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ABSTRACT

CRISPR-Cas systems are bacterial adaptive immune systems, each typically composed of a locus of cas genes and a CRISPR array
of spacers flanked by repeats. Processed transcripts of CRISPR arrays (crRNAs) play important roles in the interference process
mediated by these systems, guiding targeted immunity. Here we developed computational approaches that allow us to
characterize the expression of many CRISPRs in their natural environments, using community RNA-seq (metatranscriptomic)
data. By exploiting public human gut metatranscriptomic data sets, we studied the expression of 56 repeat-sequence types of
CRISPRs, revealing that most CRISPRs are transcribed in one direction (producing crRNAs). In rarer cases, including a type Il
system associated with Bacteroides fragilis, CRISPRs are transcribed in both directions. Type 1ll CRISPR-Cas systems were
found in the microbiomes, but metatranscriptomic reads were barely found for their CRISPRs. We observed individual-level
variation of the crRNA transcription, and an even greater transcription of a CRISPR from the antisense strand than the crRNA
strand in one sample. The orientations of CRISPR expression implicated by metatranscriptomic data are largely in agreement
with prior predictions for CRISPRs, with exceptions. Our study shows the promise of exploiting community RNA-seq data for

investigating the transcription of CRISPR-Cas systems.
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INTRODUCTION

CRISPR—Cas systems are RNA-guided bacterial and archael
adaptive immune systems against invasive nucleic acids
(DNA or RNA molecules) (Barrangou et al. 2007; Carter
and Wiedenheft 2015). These systems memorize the invasion
history by incorporating pieces of the invader’s genetic mate-
rial into their so-called CRISPRs (clustered regularly inter-
spaced short palindromic repeats), or arrays of repeat and
spacer unit. The invader’s segments become the spacers sand-
wiched between copies of a typically identical repeat. The
cas loci, often found in the genomic neighborhood of the
CRISPRs, contain CRISPR-associated genes (cas genes) which
encode proteins involved in various steps of the defense pro-
cedure, including acquisition of the spacers, biogenesis of the
RNA guides from the CRISPRs, and the interference step. The
invaders (including viruses), on the other hand, feature vari-
ous mechanisms to counter the defenses from the CRISPR-
Cas systems, such as through the anti-CRISPR genes that
were recently discovered (Bondy-Denomy et al. 2013, 2015).

In CRISPR-Cas systems, CRISPR arrays are transcribed
and processed to generate small CRISPR RNAs (crRNAs).
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The short crRNAs assemble with Cas proteins (encoded by
the cas genes) to form surveillance complexes in which
crRNAs provide the guide for targeted immunity (Jackson
et al. 2014; van der Oost et al. 2014). It has been shown
that CRISPRs are transcribed first as precursor crRNA
(pre-crRNA) molecules, which undergo maturation steps
to generate short mature CRISPR RNAs (crRNA). The short,
mature crRNAs guide Cas protein(s) to recognize and destroy
invading DNAs/RNAs. There are three major types I-III
(each has subtypes) of the CRISPR—Cas systems, classified
mainly according to the composition of the companion cas
genes (and the other two rarer, newly defined types IV and
V) (Makarova et al. 2011, 2015). Previous studies have shown
that the biosynthesis pathways of the guide RNAs are dis-
tinct for the different types of the CRISPR-Cas systems
(Charpentier et al. 2015). Type I and III CRISPR—Cas systems
use an endoribonuclease belonging to the Cas6 family to
cleave the pre-crRNA within the repeat regions. Type II sys-
tems rely on dual-RNA complexes (of pre-crRNA and trans-
acting small RNA, tracrRNA) for the processing of pre-
crRNA molecules in which dual-RNA complexes are cleaved
by the housekeeping RNase III. The tracrRNA genes contain
an anti-pre-crRNA repeat (anti-repeat) such that tracrRNA
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and crRNA form dual tracrRNA-crRNA through the base-
pairing between the anti-repeat and the repeat (Chylinski
etal. 2013). RNA-seq has been used to study the mechanisms
and functions of CRISPR RNA biogenesis (Heidrich et al.
2015). Various RNA-seq protocols coupled with different en-
richment methods also have been developed with some tar-
geting primary transcripts and others targeting for mature
crRNAs (Deltcheva et al. 2011; Juranek et al. 2012; Dugar
et al. 2013).

Antisense RNAs of crRNAs were detected in a few species,
including Clostridium thermocellum (Richter et al. 2012),
Sulfolobu acidocaldarius (Lillestol et al. 2009), and Pyrococcus
furiosus (Juranek et al. 2012). In general, the abundance of an-
tisense crRNAs is lower than their crRNA counterparts. In
S. acidocaldarius (Lillestol et al. 2009), CRISPRs are found
in both the genome and its plasmid (pKEF9): The crRNAs
and antisense crRNAs in this genome are both transcribed
with similar abundances but lead to spacer RNAs of different
lengths. Hale and colleagues identified significant antisense
transcription from a BRE/TATA promoter within CRISPR
locus 1 in the P. furiosus genome, and the number of antisense
RNA reads is about one-third the number of lead strand
crRNA reads (Hale et al. 2012). Richter et al. (2012) identified
antisense crRNA in C. thermocellum; although the amount of
antisense crRNA transcripts is very small in comparison to the
abundance of crRNAs, the authors reported that individual
antisense crRNAs show a conserved processing pattern within
the repeats. The discovery of antisense RNAs raised a question
about functional significance of these antisense RNAs and has
led to the speculation of regulatory functions by the antisense
crRNAs (Zoephel and Randau 2013).

Experimental studies of crRNA biogenesis are still sparse
compared to the large number of CRISPR—Cas systems in
the reference genomes and metagenomes. However, knowl-
edge of the crRNA biogenesis, including the strand encoding
crRNA, is crucial for understanding the immunity process.
It also has practical application to the characterization of
leader regions (Wei et al. 2015) (a leader element typically lo-
cates between a cas locus and a CRISPR, and includes a pro-
moter for the transcription of the CRISPR that follows the
leader), protospacer-adjacent motifs (PAMs) found in invad-
ers (Mojica et al. 2009), and tracrRNA. Computational meth-
ods have been developed to predict the transcription
direction of CRISPRs. CRISPRDirection (Biswas et al.
2014) uses parameters (including secondary structure and
AT-rich in the leader sequence) that are calculated from in-
put CRISPR and flanking sequences, and combines them
by weighted voting to reach a prediction. The second ap-
proach is CRISPRstrand (Alkhnbashi et al. 2014), which en-
codes and processes the repeat sequence and mutation
information using a graph kernel to learn higher-order cor-
relations. Both computational approaches were reported to
have high prediction accuracy. However, both approaches
were trained based on a small number of cases with experi-
mental evidence. For example, although more than a thou-
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sand repeat consensus sequences (including 442 repeats in
the REPEATSLange set, 419 repeats in the REPEATSKunin
and 478 in the REPEATShah) were used to train and test
CRISPRstrand (Alkhnbashi et al. 2014), only the repeats in
the REPEATSLange (Lange et al. 2013) were based on 10 sys-
tems (associated with nine species) that had experimental ev-
idence supporting the crRNA processing (Brouns et al. 2008;
Haurwitz et al. 2010; Hatoum-Aslan et al. 2011; Garside et al.
2012; Juranek et al. 2012; Nam et al. 2012; Richter et al. 2012;
Sternberg et al. 2012; Nickel et al. 2013; Scholz et al. 2013). It
suggests that there is a demand for having more experimen-
tally supported transcription for development and evaluation
of such tools.

