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Abstract

Introduction: Instrumental variable (IV) methods have been used in econometrics for several
decades now, but have only recently been introduced into the epidemiologic research frameworks.
Similarly, Mendelian randomization studies, which use the IV methodology for analysis and inference
in epidemiology, were introduced into the epidemiologist's toolbox only in the last decade.

Analysis: Mendelian randomization studies using instrumental variables (IVs) have the potential to
avoid some of the limitations of observational epidemiology (confounding, reverse causality,
regression dilution bias) for making causal inferences. Certain limitations of randomized controlled
trials, such as problems with generalizability, feasibility and ethics for some exposures, and high
costs, also make the use of Mendelian randomization in observational studies attractive. Unlike
conventional randomized controlled trials (RCTs), Mendelian randomization studies can be
conducted in a representative sample without imposing any exclusion criteria or requiring
volunteers to be amenable to random treatment allocation.

Within the last decade, epigenetics has gained recognition as an independent field of study, and
appears to be the new direction for future research into the genetics of complex diseases. Although
previous articles have addressed some of the limitations of Mendelian randomization (such as the
lack of suitable genetic variants, unreliable associations, population stratification, linkage
disequilibrium (LD), pleiotropy, developmental canalization, the need for large sample sizes and
some potential problems with binary outcomes), none has directly characterized the impact of
epigenetics on Mendelian randomization. The possibility of epigenetic effects (non-Mendelian,
heritable changes in gene expression not accompanied by alterations in DNA sequence) could alter
the core instrumental variable assumptions of Mendelian randomization.

This paper applies conceptual considerations, algebraic derivations and data simulations to question the
appropriateness of Mendelian randomization methods when epigenetic modifications are present.

Conclusion: Given an inheritance of gene expression from parents, Mendelian randomization
studies not only need to assume a random distribution of alleles in the offspring, but also a random
distribution of epigenetic changes (e.g. gene expression) at conception, in order for the core
assumptions of the Mendelian randomization methodology to remain valid. As an increasing
number of epidemiologists employ Mendelian randomization methods in their research, caution is
therefore needed in drawing conclusions from these studies if these assumptions are not met.
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Introduction
The use of genotypes that affect modifiable risk factors to
make causal inferences falls under the umbrella of
Mendelian Randomization (MR) studies [1,2]. Instru-
mental variable (IV) methods – the statistical methods
that underlie such inferences – have been widely used in
econometrics, but not in epidemiology [1,3]. Mendelian
randomization refers to the random assortment of alleles
inherited by offspring from their parents at conception
[4,5]. This random assortment of inherited alleles has
been likened to a randomized clinical trial (RCT), in
which the research subjects are randomly allocated to
different genotypes rather than to medical interventions
[4]. Mendelian randomization studies include any study
that uses genetic variation as a robust proxy for a
potential disease risk (which cannot be assessed without
biases) for the purpose of making causal inferences
about the outcomes of the modifiable exposure [1].

To date, the potential impact of epigenetics on the core
assumptions that underlie the use of genes as instru-
mental variables has not been addressed. This paper
opens up this inquiry by assessing the appropriateness of
the use of Mendelian randomization as an instrumental
variable in the presence of epigenetic modifications of
gene expression, and cautions investigators to, at the
least, recognize the existence of these limitations. We will
delineate the major rationale and the core assumptions
of the Mendelian randomization methodology, explore
the current understanding of epigenetics, and discuss the
methodological challenges that arise from the use of
genotypes as instrumental variables for modifiable
exposures when epigenetic modifications of gene expres-
sion are present. The goal of this paper is to emphasize
that effect sizes will be biased when the presence of
epigenetic phenomena violate the implicit fundamental
assumptions in Mendelian randomization studies (and
are not compensated for in the analytic models). We will
illustrate the occurrence of the epigenetic bias both
algebraically and with a data simulation.

