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Abstract

After experiences are encoded, post-encoding reactivations during sleep have been

proposed to mediate long-term memory consolidation. Spindle–slow oscillation cou-

pling during NREM sleep is a candidate mechanism through which a hippocampal-

cortical dialogue may strengthen a newly formed memory engram. Here, we

investigated the role of fast spindle- and slow spindle–slow oscillation coupling in the

consolidation of spatial memory in humans with a virtual watermaze task involving

allocentric and egocentric learning strategies. Furthermore, we analyzed how resting-

state functional connectivity evolved across learning, consolidation, and retrieval of

this task using a data-driven approach. Our results show task-related connectivity

changes in the executive control network, the default mode network, and the hippo-

campal network at post-task rest. The hippocampal network could further be divided

into two subnetworks of which only one showed modulation by sleep. Decreased

functional connectivity in this subnetwork was associated with higher spindle–slow

oscillation coupling power, which was also related to better memory performance at

test. Overall, this study contributes to a more holistic understanding of the functional

resting-state networks and the mechanisms during sleep associated to spatial mem-

ory consolidation.
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1 | INTRODUCTION

Systems consolidation theory is one of the most widely studied

frameworks of long-term memory formation. The theory posits that

labile engrams in the brain, encoded during learning, are strengthened

through repeated reactivation. Over time, this process might lead to a

more stable long-term representation—a consolidated memory trace

(Squire et al., 2015). Reactivations of the engram are thought to occur

predominantly during sleep but can also be seen during quiet rest. A

potential key mechanism underlying systems consolidation constitutes

the hierarchical coordination of three event types during non-rapid

eye movement (NREM) sleep: (1) high-amplitude cortical slow oscilla-

tions, (2) thalamically-driven spindles, and (3) hippocampal sharp

wave-ripples. The orchestrating of these oscillations driven by the
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waxing and waning of slow-oscillations in the prefrontal cortex

(Helfrich et al., 2019) is thought to set ideal time windows for hippo-

campal information transfer to the cortex (Sirota et al., 2003) and

brain-wide synaptic consolidation processes underlying systems con-

solidation (Genzel, 2020; Genzel, Kroes, et al., 2014; Navarro-Lobato &

Genzel, 2020).

In humans, two kinds of spindles have consistently been identi-

fied: slow spindles (~9–12.5 Hz) and fast spindles (~12.5–16 Hz),

which are most prominent over frontal and centro-parietal regions,

respectively (Adamczyk et al., 2015; Anderer et al., 2001). Both spin-

dle types are coupled to slow oscillations. While fast spindles are

often nested in the slow oscillation's excitable up-state, slow spindles

typically occur during the transition period into the slow-oscillation's

inhibitory down-state (Molle et al., 2011). Fast spindles have been

implicated as a facilitator of information transfer between hippocam-

pus and neocortex as they coincide with hippocampal sharp wave-

ripples (Staresina et al., 2015). Slow spindles, which are mostly

preceded by ripples, may be related to a cortical cross-linking of trans-

ferred information and the modulation of prefrontal circuitry to form

a neocortical memory representation (Molle et al., 2011). However,

only in human studies there is a consistent split between slow and fast

spindles. Since this subdivision is rarely done in animal research, con-

crete evidence for a different function of each spindle type is lacking.

The influence of these two spindle types on behavior is even less

conclusive. Recent EEG findings have shown that a larger amount and

increased consistency in the coupling of fast spindles and slow oscilla-

tions is related to increased declarative memory performance (Hahn

et al., 2020; Muehlroth et al., 2019; Niknazar et al., 2015). Experimen-

tal reinforcement of the coordination between hippocampal sharp

wave-ripples, slow oscillations, and frontal spindles in rodents—

potentially the analog of human slow spindles—also resulted in

increased memory performance (Maingret et al., 2016). In contrast,

preliminary findings on slow spindle–slow oscillation coupling in

humans point toward decreased declarative memory performance

with increased slow spindle–slow oscillation coupling or no effect at

all (Barakat et al., 2011; Muehlroth et al., 2019). Thus, it is crucial to

disentangle the behavioral relevance of both spindle types in memory

consolidation.

