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Abstract: The bioavailability and pharmacokinetics in turkeys of cefquinome (CFQ), a broad-
spectrum 4th-generation cephalosporin antibiotic, were explored after a single injection of 2 mg/kg
body weight by intravenous (IV) and intramuscular (IM) routes. In a crossover design and 3-weeks
washout interval, seven turkeys were assigned for this objective. Blood samples were collected
prior to and at various time intervals following each administration. The concentration of CFQ in
plasma was measured using HPLC with a UV detector set at 266 nm. For pharmacokinetic analysis,
non-compartmental methods have been applied. Following IV administration, the elimination half-
life (t1/2z), distribution volume at steady state (Vdss), and total body clearance (Cltot) of CFQ were
1.55 h, 0.54 L/kg, and 0.32 L/h/kg, respectively. Following the IM administration, CFQ was speedily
absorbed with an absorption half-life (t1/2ab) of 0.25 h, a maximum plasma concentration (Cmax) of
2.71 µg/mL, attained (Tmax) at 0.56 h. The bioavailability (F) and in vitro plasma protein binding of
CFQ were 95.56% and 11.5%, respectively. Results indicated that CFQ was speedily absorbed with a
considerable bioavailability after IM administration. In conclusion, CFQ has a favorable disposition
in turkeys that can guide to estimate optimum dosage regimes and eventually lead to its usage to
eradicate turkey’s susceptible bacterial infections.
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1. Introduction

Pathogenic bacteria constitute a menace to the health of humans and animals and
lead to a significant economic burden; thus, an antibacterial intervention is a vital consid-
eration [1]. However, the emergence of bacterial resistance to antibacterials is a constant
medical issue due to the regular and hazardous use of classical antibiotics. This problem
can partly be solved by the usage of appropriate and effective antibacterial drugs.

In veterinary practice, cephalosporins are very often prescribed for the remediation
of bacterial infections [2,3]. Their mode of action is attributed to the disruption of the
peptidoglycan layer which is important for the structural integrity of the bacterial cell wall
resulting in lysis and death of the bacterial cell [2]. Cefquinome (CFQ) is a broad-spectrum
parenteral bactericidal cephalosporin (4th-generation) antibiotic. It was developed specifi-
cally for veterinary usage [4]. The unique structural design of CFQ (Figure 1) was obtained
by setting a methoxyimino-aminothiazolyl moiety into cephalosporin’s acyl side chain and
a quaternary quinoline group at position 3 of the cephem ring resulting in the zwitterionic
structure of CFQ. This unique design notably boosts the antibacterial efficacy, spectrum,
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and stability of CFQ against β-lactamases-producing and methicillin-resistant bacteria as
Enterococci and Staphylococci [5–7]. Further, the zwitterionic structure facilitates its rapid
permeation beyond biological membranes and through the porins of bacterial cell walls,
ensuring its speedy effect following injection [8]. These special structure grants prefer-
able pharmacokinetic properties to CFQ such as speedy absorption, high bioavailability,
primary elimination in an unchanged form via the kidneys, and low protein binding [9].
The spectrum of CFQ includes different bacterial strains such as Streptococci, Staphylococci,
Enterobacteriaceae family (E. coli, Salmonella, Klebsiella, Citrobacter species), and Pseudomonas
aeruginosa [10–12]. Therefore, it is prescribed for the remediation of bacterial diseases of
the respiratory system in equines and poultry, as well as acute mastitis, mastitis-metritis-
agalactia syndrome, and foot rot disease in bovines [2,10,13,14].
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Figure 1. Chemical structure of cefquinome.

Extensive pharmacokinetic studies have been performed for CFQ in numerous mam-
mals under normal and different physiological experimental conditions such as foals [14],
ponies [15], horses [16], pigs [17], piglets [18–20], dogs [21,22], calves, [23,24], cattle [25,26],
sheep [27,28], goats [29,30], rabbits [31,32] and mice [33,34]. The CFQ pharmacokinetics
have been also determined in fishes including tilapia [35], carp [36], and salmon [37]. These
investigations established a conceptual framework for the reasonable and clinical usage
of CFQ in these species. A limited amount of research has been conducted to determine
the pharmacokinetics of CFQ in avian species such as ducks [9], chickens [38], ducklings
and goslings [39], black swans (Cygnus atratus) [11], and laying hens [40]. The data of these
studies revealed differences among these avian species in CFQ disposition, entailing precise
assessment before its clinical usage in new avian species. Usage of allometric scaling for
dose extrapolation among avian species could lead to inaccuracies, especially when drugs
are prone to metabolic alterations [41,42].

The kinetics of CFQ has not been studied in turkeys yet. Therefore, the current study
aimed to determine the CFQ’s disposition profile in turkeys following a single intravenous
(IV), and intramuscular (IM) administration to get information for the future establishment
of optimal dosage regimens.