What is currently known
Mendelian randomization and its shortfalls
Mendelian randomization studies exploit the idea that
the genotype only affects the disease status indirectly and
is assigned randomly at meiosis, independent of measured
and unmeasured (or measured-with-error) confounders
[1,5]. These properties define an instrumental variable
(IV), which is a variable associated with the outcome
only through its robust association with an intermediary
variable – the exposure of interest [1]. If the levels but
not the function of a potential disease risk factor is
determined by a genetic polymorphism, then the levels of
the risk factor will effectively be assumed to have been

randomly assigned at conception. This 'randomization'
will potentially obviate the effect of confounding in the
test of genotype-disease associations [6].

In order to illustrate the principles of Mendelian randomiza-
tion, we will use a familiar methodological concept that is
well-recognized in randomized controlled trials – the
intention-to-treat concept, due to the similarity between
the two concepts (i.e. indirect effect and randomized
allocation). Randomized controlled trials (RCTs) currently
provide the best evidence for potentially therapeutic or
prophylactic interventions. RCTs use intention-to-treat (ITT)
analysis to assess therapeutic effects [7]. ITT analyses assess
allocated treatment as the predictor of outcome, and are
assumed to be unconfounded because of randomization,
irrespective of compliance, adherence and contamination
[4,8]. Thus, the ITT effect is the effect of allocating a treatment
rather than the biologic effect of received treatment (Figure 1)
[4,7]. Unfortunately, for many types of exposure in
epidemiology, it is both impractical and unethical to
randomize study participants to different "treatment" arms.
Confounder control in observational studies may also be
problematic due to incomplete understanding of the
relevant confounders in a given situation, or due to inherent
measurement errors that arise in the assessment of such
confounders [5,9]. Mendelian randomization is a viable
strategy for eliminating or reducing residual confounding in
observational epidemiological studies [9].

Core Assumptions Implied in Mendelian
Randomization Studies
In order to understand the bias introduced by epigenetic
modifications of gene expression, the underlying statistical
assumptions in MR studies are outlined next. For this and

Figure 1
Conceptual analogies between a randomized
controlled trial (left graph) and Mendelian
randomization approach (right graph). Adapted
from Nitsch D, et al. [4].
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subsequent sections, let the causal effect of X (intermediate
phenotype) on Y be the relationship of primary interest, and
let G (genotype) be the variable we want to use as the
instrumental variable (IV). Also, let U be an unobservable
variable that confounds the effect of X on Y.

Three core assumptions characterize an instrumental
variable (IV) [1,5].

A. G is independent of the confounding factors U that
confound the association of X and the outcome Y.
This assumption accrues from the random allocation
of alleles at conception. Any event that alters this
allocation could lead to nullification of this assump-
tion (Figure 2A).
B. The instrumental variable G is associated with the
exposure of interest X (i.e. must not be (marginally)
independent of X). The stronger this association, the
"better" an instrument G is, providing more informa-
tion on the causal association between X and Y
(small standard errors and narrow confidence inter-
vals) [5]. It is important to state at this point that G
does not need to be causal for X, i.e. to be useful as
an IV, G does not have to be the "right" gene. The
association could instead be due to a mediator
variable or through another unobserved variable
that affects both G and X [5]. This may occur in
situations where there is linkage disequilibrium
(LD) between G (G1) and another genotype (G2)
(Figure 2B).
C. Conditional on X and U, the instrument and the
response are independent.

There are several methodological advantages of MR
studies. Unlike conventional RCTs, MR studies can be
conducted in a representative sample without imposing
any exclusion criteria or requiring volunteers to be
amenable to random treatment allocation [1]. Secondly,
"randomization" in MR studies occurs at conception
while RCT studies randomize patients in adulthood. This
minimizes biases due to canalization and developmental
adaptation [2,4]. Mendelian randomization studies may
also counteract some key shortcomings of randomized
controlled trials (RCTs), such as high cost, unfeasibility
with some exposures, and problems with generalize-
ability [1,4].