Given the importance of sleep and the hippocampus in offline

consolidation, it has been hypothesized that sleep plays a distinct role

in the consolidation of hippocampus-dependent in contrast to “non-
hippocampus-dependent” memories. These two types of memories

can be investigated using spatial navigation paradigms. Navigation in

an environment involves the use of different navigational strategies,

namely allocentric and egocentric strategies (for a review Ekstrom

et al., 2017). In an allocentric reference frame, the navigator can infer

their position based on the relative positions of stable landmarks.

Allocentric spatial learning is suggested to strongly rely on the hippo-

campus as it requires a spatial cognitive map of the landmark positions

(O'Keefe & Nadel, 1978). In contrast, the egocentric reference frame

continuously changes with the movement of the navigator. During

egocentric spatial learning, the navigator needs to keep track of the

moved distance and the direction for which the dorsal striatum has

been identified as a critical structure (McDonald & White, 1994). It

may thus be proposed that, in a spatial context, consolidation mecha-

nisms differ between allocentric and egocentric training conditions

and influence memory performance accordingly. However, recent evi-

dence points toward hippocampal involvement in consolidation during

sleep, even for previously considered non-hippocampus-dependent

memories (Sawangjit et al., 2018; Schapiro et al., 2019), and similar

functional network changes after sleep across allocentric and egocen-

tric training (Samanta et al., 2021). Therefore, it remains an open

question how spatial information of the two reference frames is con-

solidated during sleep and how these mechanisms influence memory

performance.

Although much work has focused on the role of sleep in systems

memory consolidation, studies in both rodents (Davidson et al., 2009;

Diba & Buzsáki, 2007) and humans (Schuck & Niv, 2019; Tambini &

Davachi, 2013) have demonstrated system-wide consolidation pro-

cesses during awake resting periods immediately after learning. Similar

to sleep-dependent consolidation, event representations are spontane-

ously reactivated in the hippocampal–thalamo-cortical network during

post-encoding rest (for a detailed review, see Tambini &

Davachi, 2019). Important nodes of these reactivations are thought to

incorporate the hippocampal network centered on the medial temporal

cortex and retrosplenial cortex (van Buuren et al., 2019), as well as

interactions between hubs of the default mode network (Lin

et al., 2017) and task-relevant networks (e.g., the executive control net-

work; Sneve et al., 2017). Greater levels of resting-state functional con-

nectivity between areas specific to the stimuli and the hippocampus

were shown to predict the future ability to retrieve a memory (Tambini

et al., 2010). In addition, functional connectivity immediately after

learning as well as the amount of hippocampal reactivation predicted

subsequent overnight memory retention, suggesting a complementary

relationship between awake resting reactivation and later consolidation

during sleep (Schapiro et al., 2018). While most previous studies sepa-

rately examine one type of post-encoding period (i.e., rest or sleep),

studies investigating consolidation processes across both periods are

necessary to gain a holistic understanding of the parallels between

mechanisms of consolidation during these distinct brain states.

The present study thus aims to provide within-study measures at

different post-encoding brain states and show their relationship with

memory performance in a spatial navigation task. Our study follows

up on our investigations into the effect of sleep on allocentric and

egocentric memory representations in humans and rats (Samanta

et al., 2021). Participants performed a human analog of the watermaze

(Morris, 1981), a validated paradigm to study different aspects of spa-

tial navigation (Müller et al., 2018; Schoenfeld et al., 2017). Whereas

Samanta et al. (2021) focused on task-fMRI data during learning and

retrieval, here we focused on resting-state fMRI and sleep-EEG data.

Thus, resting-state functional connectivity in relevant networks was

assessed before and after learning and retrieval of the memory task in

which participants either engaged in allocentric or egocentric spatial

navigation. EEG was used between the two task sessions to measure

NREM sleep-related consolidation processes (i.e., spindle and slow

oscillation properties and their coupling). We adopted a data-driven

3924 BASTIAN ET AL.



approach (Ribeiro de Paula et al., 2017) to investigate the evolution of

resting-state functional connectivity across spatial learning, consolida-

tion, and memory retrieval. Resting-state networks were selected

based on the results obtained by Samanta et al. (2021), including the

default mode network, the hippocampal network, and the right execu-

tive control network. To establish a triad relationship between sleep,

resting-state, and behavior, we correlated spindle and slow oscillation

parameters, changes in resting-state functional connectivity, and per-

formance measures of the spatial memory task.