Microbiome studies have enabled the study of the diversity
of CRISPR-Cas systems in bacterial communities, including
those associated with human beings. Stern et al. (2012) re-
constructed the content of the CRISPR bacterial immune sys-
tem in the human gut microbiomes of European individuals
and used it to identify a large catalog of phages targeted by
CRISPR across all individuals, revealing a surprising, global
sharing of gut phages among individuals. Gogleva et al.
(2014) used human gut metagenomic data from three open
projects to reconstruct CRISPR cassettes to track the dynam-
ics of spacer content. Our group developed a few computa-
tional tools for identification of CRISPR—Cas systems from
metagenomic sequences, and the application of our tools to
the human microbiome project (HMP) data sets has resulted
in the identification of a large collection of CRISPR—Cas sys-
tems and putative invaders in human-associated micro-
biomes (Rho et al. 2012; Zhang et al. 2013, 2014).

RNA-seq data of bacterial communities (metatranscrip-
tomic data) provides information vital for elucidating func-
tional characteristics of microbial communities and
accurate annotations of genes and their regulation in their
community—complementary to metagenomic sequencing
(de Menezes et al. 2012; Giannoukos et al. 2012; Leimena
et al. 2013; Jorth et al. 2014; Pearson et al. 2015). Here we ex-
plored the possibility of using metatranscriptomic data to
characterize the transcription of CRISPRs and other compo-
nents of the CRISPR—Cas systems including cas genes, leader
sequences, and anti-repeats (for type II CRISPR-Cas sys-
tems). Using eight publicly available sets of human stool
metatranscriptomic data sets (derived from eight human in-
dividuals, which were prepared using three different methods
of sample preservation, including frozen, ethanol-fixed, and
RNAlater-fixed) (Franzosa et al. 2014), we showed the prom-
ise of metatranscriptomics in studying the transcription of
crRNAs while avoiding the limits of studying the biosynthesis
of CRISPR transcript (crRNA) in single species.

RESULTS

We first show the testing of different assembly strategies
for CRISPRs and then summarize the results of applying
the chosen strategy to six gut microbiomes. We found that



Exploring metatranscriptomic evidence of crRNA

most CRISPR-Cas systems are transcribed from one strand
with exceptions that CRISPRs are transcribed from both
strands. We demonstrated that metatranscriptomic data could
be utilized to provide transcription evidence to CRISPRs and
other components in the CRISPR-Cas systems, including
cas genes, leader sequences, and tracrRNA genes (in type II
CRISPR—Cas systems).

Assembly of CRISPR arrays

CRISPRs in microbiomes are likely to contain unique spacers
different from those found in reference bacterial genomes,
so de novo assembly is necessary for the characterization of
CRISPRs. Using the targeted assembly approach that we
have developed for CRISPRs (Rho et al. 2012), given an input
sequencing data set (metagenomic, metatranscriptomic, or
combined), we fished out the reads that are likely to contain
repeats (or part of the repeats) similar to the repeats found in
33 reference CRISPR-Cas systems (see Materials and
Methods). We then de novo assembled the extracted pool
of reads (usually a small fraction of the original data sets) us-
ing different k-mer sizes (the k-mer size has great impact on
the performance of de novo assembly) and summarized the
assembly results of the CRISPRs in Figure 1. The assembly re-
sults are compared in terms of the total number of spacers as-
sembled and the length of the longest CRISPR array. Overall,
k needs to be sufficiently large (e.g., >40) to achieve good as-
semblies of the arrays. However, when k gets too large, per-
formance starts to degrade. We decided to use k-mer size
of 53 nt for our targeted assembly, as well as the assembly

of whole metagenome and combined metagenome and
metatranscriptomics data sets.

Incorporating metatranscriptomic data set helps
improve the assembly of CRISPRs

We compared the total number of spacers that can be iden-
tified from assembled contigs associated with the 33 reference
CRISPRs (Fig. 2). Results show that for frozen samples, com-
bining metagenomic and metatranscriptomic data sets re-
sulted in, on average (across the eight individuals), 32%
more spacers when compared to using metagenomic data
sets alone (paired t-test; P-value = 2.66 X 107°). The differ-
ence decreased when all data sets (derived from samples pro-
cessed differently; see below) for each individual were
combined for assembly, but still, the combined assembly ap-
proach that combines both metagenomic and metatranscrip-
tomic sequencing reads resulted in an average of 16% more
spacers (paired t-test; P-value = 0.00012), indicating the im-
portance of using metatranscriptomic data sets for assembly
of CRISPRs. We also compared the assembly results from
data sets derived from the frozen samples, or combined the
data sets derived using different experimental protocols (fro-
zen, RNAlater-fixed, and ethanol-fixed). As shown in Figure
2, combining the different data sets greatly helped the assem-
bly of the CRISPR arrays. On average, the total number of
spacers was more than doubled when all data sets were
used for the assembly.
We therefore used the assembly results of the CRISPRs
from combined data sets with all metagenomic and metatran-
scriptomic reads from all three ex-
perimental protocols for downstream

transcription analysis. This way, we opti-
mized the assembly of the CRISPRs, and
at the same time, achieved assemblies of
other components of the CRISPR-Cas
systems including cas genes (which, how-
ever, may not be optimized). We note

K-mer

that the combined data sets were only
used for the assembly of the CRISPRs.
Considering the substantial differences

among the different RNA-seq experimen-
tal protocols (Franzosa et al. 2014), we
used individual metatranscriptomic data
sets for transcriptional characterization.
New CRISPR-Cas systems are found
in gut microbiomes. We used a conser-
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FIGURE 1. The impact of k-mer size on the assembly of CRISPRs. A and C show the total num-
ber of spacers identified when different k-mer sizes were used, and B and D show the longest
CRISPR arrays (number of repeat-spacer units). A and B are based on the CRISPR arrays associ-
ated with 33 CRISPR repeats identified from reference genomes that were found to be highly ex-
pressed in the gut microbiome (Franzosa et al. 2014), while C and D show the results for the
CRISPR arrays associated with B. fragilis (which has the longest repeat of 47 bp) only. The results
for different data sets (from eight individuals) are shown in different colors.
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: ‘ vative strategy to collect putative new