Previous studies have addressed some of the key
potential shortfalls of MR studies [2,4,10-14]. These
include the paucity of suitable genetic variants, unreli-
able (genetic) associations, genetic confounding by
population stratification, linkage disequilibrium (LD),
pleiotropy, functional genomic confounding due to
developmental canalization and gene imprinting, the
need for large sample sizes and some potential problems
with binary outcomes [1]. Other factors that may
adversely impact MR studies include selective survival,
gene-covariate (environment) interactions and gene-
gene interactions. In addition to these potential short-
falls is the potentially distorting effect of epigenetics.
This "epigenetic bias" is the focus of this paper.

What is Epigenetics?
Classical Mendelian inheritance of traits from parents to
offspring follows the DNA pairing and transmission
patterns as illustrated by the Watson-Crick model of
DNA. However, there is an emerging consensus among
experts in genetic epidemiology that DNA is not the sole
unit of heredity and that genotype and environment are
not the only determinants of phenotype [15]. A growing
body of evidence suggests that the impact of environ-
mental influences may extend beyond the DNA sequence
[16]. The emerging field of epigenetics studies heritable
changes in gene expression that occur without directly
altering the DNA sequence [17]. Thus, epigenetics is
dedicated to the study of non-Mendelian (meiotically
and mitotically), heritable changes in gene expression
not accompanied by a change in genotype/DNA
sequences [14,18-20]. These changes generally involve
DNA modification (without change in nucleotide
sequence), histone protein modifications, and regulation
of gene expression by microRNAs. MicroRNAs (miRNAs)
are small (approximately 22 nucleotides long) RNA
molecules that may be involved in post-transcriptional
control of gene expression [21]. These regulatory
mechanisms specify which regions of the genome are
active in any given cell at any one time [16,20].

Figure 2
Directed Acyclic Graph (DAG) specifying the core
conditions for an instrumental variable with (2B) and
without (2A) the presence of a mediator variable in
Linkage Disequilibrium (LD) with the instrumental
variable of interest.
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The cells of eukaryotic organisms contain an additional
level of information superimposed on the DNA double
helix, a nucleoprotein entity known as "chromatin". This
"DNA packaging" (or "epigenome") has recently been
implicated in the regulation of the complex interactions
of the enzymatic processes of replication, transcription,
recombination, and DNA repair [16]. The molecular
mechanisms of epigenetic modifications include DNA
methylation and chromatin structure and histone mod-
ifications [19]. Acetylation, methylation, phosphoryla-
tion, and ubiquitylation are implicated in activation;
while methylation, ubiquitylation, sumoylation, deimi-
nation and proline isomerization are involved in gene
repression [18]. However, depending on the location, any
given modification is capable of either activation or
repression [18]. While acetylation and phosphorylation
are thought to be responsible for short-term reversible
changes in gene expression, methylation is generally
more stable and involved in the long term maintenance
of expression status [19]. Inherited changes in the
"epigenome" have been postulated as a possible path-
way explaining the differences in gene expression seen in
individuals with identical "genomes" [22].

A major difference between genetic and epigenetic
outcomes is that, while DNA sequence is static, the
epigenome is dynamic and changes with cell type, during
the cell cycle, in response to biologic signals, and with
the environment [16]. Epigenetic effects have been
shown to occur not just in utero, but over the life course
[14]. Certain features of complex diseases that have
defied classical Mendelian genetics may be explained, at
least in part, by the inheritability, partial stability and
reversibility of epigenetic regulation. Gluckman et al.
recently proposed that maternally-mediated changes in
gene expression may be more relevant in elucidating the
etiology of disease in the offspring than the inheritance
pattern of the genetic code [23]. In agreement with a
possible epigenetic inheritance pattern, a recent study in
mice showed that experimentally-induced contact der-
matitis in the mother prior to conception resulted in an
increased asthma incidence in the offspring [24]. Further
strengthening this evidence in humans, Li et al. demon-
strated that grandmaternal smoking was associated with
an increased risk of asthma in grandchildren, indepen-
dent of maternal smoking status, suggesting a transmis-
sion of epigenetic effects inherited from the grandmother
to the grandchild [25].