Samanta et al. (2021) found similar sleep-related brain-wide

changes at memory retrieval, for allocentric and egocentric training. Spe-

cifically, activations increased in the executive control network and

decreased in the default mode network from learning to retrieval, if sub-

jects slept after learning. Hence, we expected to observe similar changes

in these two networks at rest. Brain-wide consolidation processes

should also be observable for the hippocampal network that coordinates

consolidation during sleep and at rest. We hypothesized that spindle–

slow oscillation coupling is positively associated with changes in the hip-

pocampal network and memory performance. These findings should not

differ between memory conditions since Samanta et al. (2021) did not

observe a difference between allocentric and egocentric training.

Indeed, our results demonstrate that the executive control and the

default mode networks change in the hypothesized opposite directions

pre- to post-task performance. Additionally, we identified two subnet-

works within the hippocampal network. The primary subnetwork was

independent of the sleep condition and increased in functional connec-

tivity pre- to post-task performance and after the break. Connectivity in

the second subnetwork decreased over the break only for participants

who took a nap. Finally, spindle–slow oscillation coupling power was

positively associated with memory performance and decreased connec-

tivity in the second, sleep-dependent hippocampal subnetwork. All

effects were the same for allocentric and egocentric training. Our

findings suggest that resting-state activations can be divided into task-

related and consolidation-related changes that are either sleep-

independent or sleep-dependent. Only sleep-dependent changes are

associated with spindle–slow oscillation coupling that contributes

equally to memory performance for allocentric and egocentric learning.

2 | METHODS AND MATERIALS

2.1 | Participants

Seventy-seven neurologically healthy, right-handed male participants

(age range: 18–30 years, mean = 24) were recruited for the study.

Only male participants were selected because the sample comprises a

subpopulation of a larger translational body of research using male

rodents only (Samanta et al., 2021). The study was approved by the

local ethics committee (CMO Arnhem-Nijmegen, Radboud University

Medical Center) under the general ethics approval (“Imaging Human

Cognition,” CMO 2014/288), and the experiment was conducted in

compliance with these guidelines. Recruitment took place via the

Radboud Research Participation System. Participants were screened

for and excluded based on (1) taking sleep medications, (2) regular

naps, and (3) being involved in professional gaming activities. Prior to

the start of the experiment, all participants provided written informed

consent and received financial compensation for their participation. In

total, fourteen participants were excluded from the analysis after data

acquisition. Eight subjects were excluded from the experiment due to

technical issues during learning or retrieval: For five participants, the

joystick was incorrectly calibrated, and for the remaining three, there

were technical problems including abrupt crashing of the task environ-

ment program during the scan. Three subjects slept less than 30 min

in either sleep test or control session. Their z-scores were more than

�2.5*σ away from the sample mean of actual sleep time. Actual sleep

time was computed for each subject as the total sleep time (TST)

excluding wakefulness after sleep onset (WASO). For another three

subjects large image displacement was identified due to head move-

ment during the fMRI scans. The amount of displacement in the image

series was assessed with a quality index (QI) using Equation (1):

QI¼2000� max:abs:þmax:rel:ð Þ
no: of timepoints

, ð1Þ

where max.abs. is the maximum absolute displacement of a given vol-

ume with respect to a reference time point (i.e. middle volume in the

time-series), and max.rel. represents the maximum relative displace-

ment at a given volume with respect to the subsequent time point.

The two measures account for gradual as well as abrupt changes in

head position. The cut-off for exclusion of participants was set to a QI

>16.4 (Ribeiro de Paula et al., 2017). In sum, 63 subjects were consid-

ered as the final sample (age range: 18–30 years, mean = 23.3).