2. Materials and Methods
2.1. Reagents and Chemicals

Cefquinome sulfate powder of 84.1% purity was purchased from Hebei Yuanzheng
Pharmaceutical Co., Ltd. (Hebei, China). The injectable solutions of CFQ were prepared by
dissolving CFQ powder in sterilized distilled water. An HPLC grade CFQ standard (95%
purity) was purchased from Fujifilm Wako Pure Chemical Co. (Osaka, Japan), and used for
validation of the calibration method. The purity percentage of CFQ sulfate powder (84.1%)
and CFQ standard (95%) was considered when preparing the administered doses and the
solutions of CFQ standard. Other reagents and chemicals used in the present study were
of analytical reagent grade.
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2.2. Experimental Birds

Seven male turkeys, 15 weeks of age, 6–7 kg body weight (BW), were purchased from a
local commercial turkey farm. The turkeys were maintained at 20 ◦C, 65% relative humidity,
and a 12 h/day light cycle. There were two weeks of acclimatization before experimentation
to ensure that their bodies are free from any residual drugs such as antibacterials and
anticoccidials. Standard commercial pelleted feed, free from antibiotics and coccidiostats,
and water were supplied ad libitum. The health status of turkeys was daily assessed, and
no signs of disease were seen. The experimental protocol was developed following the
directions of the Declaration of Helsinki and accepted by the Ethical Committee of the
Faculty of Veterinary Medicine, Benha University, Egypt (Number: BUFVTM 02-07-21). All
efforts were exerted to maintain comfort and minimize pain to turkeys.

2.3. Experimental Design

The doses were calculated precisely based on the purity percentage of CFQ sulfate
powder (84.1%) and the individual BW of each turkey prior to CFQ injection. A crossover
design [43] was used where the washout interval was three weeks (Figure 2). The turkeys
were given a single dose of 2 mg/kg BW of CFQ either IV into the left brachial vein or
IM into the thigh muscles. The selected dose in the current study was based on the doses
that were mostly used in avian species, chicken, duck, and geese [9,38–40]. Blood samples
(1.5 mL) from each turkey were gathered from the right brachial vein into tubes containing
heparin just before medication (time = 0) and then at 0.08, 0.16, 0.25, 0.5, 1, 2, 4, 6, 8, and
12 h after CFQ injection. After centrifugation of these blood samples for 10 min at 1600× g,
plasma samples were separated into 1.5 mL tubes, labeled appropriately, and stored at
−30 ◦C until it was assayed by HPLC system.
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2.4. Analytical Method

The concentration of CFQ in turkey’s plasma was analyzed by HPLC as determined
previously [9]. Briefly, 300 µL each plasma sample was deproteinized using 600 µL of
methanol, vortexed for 10 s and centrifuged at 20,000× g for 15 min in a cooling centrifuge
at 4 ◦C. Thereafter, the supernatant of each sample was gathered, dried with nitrogen
gas, reconstituted in 300 µL of mobile phase, and filtered through a 0.45-µm HPLC filter
(Chromatodisc®, 4P, Kurabo Biomedical Industries, Ltd., Osaka, Japan). The HPLC system
(HP-1100 HPLC system, Agilent Technologies, Palo Alto, CA, USA) used in the present
study was equipped with a degasser, a quaternary pump, an autosampler, a UV detector,
and a column heater. The mobile phase was composed of sodium perchlorate (85 mM
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(9.16 gm/L))-triethylamine (4.6 mL, to dissolve sodium perchlorate)-phosphate (to set
pH at 3.6)-buffer and acetonitrile (88:12, v/v). The flow rate was put at one mL/min.
The analytical separation of CFQ was done by a reverse phase C18 Hypersil-BDS column
(250 × 4.6 mm, 5 µm, Agilent Technologies) with the temperature maintained at 30 ◦C, a
UV wavelength set at 266 nm, and the injection volume was 20 µL.

2.5. Method Validation

The stock solution of CFQ (equivalent to 1 mg/mL) was prepared by dissolving
10.53 mg of CFQ standard (95%) in 10 mL of the mobile phase. The working solutions of
the CFQ standard (0.01, 0.05, 0.1, 1, 2.5, and 5 µg/mL) by diluting the CFQ stock solution
with mobile phase. Calibration was performed by spiking 60 µL of each standard working
solution to 240 µL of blank turkey’s plasma and assayed as described above. The means
of five values were applied to plot standard curves (peak area vs. CFQ concentration).
The recovery rate from plasma, inter-day and intra-day coefficients of variability were
determined via repetitive analysis of plasma samples. The average plasma recovery rate
of CFQ was high (94%). The values of intra- and inter-day coefficients of variability were
ranged from 4.07~4.63% and 4.91~5.35%, respectively (n = 5, three times, three days).
The lower limits of detection (LOD) and quantification (LOQ) were determined using the
signal-to-noise method and were 0.010 and 0.035 µg/mL, respectively. The peak of CFQ in
plasma has appeared on a chromatogram at 12 min (Supplementary Figure S1).