CRISPR-Cas systems. First we collected
contigs that contain both CRISPR and
cas genes (the cas loci are most likely
partial due to the fragmented nature of
the metagenome assemblies). Starting
from these contigs, we identified 1808
repeats that are not similar to the
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FIGURE 2. CRISPR assembly results using different assembly strategies. The strategies are frozen-WGS-targeted (“targeted” assembly of CRISPR
using only metagenomic data sets from “frozen” samples); frozen-combined-targeted (targeted assembly using “combined” metagenomic and meta-
transcriptomic data sets from frozen samples); all-WGS-targeted (targeted assembly using only metagenomic data sets from all samples); all-com-
bined-targeted (targeted assembly using combined metagenomic and metatranscriptomic data sets from all samples); and combined-soapdenovo
(whole-metagenomic and metatranscriptomic assembly using data sets from all samples). Results from combined-soapdenovo were used in this study

for downstream transcription analysis.

reference repeats. After clustering this set of repeats (at 90%
sequence identity by CD-HIT-EST [Li and Godzik 2006])
and removing the singletons, we derived 104 representative
repeat sequences. Only three of these repeats share sim-
ilarity (based on BLASTN searches) with putative novel
CRISPR repeats previously identified from the Human
Microbiome Project (HMP) data sets (Rho et al. 2012).
Therefore, the remaining 102 repeats are likely to represent
new CRISPRs. We used the collection of a total of 137
CRISPR repeats (including 33 derived from reference ge-
nomes, and 104 putatively novel ones) for the following
transcription studies.

Metatranscriptomic evidence for CRISPR
transcription

We mapped metatranscriptomic data sets from all three
experimental protocols against the contigs that contain
CRISPRs and/or cas genes, and used the mapped reads to
characterize the transcription of CRISPRs. The percent-
age of metatranscriptomic reads that can be mapped to
CRISPR-Cas loci ranges from 0.07% to 0.28%. We focused
on the CRISPRs that are supported by at least 10 (combined)
RNA-seq reads for the analysis: 56 out of 137 representative
CRISPRs satisfy this criterion. Notably, none of these 56
CRISPRs (and their associated species) have been previously
studied experimentally, showing the promise of studying
CRISPR—Cas systems (and their transcription) using meta-
transcriptomic data sets. Among the 56 CRISPRs with
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RNA-seq supports, 18 are from the reference collection of
genomes (see Table 1), and the rest are putatively new
ones. See Supplemental Table SI for the information on
the 56 CRISPRs with repeat sequences, the type of the asso-
ciated systems (if type specific cas genes were found in the
reference genomes or the contigs containing the CRISPRs),
and their predicted transcription orientation. We only con-
sidered the transcription orientation of a CRISPR if most
(at least 80%) of its metatranscriptomic reads (combined)
was mapped to one strand (the dominant strand), and fur-
ther checked the consistency across the samples.

We analyzed an orphan CRISPR (Esiral30), which was
identified from the reference genome Eubacterium siraeum.
CRISPRmap (Lange et al. 2013; Alkhnbashi et al. 2014) can-
not predict orientation for this CRISPR (but it belongs to
family 13 in CRISPRmap v2.1.3 at http:/rna.informatik.
uni-freiburg.de/CRISPRmap/Input.jsp). No contigs were
identified from the gut microbiomes in which the genomic
context can be used to infer the type of Esiral30. Never-
theless, analysis of the assembled arrays shows that this
CRISPR is likely to be active in the gut microbiomes
with 28 spacers assembled, all unique (individuals do not
share spacers). Metatranscriptomic analysis shows that this
CRISPR was transcribed, mainly, in one direction: 100%
(11 out of 11) of the reads in X316192082, 94.5% (74 out
of 78) of the reads in X317802115, 100% (18 out of 18) of
the reads in X317690558, and 85.7% (12 out of 14) of the
reads in X317822438 can be mapped to one strand, which
is therefore likely the lead strand of this CRISPR.
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TABLE 1. Summary of the transcription of representative CRISPRs

CRISPR-ID Reference genome/consensus sequence of the repeats (shown in the transcription orientation) Ratio/reads”

Transcribed only in one strand, or mainly in one strand

AshahL36-II Alistipes shahii WAL 8301
GTTGTGGTTTGATGTAGAATTTCGATAAGATACAAC
BdentL33-IC Bifidobacterium dentium Bd1
GTCGCTCTCCTCACGGAGAGCGTGGATTGAAAT
BfragL47-Il Bacteroides fragilis 638R
GTTGTGATTTGCTTTCAAATTAGTATCTTTGAACCATTGGAAACAGC
Ccatul36-I1 Coprococcus catus GD7
GTTTGAGAATGATGTAAAAATGTATGGTACTCAAGC
Eeligl36 Eubacterium eligens ATCC 27750
GTTTGAATAACCTTAAATAATTTCTACTTTGTAGAT
ElimoL30-IB Eubacterium limosum KIST612
GTTGAAGATTAACATGAGATGTATTTAAAT
ErectL32-IC Eubacterium rectale ATCC 33656
GTCGCTCCTCTCGTGGGAGCGTGGATTGAAAT
ErectL36-I1 Eubacterium rectale ATCC 33656
ATTTTAGTAACTGAATAATTTACGTGACTGTAAAAC
Esiral. 30 Eubacterium siraeum
GTTTGAGAGTAGTGTAAATTTATAGGGTAGTAAAAC
FprauL33-IC Faecalibacterium prausnitzii L2 6
GTCGCCCTCCTCGCGGAGGGCGTGGATAGAAAT
MhypeL30-I1B Megamonas hypermegale
ATTTAACTTTAACAAGAGTTGTATTTGAAT
MsmitL31-I1B Methanobrevibacter smithii ATCC 35061
GTTAAAAATAAGACTATAATAGGATTGAAAT
OsplalL30-1B Odoribacter splanchnicus DSM 20712
CTTTTAATTGAACTAAGGTAGAATTGAAAC
PdistL32-1C Parabacteroides distasonis ATCC 8503
GTCGCACCCCGTGTGGGTGCGTGGATTGAAAC
Rintel.36-I Roseburia intestinalis XB6B4
GTTGTAATTCCCTGTTATCACTTGGTATGGTATAAT
Sparal.32-1C Streptococcus parasanguinis ATCC 15912

Transcribed from both strands

GTCGCTCCCTTCACGGGGGCGTGGATTGAAAT

Lcasel28-IE Lactobacillus casei ATCC 334
GTTTTCCCCGCACATGCGGGGGTGATCC
SangilL36-lIA Streptococcus anginosus C1051

GTTTTTGTACTCTCAAGATTTAAGTAACTGTAAAAC

96.9%/1858

90.7%/182

87.9%/ 10552

99.3%/846

98.5%/272

96.6%/195

97.7%/1359

94.5%/174

95.0%/135

96.7%/275

80.1%/1490

100.0%/850

100.0%/24

100.0%/253

94.3%/863

100.0%/81

51.1%/420

19.0%/84

“Ratio/reads: The first number shows the ratio of sense over total crRNA reads mapped to a CRISPR, and the second number is the total
number of reads; for example, 96.9% of the total 1858 reads are mapped to the sense strand of the crRNA strand for CRISPR AshahL36-I1.