Analysis
Statistical Implications
Using the RCT analogy for explaining Mendelian
randomization in epidemiology, the random allocation
G affects the outcome (Y) only through received

treatment (X), whereas receipt of treatment may be
confounded by other variables – known and unknown
confounders (U). In the presence of complete blinding,
the relation between G and X (i.e. between allocated
genotype and intermediate phenotype), bXG, is such that
G has the same effect on X regardless of compliance; and
X has the same effect on Y regardless of the confounding
factors (Figure 1). These two steps add up to the (overall)
effect of G on Y (Figure 3). As such, the instrumental
variable approach can be used to estimate an uncon-
founded biologic effect on Y of the received treatment X,
denoted as bIV (Figure 3) [3,26]. It is noteworthy that in
Figure 3, MR assumptions imply that the inherited G and
X in the child are the same as those of the mother. We
thus do not distinguish between the notations for the
child's and mother's allocated and received treatments in
these algebraic derivations.

Although a more complicated model is possible, to
illustrate the IV approach we assume linear relationships
among G, X, and Y (i.e. "a one-unit change in G is
estimated to result in a b increase in X, and this increase
in X in turn is estimated to cause a further increase of bIV

in Y, which, multiplied together, gives the total bITT

increase from G to Y" [4]). Following core assumptions
A, B, and C (as stated above), Figure 3 can then be
modeled as the following, where E denotes expectation
of a random variable:

E Y U GITT YU1 ITT( ) = + +b b b0 (1)

Figure 3
Three important assumptions in Mendelian
Randomization are: a) and b): G associated with X
and independent of U. Thus, the effect of G on X is not
affected by U. c) Given X and U, G is independent of Y. Thus,
the effect of G on Y can be fully assessed by the effect of G
on X and then the effect of X on Y, after adjusting for
confounders U; i.e. bITT = bXGbIV as we have shown in
Analysis section. (Adapted from Nitsch D, et al. [4]).
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E X U GXU XG( ) = + +b b b0 (2)

E Y U XIV YU2 IV( ) = + +b b b0 (3)

In equations (1) and (3), both bYU1 and bYU2 denote the
effect of U on Y. The effect of U is likely to be different
when evaluating the contribution of U and G to Y
(equation (1)) and the contribution of U and X to Y
(equation (3)). Thus, we use different coefficients (bYU1

and bYU2) to denote the effects under these two situations.
Since U and X are correlated and U is not observable, it is
not possible to directly estimate bIV. However, since U
and G are independent, regressing X on G will provide an
estimate of bXG even though U can not be observed. Using
the same argument, we can obtain an estimate of bITT by
regressing Y on G. Applying some algebra to the above
three equations, specifically by first substituting equation
(2) for X in equation (3), and then comparing the effect of
G in equation (1) and equation (3), we have:

b b bITT XG IV= , (4)

which leads to

b b bIV ITT XG= / (5)

Note that in the above derivation, the intercepts are not
related to the relationship between bITT, bXG, and bIV.
From Figure 3, estimation of bIV depends heavily on
assumptions of compliance, i.e. blinding to allocation (G
associated with X and independent of U) and the absence
of any other pathway from G to Y (i.e. G being
independent of Y given X and U) [4]. An intuitive
motivation for equation (5) is that the change in outcome
for a unit change in the instrument, bITT, is the product of
the change in the exposure for a unit change in the
instrument, bXG, and the change in the outcome per unit
change in exposure, bIV [1]. Estimation of the causal effect
bIV by this equation makes use of the variation in Y that is
due to the IV, G, and the core assumptions above. Based
on our derivation, we can see that this estimate avoids the
contaminating effect of the variation in Y due to the
confounders of the X-Y association [1].

In Mendelian randomization studies, bIV would be
equivalent to the effect of the intermediate phenotype
on the outcome (disease) and bITT to the (direct) genetic
effect on disease, while the denominator in equation (5)
would capture the observed, or presumed, relation
between genetic allocation, G, and its gene product,
the intermediate phenotype X [4].