2.6. Plasma Protein Binding Extent of CFQ

The extent of CFQ binding to plasma protein was assessed in vitro using the ultra-
filtration method [44]. The various CFQ standard concentrations (equivalent to 0.2, 2, 20
and 100 µg/mL were prepared in deionized water by diluting the stock solution of CFQ
(equivalent to 1 mg/mL deionized water). Thereafter, 50 µL of each standard working
solution was mixed in triplicate with 950 µL of fresh blank turkeys’ plasma to yield plasma
samples spiked with known CFQ concentrations of 0.01, 0.1, 1, and 5 µg/mL. After vor-
texing for 20 s, the spiked samples were maintained for 30 min at 37 ◦C to permit binding
of CFQ with plasma proteins of plasma samples. Subsequently, one mL of each spiked
sample was dropped into the reservoir of Ultrafree® centrifugal filter tube (pore diameter
of 0.45 µm, Millipore Corporation, Tokyo, Japan). The ultrafiltration was conducted by
centrifugation of the Ultrafree® centrifugal filter tubes at 2500× g, at 37 ◦C for up to 30
min until the required amount of the ultrafiltrate was achieved. In the obtained ultra-
filtrate, CFQ concentrations were assayed as mentioned above. The percentage of CFQ
plasma protein binding was assessed regarding the initial sample concentration using the
following Equation (1):

Plasma protein binding (%) = 100−
[{

concentration/mL ultrafiltrate
initial concentration/mL plasma

}
× 100

]
(1)

2.7. Pharmacokinetic Analysis

After IV and IM administrations and HPLC analysis of plasma samples, the calculated
plasma concentrations of CFQ for each turkey at each sampling time were presented as
mean± standard deviation (SD) values (Supplementary Table S1). The non-compartmental
analysis method [45] was applied to calculate several pharmacokinetic parameters using
the concentration vs. time data of CFQ in each turkey following the IV and IM administra-
tions and the WinNonlin program (version 6.1, Pharsight, Mountain View, CA, USA). The
calculated parameters include total body clearance (Cltot), distribution volume at steady
state (Vdss), and mean residence time (MRT). The trapezoidal method was applied to cal-
culate the area under the concentration-time curve (AUC), the area under the first moment
curve (AUMC). Mean residence time (MRT) was calculated as MRT = AUMC/AUC and
the total body clearance (Cltot) as Cltot = Dose/AUC. The elimination rate constant (z) was
calculated by linear regression of several points (4–6) on the terminal phase of logarith-
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mic plasma concentrations vs. time curve. The terminal half-lives (t 1
2 z) were calculated

using where t 1
2 z = 0.693/z. The peak plasma level (Cmax) and time to Cmax (Tmax) after

IM administration of CFQ were determined using the curve of plasma concentration vs.
time for each turkey. The absolute bioavailability (F) of CFQ after IM was calculated as
F = AUCIM/AUCIV × 100. The half-life of absorption of CFQ after IM administration was
determined using the equation: t1/2ka = 0.693 ×mean absorption time (MAT). All obtained
values are expressed as Mean ± SD.

3. Results

No abnormalities such as irritation, pain signs, or lameness were noticed in turkeys
following the administrations of CFQ. The semi-logarithmic plasma concentration vs. time
curves of CFQ after the single IV and IM administration of 2 mg/kg BW are illustrated in
Figure 3 and the mean ± SD of pharmacokinetic parameter values are shown in Table 1.
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Figure 3. Semi-logarithmic graph depicting the time-concentration of cefquinome in plasma of
turkeys after a single intravenous (IV) (•) and intramuscular (IM) (4) administration of 2 mg/kg
BW (n = 7).

Table 1. Plasma pharmacokinetic parameters of cefquinome in turkeys following intravenous
(IV) and intramuscular (IM) administration of 2 mg/kg BW (n = 7). All values are expressed as
Mean ± SD.

Parameters Unit IV IM

C0 µg/mL 6.63 ± 0.302 —
t1/2ab h — 0.253 ± 0.0580
t1/2z h 1.56 ± 0.0631 1.71 ± 0.076

AUC0–∞ µg·h/mL 6.22 ± 0.428 5.94 ± 0.443
AUMC0–∞ µg·h/mL 10.6 ± 1.23 12.3 ± 1.52

MRT h 1.70 ± 0.082 2.07 ± 0.117
MAT h — 0.374 ± 0.062
Vdss L/kg 0.547 ± 0.0133 —
Cltot L/kg/h 0.323 ± 0.0255 —
Cmax µg/mL — 2.71 ± 0.161
Tmax h — 0.558 ± 0.018

