed calculation process is as follows:

NPSCPt = ∑m
i=1(boolsc(textt,i)) (1)

boolsc(textt,i) =

{
1, ∃wordj in Dicsc
0, @ wordj in Dicsc

(2)

where It is the set of t-period social media texts; textt,i is the set of all words contained in
each social media text; boolsc(textt,i) is a Boolean function, which takes values between
{0, 1}. If any word in textt,i is included in Dicsc, the value takes 1. If there is no word
in textt,i included in Dicsc, the value takes 0. The detailed calculation process is shown
in Figure 2; this model proposes to use social media data to identify potential severe
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and critical COVID-19 patients; it extracts the feature of the patients through social media
sensors and screens out the implied COVID-19 severe and critical patients by user-generated
content.

TSPI refers to Text Sentiment Polarity Index, specifically TSPISC
t and TSPIt respec-

tively, representing text sentiment polarity index of social media texts perceived severe and
critical related and text sentiment polarity index of all social media texts in the t-period.
After data cleaning and recognition of social media texts related to perceived severe and
critical patients, we calculated TSPISC

t and TSPIt based on a sentiment dictionary National
Taiwan University Semantic Dictionary (NTUSD). NTUSD is a sentiment dictionary based
on Simplified Chinese, and it is widely used in sentiment analysis and sentiment modeling
in Chinese scenes; it contains 2810 positive words and 8276 negative words. The calculation
of TSPISC

t and TSPIt is as follows:

TSPISC
t = max

(
TSPIt

i
)
−min

(
TSPIt

i
)
, i ∈ ISC

t (3)

TSPIt = card
{

i
∣∣TSPIt

i >0, i ∈ It
}

(4)

TSPIt
i = ∑|textt,i |

m=1

{
boolneg

(
wordt,i

m

)
− boolpos

(
wordt,i

m

)
)
}

(5)

where, textt,i =
{

wordt,i
1 , wordt,i

2 , wordt,i
3 , . . . , wordt,i

|textt,i |

}
represents a certain word list of

social media text in t-period after segmentation, It is for the whole social media data
set in the t-period, ISC

t is for the severe and critical related social media data set in t-
period and function card calculates the cardinal number or size of a set. boolneg(word)
and boolpos(word), represent the indication function of whether word w is in the NTUSD
dictionary. If word w in NTUSDneg, then boolneg(word) equals 1, else 0; it is the same for
the value of boolpos(word). The detailed calculation process is shown in Figure 2; this model
proposes the usage of social media text data to measure and profile the negative polarity of
Weibo users, especially potential severe and critical COVID-19 patients, to help describe
the severity of illness and future trends from a psychological perspective.

NSCP1,t refers to the actual number of severe and critical patients from period 1 to
t, NPSCP1,t is the number of perceived severe and critical patients through social media
from period 1 to t, and TSPI1,t is the number of negative sentiment texts from the period
1 to t. Let state sequence L = {l1, l2, . . . , lT} indicate the basic state of the number of
critical patients in the lockdown area, observation sequence O = {o1, o2, . . . , oT} indicate
the number of severe and critical patients that can be observed, and T denote the length of
the sequence [26]. The transition between states can be described as a transition matrix, so
every element is defined as follows:

arv = P(lt+1 = qv|lt = qr, NSCP1,t, NPSCP1,t, TSPI1,t) (6)

where arv represents the probability transition to state qv at time t + 1 under the condition
of the state qr at time t, r = 1, 2, . . . , N; v = 1, 2, . . . , N. Each element in the observation
probability matrix can be expressed as bv

(
og
)
= P(ot|lt = qv), which represents the proba-

bility of generating observation ot under the condition of the state qv at time t. We assume
bv
(
og
)

follows a Gaussian mixture distribution. Let πr = P(l1|qr) is the probability at
the state qr when t = 1. To capture different amplitude changes, we model the predicted
observation sequence after period t + h as:

NSCP∗t+h = argmax
og

[
∑N

r=1∑
N
v=1αg(r)arvbv

(
og
)

ϕg(v)
]
, ∀g = 1, 2, . . . , h (7)

where αg(r) = P(o1, o2, . . . , ot, rt = qr
∣∣arv, bv

(
og
)
, P(r1 = qr)) is the probability of forward

calculation at time t of qr, ϕg(v) = P(ot+1, ot+2, . . . , oT
∣∣rt = qr, arv, bv

(
og
)
, P(r1 = qr)) is

the probability of backward calculation from time t+ 1 to T of observation sequence. In this
work, NSCP, NPSCP, and TSPI are included in the transition matrix, which helps further
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understand the influence of multidimensional observation factors. The range changes of
severe and critical patients’ numbers in states can be randomly transferred and captured by
the Markov process; this study introduces the Gaussian mixture distribution to calculate
an observation matrix that can fully learn the influence of multidimensional observation.
For example, the number of severe and critical patients and emotions on Weibo helps to
capture the fluctuations in patient numbers.

2.3. Ethics Statement

This study was based on an analysis of official data released daily by Hubei Province,
China, which are public datasets that are freely available online and social media data from
Sina API (Application Programming Interface). We purchased the data collection service
from Gooseeker. Gooseeker is an authorized API of Sina Weibo. The data do not involve
private information, such as personal name, gender, age, etc., and do not involve privacy
and other related issues. All data can be used legally.

3. Results

Through a significant number of experiments, it showed that the improved prediction
model proposed in this study has an outstanding performance after combining the two
social media prediction indicators and the officially published data. The prediction perfor-
mances and results comparison are shown in Figures 7–9. We conducted research to calcu-
late the text sentiment polarity index, and present two indexes from two aspects, TSPISC

t
and TSPIt. The two indexes are subject to distinct distributions and have different per-
formances on prediction. The definition of TSPISC

t is based on negative polarity, which
indicates the sentiment polarity of each social media text; thus, its trend and distribution
fluctuate with NSCPt. In the peak period of the epidemic, its fluctuation ranges are large,
whilst in other periods, its fluctuation ranges are relatively small. The daily distribution
of severe and critical patients related texts’ negative polarity is shown in Figure 10. When
using TSPIt as a measure of sentiment polarity, prediction performance is greater than with
TSPISC

t . Specifically, when using TSPIt as a polarity measure, the RMSE is 198.48, com-
pared with the RMSE of 301.00 when using TSPISC

t with the same parameters. As shown
in Figure 11, the trend of TSPIt is not consistent with the trend of NSCIt, which is evident
from the low Pearson correlation coefficient (−0.31957) between them. Compared with
TSPIt, the Pearson correlation coefficient between TSPISC

t and NSCPt is higher (0.61314),
but TSPISC

t has poorer performance in prediction.
Note: Table 1 shows the prediction results in the forecast horizon. After adding the

two indicators of perceived severe and critical patients and the text sentiment polarity
index, the RMSEs are gradually decreasing and the predicted values are getting closer to
the actual values. Furthermore, this study adjusted the number of training days to conduct
comparative experiments and verify the robustness of the model.

Table 1. RMSEs with different training days and HMM observed variables.

Number of Days HMM Observed Variables RMSE

65
NSCP 422.41
NSCP + NPSCP 251.55
NSCP + NPSC + TSPI 198.48

60
NSCP 633.16
NSCP + NPSCP 462.65
NSCP + NPSC + TSPI 369.96

55
NSCP 838.38
NSCP + NPSCP 576.18
NSCP + NPSC + TSPI 500.25



Int. J. Environ. Res. Public Health 2022, 19, 8109 10 of 16

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 9 of 17 
 

 

calculate an observation matrix that can fully learn the influence of multidimensional ob-
servation. For example, the number of severe and critical patients and emotions on Weibo 
helps to capture the fluctuations in patient numbers. 