CRISPRs are dominantly transcribed in one direction

Most CRISPRs we identified in the gut microbiomes show
transcription in one main direction. Figure 3 shows the frac-
tions of reads from the main transcription strand over all
reads for the 18 reference CRISPRs. Since most CRISPRs
are mainly transcribed in one strand, the main direction
therefore indicates the “sense” transcription of the corre-
sponding CRISPRs (producing sense crRNAs). Using the
gut metatranscriptomic data sets, we can assign “sense” strand
for 16 out of 18 reference CRISPRs with metatranscriptomic
supports (see Table 1; see Supplemental Table S1 for the re-
sults for all CRISPRs with metatranscriptomic support).
Figure 4 shows the genomic context and the predicted tran-
scription orientation of the CRISPRs for a type II CRISPR-

Cas system identified from the reference genome B. fragilis
638R (Fig. 4A), whose CRISPR orientation can be determined
using metatranscriptomic data. We note the transcription ori-
entation of the CRISPR array predicted by CRISPRDirection
(Biswas et al. 2014) is the reverse strand (i.e., the same strand
that encodes the cas genes). However, the metatranscriptomic
data suggest the opposite direction (i.e., the CRISPR and cas
genes are face to face; see an example in Fig. 4B), and all eight
gut metatranscriptomic data sets support the same orienta-
tion—compelling evidence suggesting that the orientation
prediction made by CRISPRDirection is wrong (although
CRISPRDirection considered its prediction strong).

We also analyzed Ashal.36-11, the CRISPR associated with
a type II CRISPR-Cas system identified from the reference
genome Alistipes shahii. Querying the CRISPR repeat in the
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dicted upstream of the putative cas9
H gene in this contig (see Fig. 5A).

Figure 5B shows the transcription pro-
file of a contig that contains another type
II CRISPR—Cas system associated with
E. rectale. An anti-repeat is predicted
between the putative cas9 gene and casl
gene, and it is partially complementary
to the corresponding CRISPR repeat as
L] shown in Figure 5B. The RNA-seq cover-

age curve indicates that the anti-repeat
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FIGURE 3. A summary of the transcription orientations for the 18 reference CRISPRs, seen in
eight sets of metatranscriptomic data sets from eight individuals. The transcription goes in one
main orientation for most CRISPRs, except LcasL28-IE and Sangil36-I1A.

and downstream cas genes were likely to
be transcribed as a single unit. Only one
putative TSS (and the predicted promot-
er is between 13,092 and 13,137 bp) was
predicted in the leader sequence between
the cas locus and the CRISPR array, and

CRISPRmap server (v2.1.3) resulted in no annotation (i.e., it
cannot be assigned to known structural/sequential families).
We, however, found a wide spread of this CRISPR, potential-
ly active, in the gut microbiomes we analyzed. We found
CRISPR arrays associated with this CRISPR repeat in 69 con-
tigs in the assemblies of the gut microbiomes, among which,
six contain both CRISPR arrays and cas genes. Further,
CRISPR arrays associated with AshahL36-II carry unique
spacers (216 spacers can be extracted from the arrays assem-
bled from the eight individual’s microbiomes, and 196 of
them are unique), indicating that this is an active CRISPR-
Cas system with new spacers being captured in the CRISPR

therefore it is likely to be the tran-

scription start site of the downstream
CRISPR array. We note that we did not find anti-repeats
for BfragL47-1I and CcatuL36-1I; this is consistent with a pre-
vious study in which tracrRNA genes were not identified in
the B. fragilis and C. catus reference genomes (Chylinski
et al. 2013).

CRISPRs with bidirectional transcription

Some CRISPRs are transcribed in both directions. Using bi-
nomial testing (with P of 0.05, i.e., assuming the strand-spe-
cificity of the RNA-seq is 95%), we showed that among 1367
individual CRISPR arrays (associated with the 56 repeat-

arrays. In all eight individuals, CRISPR
arrays associated with this repeat are
dominantly transcribed from one direc-
tion: Figure 5A shows the transcription
of this CRISPR along with its cas loci
found in a contig assembled from sample
X316701492. It shows that both the cas
genes (including cas9 and casl) and the
CRISPR were transcribed in this sample.
It also shows that the transcription of
the CRISPR starts in the leader sequence
between the cas locus and the CRISPR
array, which contains three putative
transcription start sites (TSSs), including
the most likely one closest to the cas lo-
cus. The TSSs were predicted by the
BDGP neural network-based promoter
prediction program, using the model
for prokaryotes (http:/www.fruitfly.org/
seq_tools/promoter.html) (Reese 2001).
For type II CRISPR—Cas systems, inferred
transcription orientation of CRISPRs
can also be applied to annotate the
tractrRNA genes: An anti-repeat is pre-
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A > Metatranscriptomic evidence

€& CRISPRDirection prediction
*30
CRISPR cast

cas2 cas9
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FIGURE 4. Predicted transcription orientation for a CRISPR—Cas system associated with B. fra-
gilis 638R, a type II-C CRISPR-Cas system, using metatranscriptomic data. As demonstrated in
the reference genome (A), the transcription direction supported by metatranscriptomic sequenc-
ing data is opposite to the predicted orientation by CRISPRDirection. Repeat sequence in its pre-
dicted orientation is shown in Table 1. In this plot green arrows represent putative cas genes, and
CRISPR arrays are shown in white hexagons with numbers inside the hexagons (followed by letter
x) indicating the number of repeat-spacer units. (B) An example transcriptional profile for a con-
tig (of 2278 bp; assembled from sample X317802115; id: 1280918) containing this CRISPR—Cas
system. All metatranscriptomic reads mapped to the CRISPR in this contig (repeats are shown as
red squares) are in one direction, which faces the cas genes, just as in the reference genome. We
note no metatranscriptomic reads were mapped to the reverse strand of the contig (i.e., the sense
strand of the cas genes).
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1941627), which contains a type II CRISPR—Cas system associated with E. rectale. For each contig, putative elements of the CRISPR-Cas systems
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the coverage plot shows the base-pairing between predicted anti-repeat region (Anti) and the CRISPR repeat (Repeat), with small circles indicating

wobble base pairs (G-U).

types) each having at least three copies of the associated re-
peat, 118 (8.6%) have detectable RNA-seq reads in both di-
rections. The ratios vary if metatranscriptomic data sets
derived using different experimental protocols were used.
The ratios are 7.3%, 7.5%, and 11.3% for data sets derived
from frozen, ethanol-fixed, and RNAlater-fixed samples,
respectively.