F % — 95.6 ± 1.78

C0; concentration at zero time (immediately after single IV injection), t1/2ab; absorption half-life after IM admin-
istration, t1/2z; terminal elimination half-life, AUC0–∞; area under plasma concentration-time curve from zero
time to infinity, AUMC0–∞; area under moment curve from zero time to infinity, MRT; mean residence time, MAT;
mean absorption time, Vdss; volume of distribution at steady-state, Cltot; total body clearance. Cmax; maximum
plasma concentration, Tmax; time to peak plasma concentration, F; absolute bioavailability.
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The individual pharmacokinetic parameters are presented in Supplementary Table S2.
Following IV administration, CFQ concentrations declined from 5.25 ± 0.0613 µg/mL at
0.083 h to 0.012 ± 0.001 µg/mL at 12 h post-administration (Table 1). The half-life interval
of elimination (t1/2z), Vdss, and Cltot of CFQ were 1.56 ± 0.0631 h, 0.547 ± 0.0133 L/kg,
and 0.323 ± 0.0255 L/h/kg, respectively.

After IM administration, CFQ was speedily absorbed and detectable in plasma at
5 min of administration with a half-life of absorption (t1/2ab) of 0.253 ± 0.022 h, a peak
plasma level (Cmax) of 2.71 ± 0.061 µg/mL and attained (Tmax) at 0.558 ± 0.007 h. The
bioavailability (F) of CFQ was 95.6 ± 0.676%. No CFQ was detected in any turkey’s plasma
24 h after IV or IM administration. The in vitro protein binding extent of CFQ spiked at
concentrations of 0.01 to 5 µg/mL ranged from 10% to 13%. The mean protein binding
percentage at different drug concentrations was 11.6% (Table 2).

Table 2. In vitro plasma protein binding percentage of cefquinome in turkey plasma (n = 3).

Fortified CFQ Concentrations (µg/mL)
in Blank Plasma Protein Binding % SD

0.01 13.01 1.78
0.1 11.9 0.853
1 11.3 1.48
5 10.1 1.12

Mean 11.5 1.31

4. Discussion

Analyzing the absorption, distribution, metabolism, and excretion (ADME) profile
of drugs is the chief goal of pharmacokinetic studies. A drug’s pharmacokinetic profile
following a single injection may be well represented by Cmax, Tmax, t1/2z, and AUC evalua-
tion [46]. Differences among avian species in the disposition of CFQ were shown in laying
hens [40], healthy ducks [9], ducklings and gosling [39], healthy chickens [38], and black
swans [11], necessitating thorough pre-clinical evaluation before administration to new
species as turkeys.

As far as we know, the present research is the first to check the pharmacokinetic profile
of CFQ in turkeys. We checked the disposition profile of CFQ in healthy turkeys after
administration of 2 mg/kg BW via the IV and IM routes to obtain data for the future estab-
lishment of appropriate dosage regimens. The obtained data revealed that CFQ has rapid
and almost complete absorption and satisfactory elimination rate that allows reasonable
dosing intervals in turkey. Further, there were no noticed tissue irritation, lameness, or pain
symptoms. Similarly, there were no adverse events following the administration of CFQ to
several avian species such as ducklings and goslings [39], black swans (Cygnus atratus) [11],
laying hens [40], healthy chickens [38], and mammals such as goats [47], buffalo calves [23]
and horses [16]. These data from different species elucidate the safety of CFQ.

In the current study, we compared the obtained CFQ pharmacokinetic data in turkeys
with those of CFQ in other avian species and mammals (Table 3). Our data revealed
that after IV administration, CFQ was eliminated speedily from the turkey’s plasma
with a t1/2z of 1.56 h. These data is quite identical to that reported for CFQ in ducks
(1.57 h [9]) and black swans (Cygnus atratus, 1.69 h [11]), longer than that of CFQ in chickens
(1.29 h [38]), ducklings (0.97 h [39]), and shorter than that of CFQ in gosling (1.73 h [39]).
In mammals, CFQ showed also speedy elimination after IV administration. The t1/2z of
CFQ were 2.32 h in horses [16], 2.1 h in cattle [26], 1.85 h in premature calves [24], 0.72
and 0.93 h in rabbits [31] and [32], 0.98 h beagle dogs [22] and 0.78 h in sheep [27]. In
foals and mares, the t1/2z of CFQ after IV administration of 1 mg/kg was 1.82 and 2.33 h,
respectively [15]. These data indicate the rapid elimination of CFQ after IV administration
in turkeys, other avian species, and most mammals. However, in fish species, the t1/2z of
CFQ was substantially longer after intraperitoneal administration of 10 mg/kg BW. The
t1/2z of CFQ was 6.88 h in crucian carp (Carassius auratus gibelio) at 25 ◦C [36], 6.05 h in
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tilapia (Oreochromis niloticus) at 30 ◦C [35], and 20.6 h in coho salmon (Oncorhynchus kisutch)
at 10 ◦C [37]. This prolonged elimination of CFQ in fish species compared to other species
has been demonstrated also for other antibacterials in fish. These data indicate there are
variations in the elimination rate of CEQ among various species.