The Impact of Epigenetics on Mendelian Randomization
Inherited epigenetic effects may alter the ideal gene Æ
"gene product" association discussed above (i.e. in the

situation when Mendelian randomization is applicable).
From Figure 3 and equations (2) and (3), the less
precisely the genotype predicts the gene expression (gene
product), the less accurate the derived effect estimate for
the causal association between the level of gene
expression and the outcome (disease). This necessity
for a strong gene Æ "gene-product" association in order
to apply equation (5) requires that there be no
substantial biologic co-variation [4]. The impact of
epigenetics is due to changes in gene expression (levels
of the gene-product) that result in a weaker association.
We illustrate this epigenetic effect through an example.
In Figure 4, let us assume there is an environmental
factor E (e.g. tobacco smoke) taking values 0 (i.e. not
exposed) or 1 (i.e. exposed). At the maternal level, factor
E interacts with G and this interaction subsequently
affects the levels (of expression) of X (i.e. the epigenetic

Figure 4
Epigenetic effect present due to inherited altered
gene expression (bXG + bEG = bXG*). Compared to
Figure 3, when epigenetic effect is present, the core
assumptions of MR are violated. Let E denote an
environmental factor, which interacts with G at the maternal
level. In the presence of this interaction, G and E × G are
clearly dependent. Thus, the association between G and X is
affected by the E × G interaction term. This violates core
assumptions (a) and (b) above. Thus, Mendelian
Randomization should be applied with caution if the
possibility of epigenetic effects exists. Further, as shown in
Analysis section, bXG* = bXG+ bEG and bITT = bXG*bIV'.
Therefore, bITT ≠ bXGbIV'. Thus, when Mendelian
Randomization is violated, there is a tendency to contravene
the stated relationship between bITT, bXG, and bIV as given by
equation (5). From the randomized controlled trial analogy,
bITT is the intention-to-treat effect; bIV(biologic effect of
received treatment); and bXG (the effect of G on X).
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effect which is inherited by the child). Under this
assumption, equation (2) is modified as:

E X U G E GXU XG EG( )’ = + + + ×b b b b0 (2a)

We use E(X)' to denote the expected gene expression
when there is possible gene-environment interaction.
Here "E × G" denotes the interaction between the
environmental factor E and the genotype G. bEG

measures the strength of the interaction and is assumed
to be non-zero. We now show that the environmental
factor at the maternal level changes the relationship
stated in equation (5).

If a subject is not exposed, (E = 0; i.e. no interaction
effect), equation 2' is exactly the same as equation 2. In
the same vein, the relationship between bITT, bXG, and bIV

remains as given by equation (5). However, if a subject is
exposed to the environmental factor E (i.e. there is an
interaction effect), then E = 1. From equation 2', we have

E X U )G.XU XG EG( )’ (= + + +b b b b0 (6)

Let bXG* = bXG+ bEG.

bXG* may be greater or less than bXG depending on the
predominant mechanism (activation vs. repression, for
instance). Note that bXG* includes the regular effect of G
on X in addition to the effect of gene-environmental
interaction that altered the gene expression of the
mother's gene. This gene-environment interaction by
definition is the epigenetic effect only if it is heritable. As
indicated in Figure 4, where such epigenetic effect is
inherited by the child, the epigenetically modified gene
expression in the child is a result of the G × E interaction
inherited from the mother. Thus, the association
between X and G in the child includes the effect of G
on X and the gene-environment interaction inherited
from the mother. (For simplicity in notation, we use the
same X and bXG* to respectively denote the gene
expression in the child and the inherited epigenetic
effect, although their values may be different from those
at the maternal level).