2.2 | Experimental procedure

With a 2 � 2 full-factorial mixed design we tested system-wide con-

solidation processes of a spatial memory paradigm. During fMRI scans,

participants engaged in allo- or egocentric spatial learning and mem-

ory retrieval in a previously validated human analogue of the water

maze (Müller et al., 2018; Schoenfeld et al., 2017). Immediately before

and after the learning and retrieval sessions, functional connectivity

was assessed with resting-state fMRI. This amounts to a total of four

resting-state fMRI sessions of 9 min each. In between spatial learning

and memory retrieval, sleep EEG was used to measure sleep. In the

experimental condition, participants were instructed to sleep for

90 min, while the control group watched a movie for the same

amount of time. Approximately 2 weeks after the experiment, partici-

pants in the sleep condition completed a sleep control session for

90 min, which did not follow a learning experience.

2.3 | The virtual water maze task

The virtual water maze task is an adaptation of the rat watermaze, an

established method to test spatial abilities in rodents (Morris, 1981).
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This analogous paradigm for humans is compatible with the MRI-

scanner environment (Schoenfeld et al., 2017). Participants were

instructed to navigate around a virtual island with the objective of

finding a treasure box. We used two different settings in this para-

digm: a “hidden island” and a “cued island.” The hidden island was

surrounded by four landmarks (i.e., a bridge, a sailboat, a wind turbine,

and a lighthouse; see Figure S1). A hidden treasure box on the island

marked the target location. The box was located in a small indentation

on the virtual island surface and, thus, only visible in close proximity.

In contrast, the cued island did not have any landmarks for orientation

except for a flag next to a treasure box that was visible from a dis-

tance. The position of this flag along with the treasure box changed

each trial.

The task sequence consisted of eight alternating blocks of cued

and hidden islands resulting in a total of 16 trials. In each trial, partici-

pants were free to move around the island in their own pace using a

joystick. When the target location in close proximity of the treasure

box was reached, the participants could end the trial with a button

press on the joystick. There was a 15-s interval between the end of

one trial and the start of the next, during which the participants could

turn around on the island and orient themselves. Participants first

encountered the cued island in which they had to find the visible flag.

This island was used to control for perceptual and motor processing

to isolate memory effects in later analysis. For the encounter with the

hidden island, the participants were randomly allocated to either of

the learning conditions—allocentric or egocentric. The allocentric

group started at a different location on the island in every trial and

would have to reorient themselves each time to find the target loca-

tion, thereby promoting use of place navigation. In the egocentric

group, they would have the same start location in every trial and

hence could rely on a repeated fixed movement to get to the target

location in addition the visible cues, allowing them to use both naviga-

tional strategies. In general, participants were blinded to these two

conditions. For the learning trials, the main objective of the partici-

pants in both conditions was to learn the location of the target box

across the eight hidden island trials. For the retrieval trials, the island

setup remained the same with one modification—the treasure box

was removed from the hidden island and the participants were

instructed to mark the location to the best of their knowledge, where

they recalled the box to be located.

2.4 | Data acquisition

2.4.1 | Polysomnographic recordings

Polysomnographic recordings were obtained with a sampling rate of

500 Hz (BrainAmp, Brain Products, Gilching, Germany) during the

90 min naps. Thirty-two scalp electrodes (international 10–20 EEG

system) were mounted including Fz, F3, F4, Cz, C3, C4, Pz, P3, P4, Oz,

O1, O2, and referenced to the left mastoid. Additionally, horizontal

and vertical eye movements (EOG), electromyogram (EMG) on the

chin, and electrocardiogram (ECG) were recorded. The recordings

started shortly after the light was turned off. After the experiment,

sleep scoring was performed by an experimenter blinded to the

conditions using the SpiSOP toolbox (www.spisop.org; RRID:

SCR_015673). In accordance with the American Academy of Sleep

Medicine scoring rules (AASM) sleep stages 1 and 2, slow-wave sleep,

REM sleep, awakenings, and body movements were visually scored in

30 s epochs based on EOG, EMG, and the following channels—F3, F4,

C3, C4, O1, O2.

2.4.2 | FMRI acquisition

FMRI time series were acquired using a 3T head-only scanner (Prisma

3T, Siemens, Erlangen, Germany). Seven hundred T2*-weighted

images were acquired with a multiband gradient-echo echo-planar

imaging sequence (multiband factor = 8, 64 axial slices, volume repeti-

tion time [TR] = 1000 ms, echo time [TE] = 39 ms, 52� flip angle, slice

thickness = 2.4 mm; field of view (FOV) 210 mm; voxel size 2 mm

isotropic). Anatomical images were acquired using a T1-weighted

MP-RAGE sequence (192 sagittal slices, volume TR = 2300 ms,

TE = 3.03 ms, 8� flip angle, slice thickness, 1 mm; FOV, 256 mm;

voxel size 1 � 1 � 1 mm).