The Vdss value is used to indicate the amount of drug in the body under equilibrium
conditions. It is the proportionality constant between plasma concentrations of drugs and
their total amount in the body [48]. In the present study, the obtained Vdss for CFQ in
turkeys was 0.547 L/kg. this value is close to that recorded for CFQ in ducks (0.41 L/kg [9]),
chickens (0.49 L/kg [38]), laying hens (0.871 L/kg [40]), black swans (0.32 L/kg [11]), and
gosling (0.43 L/kg [39]). These findings demonstrated that the tissue distribution of CFQ
in turkeys and other avian species is quite limited after IV administration. In mammals, the
Vdss rate of CFQ was also limited after IV administration. The Vdss of CFQ were 0.36 L/kg
in horses [16], 0.28 L/kg h in cattle [26], 0.37 L/kg in premature calves [24], 0.21 and
0.26 L/kg in rabbits [31,32], 0.30 L/kg beagle dogs [22], 0.28 L/kg [28] and 0.36 L/kg [27]
in sheep. In foals and mares, the Vdss of CFQ after IV administration of 1 mg/kg was
0.09 L/kg [14], and 0.22 L/kg [15], respectively. In fish species, the Vd/F (volume of
distribution corrected for bioavailability) of CFQ was also limited after intraperitoneal
administration of 10 mg/kg BW. The values of 0.2 and 0.33 L/kg were recorded in crucian
carp [36] and tilapia [35], respectively. These data of limited distribution indicate the
limited penetration of CFQ to the intracellular compartment after IV administration in
turkeys, and most other avian, mammals, and fish species. This could be referred to that
CFQ is an organic acid with a hydrophilic nature (low lipophilicity), and a small pKa
value (2.51–2.91) [49,50]. In the present study, the in vitro plasma protein binding of CFQ
was limited (11.5%) as has been shown in previous studies (ranged from 5–15% in most
species [40]). The protein binding assay used in the present study did not account for
the non-specific drug binding to the centrifugal device which may be a limitation in the
present study.

The obtained value of total clearance (CLtot) of CFQ from turkey bodies in the
current study was 0.323 L/h/kg. Similar values were reported for CFQ in chickens
(0.35 L/h/kg; [38]), duckling (0.32 L/h/kg; [39]). However, this value was shorter than
that of CFQ in gosling (0.45 L/h/kg; [39]), laying hens (0.62 L/h/kg [40]), and longer than
CFQ in ducks (0.22 L/h/kg; [11]) and black swans (0.13 L/h/kg [11]). In mammals, the
systemic clearance of CFQ was also small after IV administration of 2–4 mg/kg BW. The
CLtot of CFQ were 0.158 L/h/kg in horses [16], 0.12 L/h/kg h in cattle [26], 0.13 L/h/kg in
premature calves [24], 0.18 and 0.25 L/h/kg in rabbits [31,32], 0.24 L/h/kg beagle dogs [22],
0.16 L/h/kg in sheep [27]. In foals and mares, the CLtot of CFQ after IV administration
of 1 mg/kg was 0.18, and 0.13 L/h/kg, respectively [15]. All these findings indicate the
rapid elimination of CFQ after IV administration in turkeys and most other avian species
and mammals. In fish species, the rate of systemic clearance of CFQ was reported after
intraperitoneal administration of 10 mg/kg BW. The values of 0.020 and 0.037 L/h/kg were
reported in crucian carp [36] and tilapia [35], respectively, indicating a slower clearance of
CFQ in fishes than in avian species and mammals. These data indicate there are variations
in the clearance of CEQ among various species.

Following IM administration to turkeys, CFQ was speedily absorbed as the measured
absorption half-life t1/2ab was short (0.25 h). The absorption seems slower in turkeys
compared with ducks (t1/2ab: 0.12 h, [9]), black swans (t1/2ab: 0.12 h, [11]) and chickens
(t1/2ab: 0.07 h [38]). In mammals, the t1/2ab values of CFQ were also short after IM injection.
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Table 3. Pharmacokinetic parameters of cefquinome (CFQ) in different species after intravenous (IV) and intramuscular (IM) administration of 2 mg/kg BW except for duck (5 mg/kg BW).