We note that for the CRISPRs with bidirectional transcrip-
tion, most still have one dominant transcription direction.
Further, we found the bidirectional transcription for most
CRISPRs is rather individual-specific. The CRISPRs are tran-
scribed from one dominated direction in some individuals,
whereas they are transcribed in both directions in others.
For example, the expression of Bfragl47-II is dominated by
transcription in the sense strand (Fig. 6A). However, the rel-
ative abundance of antisense reads varies across individuals.
In X6 (X319146421), a total of 2724 metatranscriptomic
reads can be mapped to this CRISPR, among which only

1944 can be mapped to the sense strand (71.4%). In contrast,
in X7 (X317690558), 476 out of 484 reads (98.3%) can be
mapped to the sense strand.

Strikingly, we found a case, CRISPRs associated with
LcaseL28-1B, in which a significant portion of metatranscrip-
tomic reads support the antisense transcription (Fig. 6B).
Metatranscriptomic reads were found for 1, 2, 5, 1, 8, 9, 1,
and 1 contig(s) containing this CRISPR, involving 11, 6,
18, 6, 123, 40, 6, and 16 repeat-spacer units in individuals
X1, X2, X3, X4, X5, X6, X7, and X8, respectively. In six out
of eight individuals, one orientation (so predicted to be the
sense strand) dominates the transcription. However, in X5
(X316701492), there is a significant number of antisense
reads (one-third of the total reads), and in X6 (sample ID:
X319146421), reads from the antisense transcripts even dom-
inated the total reads (94.5% of the total metatranscriptomic
reads can be mapped to the antisense strand). The domi-
nance of antisense transcription in individual X6 is unlikely
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FIGURE 6. Transcription varies across individuals for CRISPRs. A and
B show the number of sense reads (red bars) and antisense reads (green)
that can be mapped to CRISPRs belonging to Bfragl47-II (A) and
LcaseL28-1B (B), respectively.

to be an artificial result of experimental protocols as the
metatranscriptomic data sets used here had strandedness
>95% (Bao et al. 2015), and the antisense transcription is
supported by the data sets derived from samples processed
by the different experimental protocols: The fractions of an-
tisense reads are 100% (all 32 reads) in the RNAlater-fixed
samples, 96.6% (56 out of 58 reads) in the frozen samples,
and 89.3% (50 out of 56 reads) in the ethanol-fixed samples.

Low transcription of type 11l CRISPR-Cas systems

It has been shown that type I CRISPR-Cas systems are more
prevalent than the other two types of systems in microbial ge-
nomes: ~60% or more of complete single-unit CRISPR—Cas
loci are type I systems in both archaeal and bacterial genomes
(Makarova et al. 2015). So it is not surprising that we ob-
served more RNA-seq reads from CRISPR arrays associated
with type I systems in the gut metatranscriptomic data sets
than other types. Interestingly, although type II systems are
less abundant than type I, their relative transcription levels
appeared to be higher than type I counterparts. Type III sys-
tems are the least frequent in the gut data sets: We observed
the existence of type III systems in the metagenomic data sets
(at DNA level) but barely observed any RNA-seq reads from
these arrays (only two arrays each had one RNA-seq read and
others had none).

A lack of RNA-seq reads from a
CRISPR can be the result of a low abun-

the length of the CRISPRs (the length is canceled when com-
puting the ratio). We used data sets derived from frozen sam-
ples for this calculation. We note that the values of the ratios
do not indicate the expression levels of the corresponding
CRISPRs, because they depend on the sequencing depth of
the RNA-seq and the metagenome sequencing. But they
can be used for comparing the relative expression levels of
the different CRISPRs. Figure 7 shows that CRISPRs in
type II systems appeared to have more transcripts (due to
more transcription or other reasons) than CRISPRs belong-
ing to type I and type III systems with -test P-values of
0.000116 and <<0.0001, respectively. Arrays associated
with type III systems have the lowest level of transcription, al-
though some of them are of relatively high abundance at
DNA level. Table 2 shows the comparison of a few CRISPR
arrays. For example, a contig (ID: 1499161) assembled
from the X319146421 data set contains a putative type III
CRISPR array containing 22 repeats. A total of 62 metage-
nomic reads were mapped to the array, but no RNA-seq
read was found for this array. In contrast, a total of 26 and
116 DNA and RNA reads were mapped to a MsmitL31-1B ar-
ray (type I; associated with the archaeon Methanobrevibacter
smithii) indicating a relative higher expression of MsmitL31-
IB than the type I1I array in the sample. This result is consis-
tent with a previous study (Franzosa et al. 2014) as well as our
own (Bao et al. 2015), showing that M. smithii is abundant
and highly transcriptionally active (supported by the huge
numbers of RNA-seq reads) in the samples.

DISCUSSION

We have developed a computational pipeline that allowed us
to identify and characterize CRISPR transcription using
metatranscriptomic data. Application of the pipeline to hu-
man gut metatranscriptomic data sets (combined with
matched metagenomic data) revealed not only the transcrip-
tion of many CRISPR—Cas systems but also the variation of
the transcription of these CRISPRs in different human indi-
viduals. Metatranscriptomic data can be used to confirm the
prediction of CRISPR transcription orientation, and, in some

dance of the associated genome (it was
found that gene abundance and corre-
sponding transcript abundance were
well correlated [Franzosa et al. 2014]),
or low transcription of the element, or
both. To dissect the two confounding
factors, we computed the ratio of the i
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number of RNA-seq reads that can be |
mapped to the CRISPR array over the
number of metagenomic reads that can
be mapped to the same array (which ap-
proximates the RNA/DNA abundance
ratios). The ratios are independent of
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TABLE 2. A summary of DNA and RNA abundances for selected example CRISPRs

of them show detectable transcription
in metatranscriptomic data. The biologi-

Sample Contig CRISPR ~ Type Repeat cas DNA RNA  Ratio cal meaning of this observation remains

X319146421 1431429  MsmitL31-IB | 17 0 26 116 45 to be explored. We observed that anti-
1393356  Bfragl47-l I 11 0 12 113 94 sense transcription of CRISPRs varies
1499161  unk Il 22 6 62 0 0 among individuals, indicating that anti-

X316192082 1997647 Erectl32-IC | 25 4 37 17 046 sense crRNAs may play important regu-
2005863 Rintel36-l I 49 4 35 452 129 latory functions (Zoephel and Rand
2010437  unk i 5.8 56 1 0017 ~2ory fuhclions {2oephel and Randad

2013).