2.3. Ethics Statement 
This study was based on an analysis of official data released daily by Hubei Province, 

China, which are public datasets that are freely available online and social media data 
from Sina API (Application Programming Interface). We purchased the data collection 
service from Gooseeker. Gooseeker is an authorized API of Sina Weibo. The data do not 
involve private information, such as personal name, gender, age, etc., and do not involve 
privacy and other related issues. All data can be used legally. 

3. Results 
Through a significant number of experiments, it showed that the improved predic-

tion model proposed in this study has an outstanding performance after combining the 
two social media prediction indicators and the officially published data. The prediction 
performances and results comparison are shown in Figures 7–9. We conducted research 
to calculate the text sentiment polarity index, and present two indexes from two as-
pects, 𝑇𝑆𝑃𝐼௧ௌ஼ and 𝑇𝑆𝑃𝐼௧. The two indexes are subject to distinct distributions and have 
different performances on prediction. The definition of 𝑇𝑆𝑃𝐼௧ௌ஼ is based on negative po-
larity, which indicates the sentiment polarity of each social media text; thus, its trend and 
distribution fluctuate with 𝑁𝑆𝐶𝑃௧ . In the peak period of the epidemic, its fluctuation 
ranges are large, whilst in other periods, its fluctuation ranges are relatively small. The 
daily distribution of severe and critical patients related texts’ negative polarity is shown 
in Figure 10. When using 𝑇𝑆𝑃𝐼௧ as a measure of sentiment polarity, prediction perfor-
mance is greater than with 𝑇𝑆𝑃𝐼௧ௌ஼. Specifically, when using 𝑇𝑆𝑃𝐼௧ as a polarity measure, 
the RMSE is 198.48, compared with the RMSE of 301.00 when using 𝑇𝑆𝑃𝐼௧ௌ஼ with the same 
parameters. As shown in Figure 11, the trend of 𝑇𝑆𝑃𝐼௧ is not consistent with the trend of 𝑁𝑆𝐶𝐼௧, which is evident from the low Pearson correlation coefficient (−0.31957) between 
them. Compared with 𝑇𝑆𝑃𝐼௧ , the Pearson correlation coefficient between 𝑇𝑆𝑃𝐼௧ௌ஼  and 𝑁𝑆𝐶𝑃௧ is higher (0.61314), but 𝑇𝑆𝑃𝐼௧ௌ஼ has poorer performance in prediction. 

 

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 7. Prediction of the number of severe and critical COVID-19 patients (65 days data set). Note: 
(a) The entire prediction of 65 days during the lockdown period. The first 55 days are the training 
set and the last 10 days are the test set. The red line with circled points represents the actual values 
of the number of severe and critical patients; The green area represents the prediction interval ob-
tained from the training data only including 𝑁𝑆𝐶𝑃ଵ,ହହ, which is based on the red line, RMSE as the 
fluctuation range. The blue area represents the prediction interval obtained from the training data 
including 𝑁𝑆𝐶𝑃ଵ,ହହ and 𝑁𝑃𝑆𝐶𝑃ଵ,ହହ, which is based on the red line, RMSE as the fluctuation range. 
The yellow area represents the prediction interval obtained from the training data including 𝑁𝑆𝐶𝑃ଵ,ହହ  and 𝑁𝑃𝑆𝐶𝑃ଵ,ହହ , and 𝑇𝑆𝑃𝐼ଵ,ହହ , which is based on the red line, RMSE as the fluctuation 
range. (b) The 10 days prediction interval in 65 days. It can be found that the results predicted by 
the two sets of training data are better than the results of only one set because the RMSE with three 
sets is 198.48 which is evidently lower than the RMSE 422.41 with one set; this result shows that 𝑁𝑃𝑆𝐶𝑃  significantly contributes to the prediction. Furthermore, the prediction results (RMSE: 
198.48) obtained from the three sets are better than those of the two sets (RMSE: 251.55), which 
shows that the 𝑇𝑆𝑃𝐼 has a positive effect in predicting. 