Further, we use bIV' to denote the effect of gene
expression under this assumption, and thus equation
(3) becomes:

E Y U XIV YU IV( ) .’= + +b b b0 2 (3a)

Applying the same algebra as before to equations (1),
(3'), and (6), we have:

b b b bITT XG EG IV= +( ) ,’

which gives bIV' = bITT/(bXG+ bEG) = bITT/bXG*, where
bXG* = bXG+ bEG.

This new relationship does not agree with that given by
equation (5), which is derived based on the MR
assumptions. The additional effect (bEG) is what we
have termed the "epigenetic bias."

It is noteworthy that a gene-environment interaction in
parents may lead to an epigenetic effect only when it is
inherited by the offspring. Certain gene-environment
interactions (in ancestral parents) are thought to be
mediated through molecular changes in the epigenome.
The non-random nature [18] of such alterations may
necessitate caution in the interpretation of the estimates
from the Mendelian randomization (instrumental vari-
able) analyses. In recognition of the presence of this
"epigenetic bias," Bjornsson et al. have suggested that
including epigenotypes in models of disease causation
might act as a surrogate of parental environmental
exposure and thus increase the power of epidemiological
studies [20].

Figure 5 illustrates a model of inherited epigenetic effects
from mother to child due to environmental influences.
Suppose we are studying the effect of IL13 gene on

Figure 5
Schematic representation of possible scenarios of the
effects of epigenetics on Mendelian randomization
(IL13: Inter-leukin-13 gene).
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asthma, and suppose that maternal tobacco smoke
exposure during adolescence resulted in epigenetic
changes. Such maternal epigenetic effects could lead to
the statistical detection of gene-environment interaction
effects in the mother. Further, suppose that at concep-
tion, an index child inherited the high-risk IL13
("asthma") gene from this former-smoker mother, in
addition to inheriting the "epigenetically altered" geno-
type (epigenome). Although we may not directly find
gene-environment interactions in the offspring, the
spurious association between the inherited IL13
("asthma") gene and the environmental factor (smok-
ing) will nullify core assumption A and adversely affect
the use of the IL13 gene as an IV. As we alluded to earlier,
findings in support of this concept have recently been
reported by Li et al. [25] and Sadeghnejad et al. [27]. Li
et al. found a multigenerational transmission of asthma
across two generations. Their results showed grand-
maternal smoking during the mother's fetal period to be
associated with a greater risk of asthma in the grand-
children, independent of maternal smoking status. This
risk was further heightened when both the grandmother
and the mother smoked during pregnancy [25]. In a
related finding, Sadeghnejad, et al. [27] demonstrated
that offspring who were exposed to maternal smoking
during pregnancy and also possessed the risk haplotype
of the IL13 gene had a higher prevalence of persistent
wheezing and asthma in late childhood (evidence of
effect modification/statistical interaction). Thus, if the
IL13 gene is randomly distributed in children, con-
founding may not be a major concern. On the other
hand, distortion of genetic associations assessed using
Mendelian randomization may occur due to epigenetic
effects. This concept is further illustrated in the data
simulation shown in the next section.

Further illustrating conceptually with the randomized
clinical trial (RCT) analogy, if an RCT is blinded,
intention-to-treat (ITT) cannot be influenced by external
factors such as motivation or education (non-differential
compliance). However, in a non-blinded trial, partici-
pants in the control or treatment arm may choose to
alter treatment or compliance (differential compliance,
see Figure 1). For instance, control participants may take
additional steps to improve their outcome status. This
results in an interaction between the allocated treatment
and extraneous variables (see Figure 4) and violates the
assumptions of ITT. In non-blinded randomized trials,
opportunities for extraneous variables to interact with
ITT increase with the length of the trial [28]. Similar to
this finding in RCTs, in Mendelian randomization
studies specific genotypes may interact with a range of
extraneous factors and establish epigenetic changes that
are inherited by subsequent generations. Thus, the
setting of Mendelian randomization is comparable to

the setting of a non-blinded randomized clinical trial.
Given that the time window between "randomized
allocation" of genes at conception and initiation of a
MR study is likely to span decades, MR studies are prone
to violate the ITT assumption. For instance, if the gene
expression of IL13 is higher in a child if the mother
smoked, then the distribution of the epigenetically
modified gene expression is no longer random at birth.
Consequently, the child may or may not develop asthma
depending on the inception of gene expression in the
mother. In essence, since the assumption of MR is to
detect an unbiased association between genetic markers
and health outcomes due to randomized genes, if studies
cannot demonstrate that the gene expression is also
distributed randomly, the MR model is not justified
and will introduce an "epigenetic bias."