All Data is available on the Donders Repository di.dccn.

DSC_3013066.01_875.

2.5 | Data processing

2.5.1 | Sleep EEG preprocessing

The data were preprocessed in Matlab R2020b (Mathworks Inc.,

Sherbom, Massachusetts) using the Sleeptrip toolbox (www.sleeptrip.

org; RRID:SCR_017318). All EEG channels were re-referenced to the

average mastoids (A1 and A2) and the data were band-pass filtered

between 0.3 and 35 Hz (4th-order Butterworth zero-phase filter). In

general, only zero-phase filters were applied (i.e., forward and reverse

direction). Bad EEG channels were visually rejected based on their

power spectra. For the remaining channels, artifacts were detected in

30-s long windows. Segments that were visually identified as body

movement were marked for later exclusion. To further identify segments

that strongly deviated from the observed overall amplitude distribution,

mean amplitude differences for each segment were z-standardized

within each channel. Segments with a z > 5 in any of the channels were

excluded (Muehlroth et al., 2019). TST was calculated as time spent in

stage 1, 2, SWS, and REM sleep. WASO was defined as the time partici-

pants were awake between sleep onset and final awakening.

2.5.2 | Spindle detection

Spindles were detected using an automated algorithm implemented in

Sleeptrip based on previous publications (Weber et al., 2020) and the

“fooof” algorithm implemented in Python, version 3.8 (Donoghue
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et al., 2020). Putative power peaks in slow spindle (9–12.5 Hz) and

fast spindle (12.5–16 Hz) frequency bands were visually detected

from NREM epochs (i.e., N2 and N3). Before the inspection of the

power spectra, the aperiodic 1/f component was removed from the

signal by fitting a Lorentzian function. For each participant, slow spin-

dle peaks were manually identified in the average of the three frontal

channels (Fz, F3, F4; Sleep Test Session: 10.25 Hz ± 0.1, mean ± SEM;

Sleep Control Session: 10.07 Hz ± 0.14, mean ± SEM) and fast spin-

dles peaks in the average of the three central channels (Cz, C3, C4;

Sleep Test Session: 13.44 Hz ± 0.09, mean ± SEM; Sleep Control Ses-

sion: 13.44 Hz ± 0.06, mean ± SEM). To verify the visually defined

frequency peaks, we iteratively fitted Gaussians to the periodic power

components with fooof (see Figure S2, e.g., spectra). In case of a dif-

ference in the manual labels and the fitted Gaussian peaks, the power

spectra were revisited. This method was used to avoid the introduc-

tion of spurious spindle events (Ujma et al., 2015). Then, the signal of

every channel was band-pass filtered (±1.5 Hz, �3 dB cutoff, 4th-

order Butterworth zero-phase filter) around the identified individual

frequency peaks. The root-mean-square (RMS) representation of the

signal was calculated at every sample point and smoothed using a

moving average filter in a 200 ms sliding window. A potential spindle

was marked if the amplitude of the smoothed RMS signal exceeded

its mean by 1.5 SD of the filtered signal for 0.5–3 s. Local minima and

maxima in the filtered spindle signal were marked as peaks and tro-

ughs. The largest trough was defined as the spindle peak time. The

spindle amplitude was defined by the potential difference between

the largest trough and the largest peak. Individual frequency of a con-

crete spindle was determined by adding the number of all troughs and

peaks and dividing by twice the duration of the respective spindle.

Spindles with boundaries closer than 0.25 s were eventually merged.

2.5.3 | Slow oscillation detection

Detection of slow oscillations at frontal electrodes was also based on

an automated algorithm implemented in Sleeptrip and validated else-

where (Ngo et al., 2013). For all NREM epochs, the pre-processed

EEG data was low-pass filtered at 4 Hz (6th-order Butterworth zero-

phase filter). The whole signal was then divided into negative and pos-

itive half-waves that were separated by zero-crossings. A potential

slow oscillation was defined as a negative half-wave followed by a

positive half-wave at a frequency range between 0.5 and 1 Hz. Slow

oscillation amplitude and frequency were computed with the same

approach used for spindles. Putative slow oscillations exceeding a

trough of 1.25 times the mean trough of all putative slow oscillations

as well as an amplitude of 1.25 times the average amplitude of all

potential slow oscillations were accepted for further analysis.