Species Chickens Ducks Black Swans Ducklings Gosling

Dose (mg/kg) 2 5 2 2 2

Route IV IM IV IM IV IM IV IM IV IM

β (1/h) 0.54 ± 0.04 0.53 ± 0.08 0.44 ± 0.02 0.39 ± 0.03 42.09 ± 0.09 0.43 ± 0.03 - - - -
t1/2α (h) 0.43 ± 0.19 0.58 ± 0.27 0.19 ± 0.05 0.46 ± 0.30 0.31 ± 0.03 - 0.019 0.343 0.446 0.483
t1/2β (h) 1.29 ± 0.10 1.35 ± 0.20 1.57 ± 0.06 1.79 ± 0.11 1.69 ± 0.85 1.62 ± 0.11 0.972 1.717 1.737 1.403
AUC0–∞

(µg·h/mL) 5.33 ± 0.55 5.13 ± 1.06 25.12 ± 2.31 23.78 ± 3.87 16.5 ± 4.92 12.17 ± 4.32 6.248 4.220 4.396 5.008

Vdss (L/kg) 0.49 ± 0.05 - 0.41 ± 0.0 - 0.32 ± 0.17 - 0.042 - 0.432 -
Cltot (L/kg/h) 0.35 ± 0.04 - 0.22 ± 0.02 0.13 ± 0.04 0.320 - 0.455 -

t1/2ab (h) - 0.07 ± 0.02 - 0.12 ± 0.02 - 0.12 ± 0.04 - - -
Cmax (µg/mL) - 3.04 ± 0.71 - 9.38 ± 1.61 - 5.71 ± 1.43 - 4.010 - 3.400

Tmax (h) - 0.25 ± 0.06 - 0.38 ± 0.06 - 0.39 ± 0.19 - 0.163 - 0.203
F (%) - 95.81 ± 5.81 - 93.28 ± 13.89 - 74.2 ± 26.3 - 67.5 - 113.9

Reference [38] [9] [11] [39] [39]

Species Pigs Rabbits Sheep Dogs Calves

Dose (mg/kg) 2 2 2 2 2

Route IV IM IV IM IV IM IV IM IV IM

β (1/h) - - 0.76 ± 0.11 0.69 ± 0.13 - - 0.72 ± 0.11 0.84 ± 0.13 0.40 ± 0.11 0.15 ± 0.02
t1/2α (h) 0.30 ± 0.08 1.33 ± 0.42 - - 0.06 ± 0.04 0.31 ± 0.05 0.12 ± 0.05 - - -
t1/2β (h) 2.32 ± 0.47 4.92 ± 1.14 0.93 ± 0.14 1.04 ± 0.22 0.78 ± 0.19 1.88 ± 0.40 0.98 ± 0.14 0.85 ± 0.15 1.85 ± 0.44 4.47 ± 0.69
AUC0–∞

(µg·h/mL) 18.35 ± 5.32 17.22 ± 4.11 11.08 ± 4.06 10.40 ± 1.23 5.83 ± 0.45 5.19 ± 0.25 8.51 ± 1.27 8.24 ± 0.80 15.74 ± 3.57 22.75 ± 6.18

Vdss (l/kg) - - 0.21 ± 0.03 - 0.36 ± 0.06 - 0.30 ± 0.03 - 0.37 ± 0.10 -
Cltot (L/kg/h) 0.12 ± 0.03 - 0.18 ± 0.05 - 0.34 ± 0.03 - 0.24 ± 0.03 - 0.13 ± 0.03 -

t1/2ab (h) - 0.24 ± 0.05 - - - 0.31 ± 0.05 - 0.14 ± 0.05 - -
Cmax (µg/mL) - 3.36 ± 0.54 - 8.87 ± 2.07 - 2.60 ± 0.14 - 4.83 ± 0.79 - 4.56 ± 0.75

Tmax (h) - 0.83 ± 0.28 - 0.25 ± 0.12 - 0.50 ± 0.00 - 0.43 ± 0.11 - 1.00 ± 0.00
F (%) - 85.13 ± 9.93 - 95.23 ± 9.84 - 89.31 ± 6.06 - 97.8 ± 9.40 - 141.22

Reference [51] [31] [27] [22] [28]