Repeat, the copy number of the repeats in the CRISPR found in the contig; cas, the number
of cas genes found in the contig; DNA and RNA represent the number of metagenomic
reads, and metatranscriptomic reads mapped to the corresponding CRISPR (not the entire
contig), respectively; ratio, RNA/DNA. See Table 1 for the repeat sequences associated
with MsmitL31-1B and BfragL47-Il. The repeat sequence of the “unk” CRISPR associated
with a putative type Il CRISPR-Cas system is GAACCAACCCATCCCCAAGCGGGG

ACGAAAA.

cases, can be used to correct wrong predictions as we show in
the case of CRISPR associated with B. fragilis 638R (type 1I-
C). Our analysis is limited in some aspects, however.
Community RNA-seq captures both intact and fragmented
transcripts, and degradation of transcripts is expected, so
the results may be compounded by many factors. We cannot
study mature crRNAs as they are likely to be filtered out in
RNA-seq due to their small sizes. We also do not consider
the different stability of crRNAs when we study the abun-
dance of sense crRNA and antisense crRNA using reads
count: Sense crRNAs are protected by other proteins within
Cas protein interference complexes, whereas antisense reads
do not benefit from this protection.

Using stranded RNA-seq reads, we were able to detect if
transcription of a CRISPR goes in one direction or both.
We proposed a statistical approach based on binomial testing
for detecting CRISPR arrays with transcription in both direc-
tions (bidirectional) to avoid the artifact due to imperfect
strandedness of the RNA-seq experiments. We emphasize
that there could be other bias that may complicate the inter-
pretation of the results. For example, we observed “bidirec-
tional” transcription of similar levels in both directions
(reads from one direction constitute 47.4%, 50.6%, 51.9%,
53.7%, 48.4%, 46.7%, 41.8%, and 54.0% of the total reads
across eight individuals) for a CRISPR associated with
Escherichia coli. However, the CRISPRs were not found in
the matched metagenomic data sets. We believe this is a result
of the DNA contamination in the RNA-seq experiments: The
RNA-seq process was known to introduce 1%—2% E. coli ge-
nomic DNA into the final cDNA library, a result of E. coli-de-
rived DNA polymerase I and ligase being used in the cDNA
generation steps (Franzosa et al. 2014). We excluded the E.
coli CRISPR in our study. On the other hand, this result in-
directly shows that our pipeline produces accurate strand-
specific expression levels for CRISPR.

Among the CRISPRs with metatranscriptomic evidence,
there are type I and type II systems. Interestingly, type III
CRISPR—Cas systems are found in the assemblies, but none

Although promising, using gut micro-
biome alone only surveyed a small num-
ber of CRISPRs compared to all known
ones in the reference genomes and the
new ones yet to be identified. Because
different bacteria favor different environ-
ments, we believe with the increasing
availability of metatranscriptomic data
sets obtained from different environments and hosts it
soon will become feasible to derive a comprehensive survey
of the transcription of the CRISPRs of various types in their
natural environments.

MATERIALS AND METHODS

Metagenomic and metatranscriptomic data sets

We used the human gut-associated strand-specific metatranscrip-
tomic and matched metagenomic data from Franzosa et al.
(2014). The data sets were downloaded from the SRA website
(SRA accession: SRR769395-SRR769540). In total, we analyzed
eight sets of metagenomic and metatranscriptomic data. Each set
contains three metagenomic data sets, and three metatranscriptomic
data sets derived from the same human individual but were prepared
using three different methods of sample preservation (frozen, etha-
nol-fixed, or RNAlater-fixed) (Franzosa et al. 2014). The eight
individuals are X310763260 (abbreviated as X1), X311245214
(X2), X316192082 (X3), X316701492 (X4), X317690558 (X5),
X317802115 (X6), X317822438 (X7), and X319146421 (X8).

Assembly of CRISPR-Cas systems

It has been shown that some species are more transcriptionally ac-
tive relative to their genomic abundance (Franzosa et al. 2014).
Combining metatranscriptomic data sets with metagenomic data
sets therefore has the chance of improving the assembly of some
CRISPR-Cas systems from rare but highly expressed species. We
compared the performance of the assembly of CRISPRs using meta-
genomic data sets only with the assembly using both metagenomic
and metatranscriptomic data sets (combined assembly). Also, we
applied both the targeted assembly of CRISPRs (Rho et al. 2012)
we developed (Seq2CRISPR version 0.9 available at http:/omics.
informatics.indiana.edu/CRISPR) and “non-targeted” de novo
assembly of the microbiomes using soapdenovo2 (Luo et al. 2012)
using only metagenomic or combined metagenomic and metatran-
scriptomic data sets. Instead of using all the reads in a sequence data
set, the targeted assembly approach first extracted the reads that con-
tain segments similar to the repeats in reference CRISPRs and then
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assembled only the pooled reads (so significantly reduced the data
set to be assembled).

Choice of assembler and k-mer size for the assembly

Similar to most de novo assemblers for short reads, the assembler we
used, SOAPdenovo2, is based on de Bruijn graphs of k-mers (each is
a short sequence of k nucleotides) (Compeau et al. 2011). It is there-
fore important to test the impact of choice of k-mer size on the as-
sembly results of CRISPRs. In our previous targeted assembly, we
used 43 as the k-mer size for targeted assembly for CRISPR arrays
(Rho et al. 2012). Although this parameter works generally well in
this study, we found that this parameter is less effective, especially
for CRISPR arrays with long repeats such as the CRISPR associated
with B. fragilis, which has the longest repeat of 47 bp. So in this
study, we systematically tested the size of k-mers, and the results
(see Results) show that k-mer size of 53 works generally well. We
therefore applied this parameter for targeted assembly of CRISPR
arrays and de novo assembly of the metagenomic, or combined
metagenomic and metatranscriptomic data sets.

Reference collection of CRISPR repeats

We identified 33 CRISPR—Cas systems from 23 species that were
shown to be highly expressed in the previous study (Franzosa
et al. 2014). The repeats found in these CRISPR—Cas systems were
used in our study as reference for the targeted assembly and charac-
terization of CRISPRs in contigs by CRISPRAlign (Rho et al. 2012)
(version 1.4 available at http:/omics.informatics.indiana.edu/
CRISPR/). We assigned IDs to the CRISPRs according to their asso-
ciated species and other information: The ID uses five letters from
the species name followed by the length of the repeats (length of
36 bp is shown as L36), and the type (subtype) information of the
associated CRISPR—Cas system if it is available. For example, the
CRISPR found in Lactobacillus casei ATCC 334 contains repeats of
28-bp long and is a type I-B system. It therefore is called
Lcasel28-1B.

Identification of new CRISPR-Cas systems

From de novo assembly results, we can identify the contigs that con-
tain both putative cas loci and CRISPR arrays, contigs that contain
either cas loci or CRISPR arrays, and many more contigs that do
not contain any. We focus on the contigs that have both putative
cas loci and CRISPR arrays considering that they are more likely
to represent true CRISPR—Cas systems than other contigs contain-
ing only one of the components (although it was shown that there
are CRISPRs that are distant from any cas locus).