2.5.4 | Resting-state fMRI preprocessing

The MRI DICOM files were entered into an automatic pipeline in Gra-

phICA (BraiNet—Brain Imaging Solution Inc.—Sarnia, Ontario, Canada).

Anatomical and functional images were preprocessed using FSL 6.03.

Preprocessing steps of the T1-weighted anatomical images included

bias-field correction (RF/B1-inhomogeneity-correction), brain-extrac-

tion, tissue-type segmentation (CSF, GM, WM), and subcortical struc-

ture segmentation. On the functional data we performed skull

stripping, motion correction, slice-timing correction, spatial smoothing,

which is calculated based on the voxel size, ceiling (1.5 * voxel size),

coregistration, ICA-based automatic removal of motion artifacts, high-

pass filtering, and nuisance regression (WM and CSF). The data were

not normalized to a reference space as characteristics of the natural

brain space should be preserved in the following analysis.

2.5.5 | Dual regression analysis

Dual-regression was used to identify subject-specific spatial maps

using 11 resting-state network masks: Auditory, Default Mode Net-

work, Executive Control Left, Executive Control Right, Hippocampal,

Language, Salience, Sensorimotor, Visual Lateral, Visual Medial, and

Visual Occipital. The intensity of the component spatial maps was

expressed in units of percent signal change from the mean.

2.5.6 | Regional parcellation

Each subject's T1-weighted image was automatically segmented with

a pipeline implemented in Freesurfer 7 (v7.1.0, http://surfer.nmr.mgh.

harvard.edu/). Further parcellation was performed with GraphICA

using a gradient-weighted Markov Random Field model procedure

described in (Schaefer et al., 2018). This parcellation model contains

three competing terms that tradeoff optimal properties of the final

segmentation: a global similarity term to group brain locations with

similar image intensities, a local gradient term to detect abrupt func-

tional connectivity changes between neighboring brain locations, and

a spatial connectedness term to ensure spatial connectedness within

parcels. The procedure yielded 832 parcellated brain regions which

were included as network nodes for further analyses.

2.5.7 | Functional network construction and
thresholding

Using GraphICA each nodal fMRI time course was correlated with the

IC time course for the three resting-state networks separately. After

the coregistration of each of the functional resting state network to

the subject in native space, a mean z-value was calculated by averag-

ing the scalar map values of the voxel belonging to each one of the

832 ROIs. Resulting z-standardized correlation coefficients describe

the loading of each nodal time course on the respective resting-state

network. To remove spurious or weak z-values, for instance due to

noise, the loadings were thresholded with a data-driven mixture

modeling approach at single-subject level (Bielczyk et al., 2018). Addi-

tionally, the thresholded networks were matched to network
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templates provided by GraphICA that were derived from 200 healthy

controls. Only those nodes found in the templates were considered

for further analysis (i.e., hippocampal network = 74 nodes, default

mode network = 171 nodes, right executive control network = 164

nodes).

2.6 | Statistical analysis

2.6.1 | Sleep EEG analysis

Statistical analyses of the sleep EEG data were conducted using

Matlab R2020b (Mathworks Inc., Sherbom, Massachusetts) with the

open-source toolbox Fieldtrip (Oostenveld et al., 2011) and the Circ-

Stats toolbox (Berens, 2009). The analysis is confined to channels Fz

for slow oscillations and slow spindles and Cz for fast spindles. Not all

sleep variables used in our analysis followed a normal distribution. All

within group comparisons of the sleep descriptives and oscillation

properties between the sleep session after learning and the sleep con-

trol session were tested using non-parametric Wilcoxon Signed-Rank

Tests for dependent samples. Between-group comparisons of the

sleep variables in the allocentric versus egocentric condition were

computed with non-parametric Mann–Whitney U Tests for indepen-

dent samples. For these tests median and quartile values of the vari-

ables were reported. A p-value <.05 was viewed as statistically

significant.