Figure 7. Prediction of the number of severe and critical COVID-19 patients (65 days data set).
Note: (a) The entire prediction of 65 days during the lockdown period. The first 55 days are the
training set and the last 10 days are the test set. The red line with circled points represents the actual
values of the number of severe and critical patients; The green area represents the prediction interval
obtained from the training data only including NSCP1,55, which is based on the red line, RMSE as
the fluctuation range. The blue area represents the prediction interval obtained from the training
data including NSCP1,55 and NPSCP1,55, which is based on the red line, RMSE as the fluctuation
range. The yellow area represents the prediction interval obtained from the training data including
NSCP1,55 and NPSCP1,55, and TSPI1,55, which is based on the red line, RMSE as the fluctuation
range. (b) The 10 days prediction interval in 65 days. It can be found that the results predicted by
the two sets of training data are better than the results of only one set because the RMSE with three
sets is 198.48 which is evidently lower than the RMSE 422.41 with one set; this result shows that
NPSCP significantly contributes to the prediction. Furthermore, the prediction results (RMSE: 198.48)
obtained from the three sets are better than those of the two sets (RMSE: 251.55), which shows that
the TSPI has a positive effect in predicting.
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Figure 8. Prediction results of the number of severe and critical COVID-19 patients (60 days data
set). Note: (a) The entire prediction of 60 days during the lockdown period. The first 50 days
are the training set, and the last 10 days are the test set. The legend description is the same as
Figure 7a. (b) The 10 days prediction interval in 60 days. From the prediction results, we can verify
our conclusion that NPSCI and TSPI can help predict the number of severe and critical COVID-19
patients.
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Figure 9. Prediction results of the number of severe and critical COVID-19 patients (55 days data
set). Note: (a) The entire prediction of 55 days during the lockdown period. The first 45 days are
the training set, and the last 10 days are the test set. The legend description is the same as Figure 7a.
(b) The 10 days prediction interval in 55 days. From the prediction results, we can see that after
adding NPSCI and TSPI, our prediction results still improved. Although it is not as good as the
65-day and 60-day performance, we analyze that it is related to limited samples in the training data
set and insufficient machine learning.
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Figure 11. Trends of 𝑁𝑆𝐶𝑃、𝑇𝑆𝑃𝐼 and 𝑇𝑆𝑃𝐼ௌ஼  during the lockdown period. Note: The trend of 𝑇𝑆𝑃𝐼 started to rise before the city was locked down (23 January 2020). Both the trend and peak of 𝑇𝑆𝑃𝐼 are earlier than those of 𝑁𝑆𝐶𝑃, indicating that Weibo is an effective social sensor that can 
reflect the characteristics of COVID-19 patients or potential patients in reality. The peak lag bias of 

Figure 10. Negative polarity distribution of severe and critical related social media texts in the
lockdown period (with outliers). Note: Negative polarity refers to the difference between the number
of negative words and positive words in certain social media texts according to the sentiment
dictionary NTUSD. During the period from 20 January to 17 February, the overall negative polarity of
perceived severe and critical social media texts is negative, and the extreme values are at a relatively
stable level with little fluctuation. There is a significant surge from 18 February to 28 February in SC-
related negative polarity (the most obvious performance on 22 February), with the span and diversity
of emotions increasing significantly, as the upper and lower values of emotions showed. After 28
February, with the gradual control of the epidemic, the overall negative emotions of SC-related
microblogs show a gradual reduction trend.
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Figure 11. Trends of NSCP, TSPI and TSPISC during the lockdown period. Note: The trend of TSPI
started to rise before the city was locked down (23 January 2020). Both the trend and peak of TSPI
are earlier than those of NSCP, indicating that Weibo is an effective social sensor that can reflect the
characteristics of COVID-19 patients or potential patients in reality. The peak lag bias of TSPISC may
be due to the following reason. Only after the government reported the exact number of COVID-19
patients to the public, did the news media begin to release news about the exact number of COVID-19
patients and the social media discussion also lags behind the release of the news.
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This study reveals an interesting phenomenon. When the curves of actual data and
perceived social media data are highly consistent, prediction performance is often in-
adequate. The consistency between the two data series can be described by a Pearson
correlation coefficient, and the prediction performance can be manifested by the RMSE
indicator. Specifically, a higher Pearson correlation coefficient indicates higher consistency
and richness in current information, while a higher RMSE indicates poorer performance in
prediction and lack of trend information; therefore, the phenomenon might imply that with
abundant current information in perceived social media data and lacking trend information,
prediction accuracy may be always adequate. On the contrary, when current information
in perceived social media data is lacking but trend information is abundant, it may help to
profile future trends and improve prediction performance; thus, this phenomenon suggests
that the definition TSPIt contains information on future trends of NSCPt, which facilitates
the early perception of NSCPt.