CRISPRs were predicted using CRISPAlign (Rho et al. 2012)
against known CRISPR repeats (such that the predicted CRISPRs
contain repeats sharing at least 90% sequence identity with one of
the known repeats) for reference-based annotation, and metaCRT
(Rho et al. 2012) (which we modified from CRT [Bland et al.
2007] to allow partial repeats at the ends of contigs) for de novo pre-
diction. FragGeneScan (Rho et al. 2010) was applied to predict pro-
tein-coding genes from contigs, and the predicted proteins are used
to annotate putative Cas proteins using hmmscan (Zhang et al.
2014) against the collection of 156 families of Cas proteins, includ-

954 RNA, Vol. 22, No. 7

ing the known ones from a previous study (Makarova et al. 2011),
and our newly defined Cas families from the human microbiomes
(using a combination of context-based and similarity-search ap-
proaches). The type of CRISPR-Cas system was assigned using
type signature cas genes (Makarova et al. 2011; Chylinski et al. 2014).

We then expanded the collection of CRISPR repeats from 33 ref-
erence repeats to 137 repeats. This expanded collection was used for
identification of more CRISPR arrays, including those found in con-
tigs that only contain the CRISPRs but no cas genes.

Quantification of CRISPR expression and
detection of transcription direction

We mapped the RNA-seq reads to the assembled contigs that con-
tain putative CRISPR (and cas genes) using Bowtie2 (Langmead
and Salzberg 2012) and then summarized the expression of
CRISPRs using mapped reads. Because strand-specific RNA-seq
does not usually achieve 100% strand specificity (Sigurgeirsson
et al. 2014), for a CRISPR with transcription only in one direction,
we may find reads suggesting transcription from the other direction
as well. Similar to the statistical approach we developed for detecting
antisense transcripts to CDS (Bao et al. 2015), we applied binominal
tests using a success rate of 0.05 to check if the observation of tran-
scriptions from both directions is likely to be a consequence of the
imperfect strandedness of the RNA-seq experiment or is more likely
to represent the bidirectional transcription of the CRISPR.
Specifically, we use binomial testing to detect CRISPRs with tran-
scripts in both directions that are unlikely to result from such arti-
facts: Let P be the probability of having reads from one strand even
though there is no real transcription in this strand (so real transcrip-
tion occurs in the opposite strand). A total of ¢ reads are sequenced
from the CRISPR (cis approximated as the number of reads that can
be mapped to the array), among which m reads represent transcripts
from the strand opposite to the main direction. The null hypothesis
is that there is no bidirectional transcription from this CRISPR. We
use the binomial test in R (binom.test) to calculate the probability of
having c reads (the number of successes) out of m trials (a total of m
reads) with a success rate of P. If the probability is low (<0.05 ac-
cording to one-tailed binomial test), we consider that the CRISPR
has bidirectional transcription (the alternative hypothesis). We
used P =0.05, since most of the metatranscriptomic data sets have
less than this ratio of antisense reads (to protein-coding genes)
(Bao et al. 2015), and it was shown that most library treatments in
RNA-seq have a strandedness of >95% (Sigurgeirsson et al. 2014).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

The authors thank Dr. Haixu Tang and Kenneth Bikoff for reading
the manuscript and the anonymous reviewers for their insightful
comments. This work was supported by National Institutes of
Health grant IRO1AT108888.

Received January 14, 2016; accepted April 15, 2016.


http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/
http://omics.informatics.indiana.edu/CRISPR/

Exploring metatranscriptomic evidence of crRNA

REFERENCES

Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R.
2014. CRISPRstrand: predicting repeat orientations to determine the
crRNA-encoding strand at CRISPR loci. Bioinformatics 30:
1489-i496.

Bao G, Wang M, Doak TG, Ye Y. 2015. Strand-specific community
RNA-seq reveals prevalent and dynamic antisense transcription in
human gut microbiota. Front Microbiol 6: 896.

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S,
Romero DA, Horvath P. 2007. CRISPR provides acquired resistance
against viruses in prokaryotes. Science 315: 1709-1712.

Biswas A, Fineran PC, Brown CM. 2014. Accurate computational pre-
diction of the transcribed strand of CRISPR non-coding RNAs.
Bioinformatics 30: 1805-1813.

Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC,
Hugenholtz P. 2007. CRISPR recognition tool (CRT): a tool for au-
tomatic detection of clustered regularly interspaced palindromic re-
peats. BMC Bioinformatics 8: 209.

Bondy-Denomy ], Pawluk A, Maxwell KL, Davidson AR. 2013.
Bacteriophage genes that inactivate the CRISPR/Cas bacterial im-
mune system. Nature 493: 429-432.

Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-
Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR. 2015. Multiple
mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.
Nature 526: 136—139.

Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis R], Snijders AP,
Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small
CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:
960-964.

Carter J, Wiedenheft B. 2015. SnapShot: CRISPR-RNA-guided adaptive
immune systems. Cell 163: 260-260 e261.

Charpentier E, Richter H, van der Oost J, White MF. 2015. Biogenesis
pathways of RNA guides in archaeal and bacterial CRISPR-Cas adap-
tive immunity. FEMS Microbiol Rev 39: 428-441.

Chylinski K, Le Rhun A, Charpentier E. 2013. The tracrRNA and Cas9
families of type IT CRISPR-Cas immunity systems. RNA Biol 10:
726-737.

Chylinski K, Makarova KS, Charpentier E, Koonin EV. 2014.
Classification and evolution of type II CRISPR-Cas systems.
Nucleic Acids Res 42: 6091-6105.

Compeau PEC, Pevzner PA, Tesler G. 2011. How to apply de Bruijn
graphs to genome assembly. Nat Biotechnol 29: 987-991.

Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA,
Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation
by trans-encoded small RNA and host factor RNase III. Nature 471:
602-607.

de Menezes A, Clipson N, Doyle E. 2012. Comparative metatranscrip-
tomics reveals widespread community responses during phenan-
threne degradation in soil. Environ Microbiol 14: 2577-2588.

Dugar G, Herbig A, Forstner KU, Heidrich N, Reinhardt R, Nieselt K,
Sharma CM. 2013. High-resolution transcriptome maps reveal
strain-specific regulatory features of multiple Campylobacter jejuni
isolates. PLoS Genet 9: €1003495.

Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM,
Giannoukos G, Boylan MR, Ciulla D, Gevers D, et al. 2014.
Relating the metatranscriptome and metagenome of the human
gut. Proc Natl Acad Sci 111: E2329-2338.

Garside EL, Schellenberg MJ, Gesner EM, Bonanno JB, Sauder JM,
Burley SK, Almo SC, Mehta G, MacMillan AM. 2012. Cas5d process-
es pre-crRNA and is a member of a larger family of CRISPR RNA
endonucleases. RNA 18: 2020-2028.

Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard ], Levin JZ, Livny J,
Earl AM, Gevers D, Ward DV, et al. 2012. Efficient and robust RNA-
seq process for cultured bacteria and complex community transcrip-
tomes. Genome Biol 13: R23.

Gogleva AA, Gelfand MS, Artamonova II. 2014. Comparative analysis of
CRISPR cassettes from the human gut metagenomic contigs. BMC
Genomics 15: 202.

Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S,
Resch AM, Glover CVC, Graveley BR, Terns RM, et al. 2012.
Essential features and rational design of CRISPR RNAs that function
with the Cas RAMP module complex to cleave RNAs. Mol Cell 45:
292-302.

Hatoum-Aslan A, Maniv I, Marraffini LA. 2011. Mature clustered, reg-
ularly interspaced, short palindromic repeats RNA (crRNA) length is
measured by a ruler mechanism anchored at the precursor process-
ing site. Proc Natl Acad Sci 108: 21218-21222.

Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010.
Sequence- and structure-specific RNA processing by a CRISPR en-
donuclease. Science 329: 1355-1358.

Heidrich N, Dugar G, Vogel J, Sharma CM. 2015. Investigating CRISPR
RNA biogenesis and function using RNA-seq. Methods Mol Biol
1311: 1-21.

Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ,
van der Oost J, Terwilliger TC, Read RJ, Wiedenheft B. 2014.
Structural biology. Crystal structure of the CRISPR RNA-guided
surveillance complex from Escherichia coli. Science 345: 1473-1479.

Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. 2014.
Metatranscriptomics of the human oral microbiome during health
and disease. MBio 5: €01012-01014.

Juranek S, Eban T, Altuvia Y, Brown M, Morozov P, Tuschl T,
Margalit H. 2012. A genome-wide view of the expression and pro-
cessing patterns of Thermus thermophilus HB8 CRISPR RNAs.
RNA 18: 783-794.

Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R. 2013.
CRISPRmap: an automated classification of repeat conservation in
prokaryotic adaptive immune systems. Nucleic Acids Res 41:
8034-8044.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with
Bowtie 2. Nat Methods 9: 357-359.

Leimena MM, Ramiro-Garcia J, Davids M, van den Bogert B, Smidt H,
Smid EJ, Boekhorst J, Zoetendal EG, Schaap PJ, Kleerebezem M.
2013. A comprehensive metatranscriptome analysis pipeline and
its validation using human small intestine microbiota datasets.
BMC Genomics 14: 530.

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics 22:
1658-1659.

Lillestol RK, Shah SA, Brugger K, Redder P, Phan H, Christiansen J,
Garrett RA. 2009. CRISPR families of the crenarchaeal genus
Sulfolobus: bidirectional transcription and dynamic properties. Mol
Microbiol 72: 259-272.

LuoR, LiuB, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y,
et al. 2012. SOAPdenovo2: an empirically improved memory-effi-
cient short-read de novo assembler. Gigascience 1: 18.

Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E,
Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, et al.
2011. Evolution and classification of the CRISPR-Cas systems. Nat
Rev Microbiol 9: 467—-477.

Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ,
Barrangou R, Brouns SJ, Charpentier E, Haft DH, et al. 2015. An up-
dated evolutionary classification of CRISPR-Cas systems. Nat Rev
Microbiol 13: 722-736.

Mojica FJ, Diez-Villasenor C, Garcia-Martinez ], Almendros C. 2009.
Short motif sequences determine the targets of the prokaryotic
CRISPR defence system. Microbiology 155: 733—740.

Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A. 2012.
Cas5d protein processes pre-crRNA and assembles into a cascade-
like interference complex in subtype I-C/Dvulg CRISPR-Cas system.
Structure 20: 1574—1584.

Nickel L, Weidenbach K, Jager D, Backofen R, Lange SJ, Heidrich N,
Schmitz RA. 2013. Two CRISPR-Cas systems in Methanosarcina
mazei strain G61 display common processing features despite be-
longing to different types I and III. RNA Biol 10: 779-791.

Pearson GA, Lago-Leston A, Canovas F, Cox CJ, Verret F, Lasternas S,
Duarte CM, Agusti S, Serrao EA. 2015. Metatranscriptomes reveal

www.rnajournal.org 955



Ye and Zhang

functional variation in diatom communities from the Antarctic
Peninsula. ISME J 9: 2275-22809.

Reese MG. 2001. Application of a time-delay neural network to promot-
er annotation in the Drosophila melanogaster genome. Comput Chem
26: 51-56.

Rho M, Tang H, Ye Y. 2010. FragGeneScan: predicting genes in short
and error-prone reads. Nucleic Acids Res 38: e191.

Rho M, Wu YW, Tang H, Doak TG, Ye Y. 2012. Diverse CRISPRs evolv-
ing in human microbiomes. PLoS Genet 8: €1002441.

Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L.
2012. Characterization of CRISPR RNA processing in Clostridium
thermocellum and Methanococcus maripaludis. Nucleic Acids Res 40:
9887-9896.

Scholz I, Lange SJ, Hein S, Hess WR, Backofen R. 2013. CRISPR-Cas
systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit
distinct processing pathways involving at least two Cas6 and a
Cmr?2 protein. PLoS One 8: €56470.

Sigurgeirsson B, Emanuelsson O, Lundeberg J. 2014. Analysis of strand-
ed information using an automated procedure for strand specific
RNA sequencing. BMC Genomics 15: 631.

956 RNA, Vol. 22, No. 7

Stern A, Mick E, Tirosh I, Sagy O, Sorek R. 2012. CRISPR targeting re-
veals a reservoir of common phages associated with the human gut
microbiome. Genome Res 22: 1985-1994.

Sternberg SH, Haurwitz RE, Doudna JA. 2012. Mechanism of substrate
selection by a highly specific CRISPR endoribonuclease. RNA 18:
661-672.

van der Oost ], Westra ER, Jackson RN, Wiedenheft B. 2014. Unravelling
the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev
Microbiol 12: 479-492.

WeiY, Chesne MT, Terns RM, Terns MP. 2015. Sequences spanning the
leader-repeat junction mediate CRISPR adaptation to phage in
Streptococcus thermophilus. Nucleic Acids Res 43: 1749-1758.

Zhang Q, Rho M, Tang H, Doak TG, Ye Y. 2013. CRISPR-Cas systems
target a diverse collection of invasive mobile genetic elements in hu-
man microbiomes. Genome Biol 14: R40.

Zhang Q, Doak TG, Ye Y. 2014. Expanding the catalog of cas genes with
metagenomes. Nucleic Acids Res 42: 2448-2459.

Zoephel J, Randau L. 2013. RNA-Seq analyses reveal CRISPR RNA
processing and regulation patterns. Biochem Soc Trans 41: 1459—
1463.