2.6.2 | Temporal relation between detected slow
oscillations and spindles

The coordination of slow oscillations and spindles was evaluated

for NREM sleep as spindle–slow oscillation coupling has been dem-

onstrated to be stable across stage 2 and slow-wave sleep (Cox

et al., 2017) even though the type of slow oscillation is different

(K-complexes vs. Delta waves). The general temporal relation

between slow oscillation and spindle events was calculated by

determining the proportion of spindles whose center (i.e., maximum

trough) occurred in an interval of ±1.2 s around the trough of the

identified slow oscillations, and the amount of slow oscillations

with spindles whose center occurred within ±1.2 s around the

respective trough of the oscillation. The time window of ±1.2 s

was chosen to cover one whole slow oscillation cycle (0.5–1 Hz,

i.e., 1–2 s). Whenever two slow oscillation time windows over-

lapped the one being further away from the spindle center was

removed. The exact timing of slow oscillation and spindle events

was visualized by peri-event time histograms (PETHs) (Figure 2b) of

fast and slow spindle centers (test events) occurring within a time

interval of ±1.2 s around each slow oscillation trough (target event).

Probabilities of seed event occurrence were summed within bins of

100 ms and transformed into percentages. To test the temporal

pattern of the PETHs, we implemented a randomization procedure

by randomly shuffling the order of the PETH bins 1000 times. The

resulting surrogates were averaged for each individual and tested

against the original PETHs using dependent sample t-tests. Control

for multiple comparisons was achieved through cluster-based

permutation testing with 5000 permutations (Maris &

Oostenveld, 2007).

2.6.3 | Event-locked phase coupling

For event-locked cross-frequency analyses (Helfrich et al., 2018),

artifact-free slow oscillation-event trials over channel Fz (±3 s around

the maximum slow oscillation trough) were selected and band-pass fil-

tered in the slow oscillation frequency range (0.3–1.25 Hz). After

applying a Hilbert transform, we extracted the instantaneous phase

angle from the analytical signal. The same trials were also band-pass

filtered between 9 and 12.5 Hz (slow spindles component) and

between 12.5 and 16 Hz (fast spindles component) to compute the

amplitude envelop from the analytical signal. We only considered the

time range from �2 to 2 s to avoid filter edge artifacts. For every sub-

ject, channel, and epoch, we now detected the maximum spindle

amplitude and corresponding slow oscillation phase angle. Rayleigh

tests were computed to test the phase distribution per subject against

uniformity. The mean circular direction and resultant vector length

across all NREM events were determined. PPC was used as an unbi-

ased estimator of the consistency in phase relationship between

spindles and slow oscillations (Vinck et al., 2012) based on the

spindle-trough triggered Fourier spectra in a time window of �3.5 to

+3.5 s (100 ms steps) and a slow oscillation frequency range from 0.3

to 3 Hz.

2.6.4 | Time–frequency analysis

To further describe the temporal relation between spindles and

slow oscillations, we again used the previously computed slow

oscillation-event trials (6-s segments). These trials were matched

with a randomly chosen artifact-free time segment of 6 s during

the same sleep stage as the respective slow oscillation used as

baseline trials. For the time-frequency analysis of trials with and

without slow oscillations we used superlets (Moca et al., 2021).

Superlets are composed of a series of Morlet wavelets with the

same center frequency but increasingly constrained bandwidth that

has higher time-frequency resolution than established approaches.

Specifically, we applied a fractional adaptive superlet transform

(FASLT) to the preprocessed data of slow oscillation and baseline

trials between 5 Hz and 20 Hz in steps of 0.25 Hz, with and initial

wavelet order of 3 and an order interval between 5 and 15 (Barzan

et al., 2021). The time–frequency representations of slow

oscillation-event trials and control trials were then compared for

each subject using independent-samples t-tests. The resulting

t-maps reflect the increase/decrease in both the fast and slow

spindle frequency range for trials with slow oscillations, compared

with trials without. To calculate the within-subject contrasts, we
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drew 100 random sets of baseline and slow oscillation trials while

maintaining the ratio of stage 2 to slow-wave sleep trials. T-maps

for all these random trial sets were averaged for each subject. Sep-

arately for each memory condition, t-maps were tested against zero

using a cluster-based permutation test with 5000 permutations in a

time window of �1.2 to 1.2 s.