Data Simulation Example
We use simulations to illustrate our findings given in
Analysis section. The goal of this simulation is to
demonstrate the bias in the estimates of the b coeffi-
cients if epigenetic effects transmitted from mother to
child are ignored. For this simulation, we assume that a
mother smoked in adolescence, stopped smoking as an
adult, and then conceived the index study child. Thus,
non-epigenetic effects of tobacco smoke exposure in utero
did not occur. However, gene expression (epigenetic)
changes in the mother prior to the index pregnancy were
inherited by the child as discussed in Analysis section.

To demonstrate the scenario outlined in Table 1, we
assume that we have 10,000 pregnant mothers resulting
in 10,000 mother-infant pairs (see attached SAS data and
program in additional file 1). For simplicity, we focus on
one (asthma) gene (IL13 gene) and one single nucleotide
polymorphism (SNP) with three possible genotypes
(CC, CG and GG). Our simulated data are generated
based on the following data scenario:

1) Of 10,000 mothers in the simulated data, 30.5%
(n = 3,050) smoked in adolescence, while 69.5% (n =
6,950) did not.
2) The genotypes of mothers who smoked in adoles-
cence and of those who did not were distributed at
random: 7.2% of the never-smoking mothers had the
GGgenotype compared to 9.8%of ex-smokingmothers;
41.7% of never-smoking mothers had the CG genotype
compared to 39.3% in ex-smoking mothers; and about
51% in both groups were CC. These percentages were
selected using the probabilities that each genotype will
be present in a mother.
3) We also assumed that the gene × smoking (G × E)
interaction resulted in changes in gene expression in
the mother that were inherited by the offspring,
leading to asthma manifestation in the offspring.
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4) The inheritance of gene expression is assumed to
be complete and therefore G and X at the maternal
level are consistent with the G and X at the child's
level; also paternal genes were assumed not to play
any role.
5) Next, we assumed that smoking among the
offspring varied with history of maternal smoking:
36.1% of the offspring whose mother smoked in
adolescence also smoked, while only 28.2% of the
offspring whose mother never smoked also smoked.
The overall smoking prevalence for both groups of
children was 30.6%. These percentage values were
generated from a normal distribution with mean
0.30 and standard deviation 0.10.
6) The data were also simulated such that there was
altered gene expression in 25% of the children of ex-
smoking mothers compared to 7.4% of the children
with never-smoking mothers.
7) Next, 3.6% of the children with ex-smoking
mothers had childhood asthma, compared to 1.4%
of the children with never-smoking mothers. These
percentages were derived from the assumed prob-
abilities of asthma depending on smoking exposure.

8) This simplification is to enable demonstration of
the epigenetic effect illustrated in Figure 5. Using the
above data scenario, we applied a log-linear model
with a dominant effect of the G allele (see SAS
program). Hence, the genotypes GG and CG com-
bined served as the reference. We estimated the
effects (the values of b) of the CC genotype, maternal
smoking, offspring smoking, and the "G × E
interaction" for maternal smoking.

As outlined, b's were derived for the following associa-
tions:

(1) the effect of the genetic polymorphism on outcome Y
(in this case, asthma) estimating bITT;

(2) the effect of the genetic polymorphism on X (in this
case, gene expression) estimating bXG*

(3) the effect of X (gene expression) on Y (asthma)
estimating bIV'

The significance level was selected as a = 0.05.