4. Conclusions

By using the social media infodemic to compute the number of perceived severe and
critical COVID-19 patients and sentiment polarity, this study enables a more accurate
prediction of patients for the horizon period in the lockdown area in comparison to a
traditional consensus-based model. Social media data related to severe and critical COVID-
19 patients are real-time and publicly available data sources that contain richer information
than traditional hospital-reported consensus. Analysis of social media data reveals the
reasons why some severe and critical patients did not seek medical treatment in the hospital,
including preparing to visit the hospital but not taking action, expecting medical treatment
but having no access due to limited hospital beds, having no intention for treatment, or not
realizing that they needed treatment. Therefore, the number of perceived severe and critical
COVID-19 patients explored through social media contains valuable information that
cannot be obtained from traditional hospital consensus statistics. The sentiment polarity
of perceived COVID-19 patients from social media includes the emotions concerning
themselves, or those around them, or related information in the lockdown area. From
the perspective of social sensor theory, social media data depicts the public emotions and
opinions concerning COVID-19 patients. The potential evolution and trends in the number
of COVID-19 patients were also revealed; this information contains possible trends in
severe and critical COVID-19 patients. With a specified horizon perspective, the prediction
model proposed in the study can predict the number of perceived severe and critical
COVID-19 patients, the text sentiment polarity index, and the number of severe and critical
patients in hospitals; this model has several advantages. First, it comprehensively reflects
the actual number of severe and critical COVID-19 patients as it includes both the official
published data and perceived severe and critical patients by social media. Second, the trend
of severe and critical COVID-19 patients receive support from social media public opinion
information (COVID-19 sentiment polarity). Further, COVID-19-related social media data
can be obtained in real-time at a low cost. To a certain extent, it can complement the
shortage of hospital consensus data. Importantly, this model has a specified horizon; this
prospect period can increase the preparation time for hospital clinical treatment, medical
personnel deployment, and epidemic prevention policy formulation. Theoretically, the
prediction model proposed in this paper, which combines actual patient consensus data,
social media-perceived patient data, and social media-perceived public sentiment data, is
versatile and powerful for application in various research domains including public health
and commercial sales; this approach provides a research paradigm based on social media
infodemic for building real-time predictions and early warning models in the future.

Practically, the results of this prediction model can play a key role in COVID-19
prevention and control. It can: support hospitals to formulate a clinical treatment plan
and optimize the operation of clinical resources; provide support for medical facility
manufacturers and reserve companies in arranging production, storage, and transportation;
support the Centers for Disease Control and Prevention and other government agencies to
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formulate epidemic prevention and control policies and strengthen or liberate lockdown
measures in epidemic areas; and provide practical guidance for building an epidemic
prediction and early warning system based on network sensors.

When people post their emotions and opinions on COVID-19 on the Internet, they
also provide rich information to understand the evolution of COVID-19. Data analysis and
prediction technology constructed in this paper help to detect the developing trend of prior
infectious diseases, and provide data support for further prevention and control. In terms
of directions for future work, it is worth trying to develop further experiments to predict
outbreaks in multiple lockdown areas and compare the epidemic situation with different
characteristics.
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