β: elimination rate constant, t1/2α; distribution half-life after IV injection, t1/2β; elimination half-life after IV injection, AUC0-∞; area under plasma concentration-time curve from zero time to infinity, Vdss;
volume of distribution at steady-state, Cltot; total body clearance, t1/2ab: absorption half-life after IM administration, Cmax; maximum plasma concentration, Tmax; time to peak plasma concentration, F;
absolute bioavailability.
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The values were 0.28 h in pigs [52], 0.31 h in sheep [27], 0.14 h in beagle dogs [22],
0.16 h in buffalo calves [53], and 0.45 h in foals [14]. In fish species, the values were 0.04 h
crucian carp [36] and 0.028 h in tilapia [35]. These data demonstrated that it takes little
time for CFQ to enter the systemic circulation and establish an efficient plasma level in
turkeys, other avian species, mammals, and fish species. The calculated t1/2z of CFQ in
turkeys after IM administration was 1.71 h, longer than that of IV administration (1.56 h).
The longer t1/2z after extravascular administration than after IV administration may result
from precipitation of the drug at the injection site or flip-flop phenomenon, in which the
absorption rate of a drug is slower than its rate of elimination [31,54,55]. In the present
case, the MAT value is expected to be longer than the MRT value after IV administration
(MRTIV) as demonstrated before in rabbits [31]. However, the shorter MAT value (0.374 h)
than MRTIV (1.7 h) in the present study does not support the flip-flop phenomenon. After
IM injection, some drugs precipitate in increasing amounts at the injection site to provide
increasing values of the t1/2z [54,56]. Therefore, the precipitation of CFQ at the IM injection
site might be the reason for its longer t1/2z compared with the t1/2z after IV administration.
The calculated t1/2z of CFQ in turkeys after IM administration is remarkably identical
to the value reported for CFQ in ducks (1.79 h [9]), duckling (1.71 h [39]), black swans
(1.62 h [11]), and longer than CFQ in chickens (1.35 h [38]) and gosling (1.40 h [39]). How-
ever, it is shorter than that obtained for CFQ in laying hens (2.22 h) after IM administration
at a dose of 5 mg/kg BW [40]. In mammals, the t1/2z values of CFQ after IM injection
were variable as 4.44 h in pigs [52], 4.85 h in goats [47], 0.85 h in beagle dogs [22], 4.74
h in premature calves [24], 3.73 h in buffalo calves [53], 0.45 h in foals [14], 1.04 [31] and
0.72 h [32] in rabbits. In fish species, the values were longer as 7.39 h in crucian carp [36]
and 5.81 h in tilapia [35].

The Cmax of CFQ in turkeys was 2.71 ± 0.161 µg/mL achieved at (Tmax)
0.560 ± 0.0181 h. The obtained Cmax and Tmax value of CFQ (2 mg/kg) in turkeys was
lower than those of CFQ administered at the same dose in duckling (4.01 µg/mL achieved
at 0.163 h [39]), goslings (3.40 µg/mL achieved at 0.203 h [39]), and chickens (3.04 µg/mL
achieved at 0.25 h [38]). In mammals, different values for Cmax and Tmax of CFQ after IM
administration of 2 mg/kg were also demonstrated. The values were 6.43 ± 0.637 µg/mL
achieved at 0.78 ± 0.771 h in pigs [52], 2.37 ± 0.13 µg/mL achieved at 1 h in goats [47],
4.83 ± 0.79 µg/mL achieved at 0.43 ± 0.11 h in beagle dogs [22], 4.56 ± 0.75 µg/mL
achieved at 1 h in premature calves [24], 8.78 ± 2.07 µg/mL achieved at 0.25 ± 0.12 h in
rabbits [31], and 6.93 ± 1.72 µg/mL achieved at 0.33 ± 0.12 h [32] in rabbits.

The calculated systemic bioavailability of CFQ after the IM administration to turkeys
was 95.6%, which is almost identical to that reported for CFQ at a dose of 2 mg/kg
BW in chickens (95.8% [38]) and ducks at a dose of 5 mg/kg BW (93.3% [9]), higher
than for CFQ at a dose of 2 mg/kg BW in duckling (67.5% [39]), laying hens at a dose
of 2 mg/kg BW (66.8% [40]), and black swans at a dose of 2 mg/kg BW (74.2% [11]).
However, it is lower than for CFQ at a dose of 2 mg/kg BW in goslings (113.9% [39]). In
mammals, the bioavailability of CFQ after IM administration was also high as it were
97.8% in beagle dogs [22], 141.2% in premature calves [24], 86.3% in buffalo calves [53],
95.2% in rabbits [31]. After subcutaneous administration in sheep the value was also
high (123.5% [28]). These data show that CFQ is rapidly and nearly completely absorbed
following IM administration to turkeys, other avian species, and mammals. This might
be most likely owed to its zwitterionic nature, which allows CFQ to permeate easily into
the biological membranes [8]. High bioavailability of CFQ after IM administration into
thigh muscles may suggest that the renal portal system and tubular excretion play an
insignificant role in the potential first-pass effect often associated with the administration
to the caudofemoral portion of the body in birds and reptiles [57]. However, the lack of
comparative data on CFQ administration into another part of the body (e.g., breast muscle)
prevents any firm conclusions. This may be considered another limitation of the study.

These differences in the disposition profile of CFQ among species are common and
attributed to several factors such as inter-species variation in the extent of metabolism,
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differences in the assay methods used, given dose, blood sampling times, age of animals,
and/or the health status [58].