Table 1: Statistical findings of data simulation using log-linear models (scenario outlined in Figure 5)

Gene Æ asthma
(bITT)

Gene Æ gene expression of CC
(bXG*)

Gene expression of CC Æ asthma
(bIV ')

b SE Â SE b SE

Effect of genetic polymorphism on asthma
CG/GG (reference) 1
CC 0.458 0.141

Effect of genetic polymorphisms on gene
expression:
CG/GG (reference) 1
CC 0.367 0.055

Effect of genetic polymorphism, maternal and
offspring smoking, and gene-"maternal
smoking in adolescence" interaction on gene
expression:
CG/GG (reference) 1
CC 0.215 0.086
Maternal smoking 0.983 0.086
"Maternal smoking in adolescence" ×
CC-genotype

0.269 0.111

Offspring smoking -0.005 0.056

Effect of expression of genetic olymorphism on
asthma:
Gene expression of CC 1.951 0.135

Effect of genetic polymorphism, maternal and
offspring smoking on asthma
Gene expression of CC 1.792 0.144
"Maternal smoking in adolescence" 0.435 0.145
Offspring smoking 0.166 0.140

# SE = standard error.
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If we ignore the inherited altered gene expression due to
maternal smoking in adolescence, we will find a
statistically significant crude effect of the CC-genotype
on the gene expression (bXG* = 0.367, p-value = 0.0001).
However, this effect actually includes contributions from
both the CC-genotype and from the gene-smoking
interaction (G × E interaction) in the mother leading
to an epigenetic effect. The contribution from each of
these two can be estimated by including a "gene by
smoking" interaction term in the model. Inclusion of
this term showed a significant gene-smoking interaction
effect (bEG = 0.269, p-value= 0.015). Regarding the
outcome, asthma (Y), we found a statistically significant
effect of the CC-genotype (bITT = 0.458, p-value <
0.0012).

The above observations imply two important cautionary
findings. Firstly, this data simulation demonstrates that
the gene effect, even if randomly distributed on the
exposure, may be overestimated when the gene ×
"maternal smoking in adolescence" interaction is
ignored. Secondly, we show in this scenario that when
the epigenetic effect is ignored, a significant epigenetic
effect (gene × smoking interaction) tends to violate the
core assumptions of Mendelian randomization. This
interaction results in variations in gene-expression and
subsequently in increased or reduced risk of the outcome
(i.e. an epigenetic effect)

Hence, bIV' = bITT/(bXG+ bEG) = bITT/bXG* as demon-
strated earlier, but bIV' is not equal to bITT/bXG as given by
equation (4). This is due to the inclusion of gene-
smoking interaction, which causes bXG* to deviate from
bXG. As seen in our example, bITT = 0.458, bXG* = 0.367,
and bXG = 0.215, so we have bIV' = 0.458/0.367 = 1.248
while bIV = 0.458/0.215 = 2.130. This implies a tendency
for bIV' and bIVto differ systematically, if evaluated from a
study where the gene by "prior maternal smoking"
interaction is not taken into account. We refer to this bias
as the "epigenetic bias".

Conclusion
As an increasing number of epidemiologic researchers
employ Mendelian randomization in their research, the
impact of epigenetics on the core assumptions that drive
the use of genotypes as instrumental variables deserves
attention. Our work demonstrates that epigenetic bias
may distort the effects detected in MR studies.

It is important to differentiate between gene-environ-
ment interactions that affect MR studies in the same
generation, and epigenetic effects inherited through
subsequent generations and that may invalidate MR
studies in the second or third generation. Additional

tools, such as molecular methods to assess the level of
DNA and histone modifications may soon be widely
available. Future research in the field of Mendelian
randomization needs to collect information on epige-
netic changes (e.g. gene expression) of the various genes
tested. These additional data would enable adjustment
for "epigenetic bias" as described in this paper. Such
tools may make it possible to apply certain "correction
factors" or to stratify future analyses by "methylation
status" (or "expression status"), in the assessment of
gene effect [20]. Until such a time, caution is needed in
the interpretation of Mendelian randomization studies.
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