The antibacterial activity of CFQ is considered to be time-dependent [4,26,59]. This
means that the antibacterial efficacy of CFQ is proportionally related to the time that free
CFQ concentration in plasma surpasses the MIC (minimum inhibitory concentration) for
certain pathogens during the inter-dosing interval (%T > MIC) [60–62]. The field usage
of CFQ in turkeys has not been established yet due to the paucity of pharmacokinetic
studies and the MICs data of CFQ for turkey’s pathogenic bacterial strains. However, MIC
values of ≤ 0.1 µg/mL typically reported for pathogens isolated from different species
suggest the high clinical efficacy of this antibiotic [63,64]. In literature, data revealed that
CFQ is effective against numerous bacteria isolated from other poultry species that can
induce health problems in turkeys. For example, E. coli O78 and Salmonella strain C79-13
from chickens were very susceptible to low serum concentrations of CFQ with a MIC of
0.063 and 0.25 µg/mL, respectively [65]. Also, Pasturella multocida and Ornithobacterium
rhinotracheale isolated from avian species like turkeys, ducks, geese, chicken, and pheasants
were very sensitive to CFQ [66,67]. Further, Riemerella anatipestifer isolated strains from
ducks and geese were susceptible to CFQ with MIC50 of 0.031 µg/mL and MIC90 levels of
0.5 µg/mL [68]. Additionally, in black swans, the MIC50 and MIC90 values for CFQ against
49 E. coli strains were 0.063 and 0.5 µg/mL, respectively [11]. In the current study, the
time that plasma level of CFQ maintained above 0.1 µg/mL after the IM administration of
2 mg/kg BW was 8 h. In general, to attain an adequate therapeutic efficiency of numerous
cephalosporins, the time in which free drug concentration in plasma surpasses the MIC
should be higher than 40% of the inter-dosing interval [48,69–72]. Based on these data
and the findings of the present study, a twice-daily dosage of 2 mg/kg BW of CFQ given
intramuscularly to turkeys at the age of 17–20 weeks and 7–8.5 kg of BW would be efficient
against several susceptible bacterial strains. However, some recent reports on antimicrobial
pharmacokinetics in turkeys revealed that elimination processes differ depending on the
age of the birds. For example, Poźniak et al. found that the rapid growth in turkeys
significantly affected amoxicillin pharmacokinetics wherein younger turkeys (2 kg), the
t1/2z was approximately two-fold shorter (0.67 h) than at 12 kg (1.28 h) [73]. Also, Świtała
et al. reported in turkeys that, between the 5th and 15th week of age, CLtot of metronidazole
declined from 3.6 to 1.2 mL/min/kg causing a twofold rise in the MRT and t1/2z [74]. These
differences are probably due to the changes that occurred in heart rate, cardiac output,
enzymatic functions, and or alteration in clearing organ perfusion [74]. Therefore, the lack
of the perspective of age-dependent change in cefquinome pharmacokinetics is a limitation
of the present study.

5. Conclusions

After IM administration of CFQ, there were no local reactions and adverse effects.
Further, CFQ revealed rapid absorption and high bioavailability. Concentrations exceeding
MIC values for most of the poultry pathogens indicate that the repeated (twice-daily) IM
administration of CFQ at 2 mg/kg BW might be highly efficacious against susceptible
bacterial pathogens in turkeys. However, additional studies should be carried out to set a
multiple dosage regimen, assess the clinical efficacy of CFQ and its residues in the edible
tissues of this species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13111804/s1, Figure S1: Representative High-performance liquid chromatogra-
phy chromatograms of cefquinome (CFQ) from standard and spiked turkeys’ plasma (A: standard, B:
spiked plasma), Table S1: Cefquinome (CFQ) concentration in individual turkey at different sampling
time after intravenous (IV) and intramuscular (IM) administration of 2 mg/kg body weight, Table S2:
Pharmacokinetic parameters of cefquinome (CFQ) in individual turkey after intravenous (IV) and
intramuscular (IM) administration of 2 mg/kg body weight.
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74. Świtała, M.; Poźniak, B.; Pasławska, U.; Grabowski, T.; Motykiewicz-Pers, K.; Bobrek, K. Metronidazole pharmacokinetics during
rapid growth in turkeys-relation to changes in haemodynamics and drug metabolism. J. Vet. Pharmacol. Ther. 2016, 39, 373–380.
[CrossRef]

http://doi.org/10.1086/516284
http://doi.org/10.2460/ajvr.77.6.646
http://www.ncbi.nlm.nih.gov/pubmed/27227504
http://doi.org/10.1080/00071668.2017.1304531
http://www.ncbi.nlm.nih.gov/pubmed/28290713
http://doi.org/10.1111/jvp.12283

	Introduction 
	Materials and Methods 
	Reagents and Chemicals 
	Experimental Birds 
	Experimental Design 
	Analytical Method 
	Method Validation 
	Plasma Protein Binding Extent of CFQ 
	Pharmacokinetic Analysis 

	Results 
	Discussion 
	Conclusions 
	References