2.6.5 | Resting-state fMRI analysis

fMRI data of the three resting-state networks were analyzed in

RStudio 1.4.1103 (RStudio, Inc., Boston, Massachusetts). All analyses

were performed for the three pre-selected resting-state networks

separately (i.e., hippocampal network, default mode network, right

executive control network) and were based on the nodal z-values

obtained per IC that describe the connectivity pattern in the func-

tional resting-state networks. We explored three different

approaches to analyze the data including Graph Theory analysis,

Euclidean Distance matrices and a singular-value decomposition

(SVD), out of which SVD was most suitable for the current data set.

The SVD was performed on the raw z-values to capture the original

organization of the resting-state networks more accurately. The

thresholded z-values formed an m � n data matrix (m = no. of partici-

pants � 4 sessions; n = no. of nodes). Specifically, a SVD for sparse

matrices was chosen for dimensionality reduction since the

thresholded data matrix contained mainly zero values. Two principal

modes per network were extracted which together explained 15%–

20% of the variance in the data. Each mode can be understood as a

variance-based functional resting-state subnetwork (see Movies S1–

S4). As a result of the SVD, we obtained an averaged low-rank recon-

struction of the networks as a rank-r approximation that describes

the spatial distribution of the respective subnetwork, using

Equation (2):

Am,n ≈Um,r �Sr,r �VT
r,n, ð2Þ

where A is the original data matrix that is approximated by

U containing r left singular vectors, S containing r singular values, and

V containing r right singular vectors. In preparation of statistical test-

ing, the respective left singular vector (um,i) was scaled by its singular

value (si,i), where i is the ith row/column of the matrix. The result (um,i

� si,i) is a column vector that represents the scores of the participants

for all sessions on the ith subnetwork. These values can be interpreted

as the connectivity strength of the selected functional subnetwork for

all participants, across sessions and conditions. For each of the two

subnetwork, the obtained participant scores were analyzed as depen-

dent variables using a linear mixed-effects model. Model predictors

included sleep condition (sleep, wake), session (1–4 or pre/post-break,

pre/post-task) and memory condition (allocentric, egocentric) as fixed

effects. Participants were modeled as random effects for the four

resting-state sessions. Akaike Information Criterion (Akaike, 1973),

Bayesian Information Criterion (Schwarz, 1978), and log-likelihood

were used to assess the model fit.

3 | RESULTS

3.1 | Study design and memory performance

The present study used a 1-day paradigm to test consolidation of a

spatial memory task (Figure 1a). During fMRI scans, participants per-

formed allo- or egocentric spatial learning and memory retrieval in a

previously validated virtual analog of the watermaze for humans

(Müller et al., 2018; Schoenfeld et al., 2017). A detailed task descrip-

tion can be found in the first publication of this dataset (Samanta

et al., 2021). Briefly, participants freely navigated a virtual island using

a joystick to reach a fixed target location. In the learning session, the

location was indicated by a hidden treasure box. However, during

retrieval, participants were instructed to mark the treasure box loca-

tion to the best of their knowledge without the box being present.

Allocentric and egocentric conditions differed such that the randomly

assigned participants began each trial either at the same or a changing

starting position (Figure 1b). Memory performance was measured as

latency to reach the target location from the starting point. At

retrieval, participants generally performed better in the egocentric

condition than in the allocentric condition, and the main effect of

sleep on memory performance was significant (Figure 1c; Table 1;

two-way ANOVA with allo/ego F1,62 = 16.78, p < .001 and sleep/

wake F1,62 = 3.84, p = .05).

Immediately before and after the learning and retrieval sessions,

functional connectivity was assessed with resting-state fMRI. This

amounts to a total of four resting-state fMRI sessions of 9 min each.

In between spatial learning and memory retrieval, polysomnography

was used to measure sleep architecture (Table S1). In the experimen-

tal condition, participants slept around 90 min (93.48 ± 1.77, mean

± SEM), while the control group watched a neutral movie for the same

amount of time. Approximately 2 weeks after the experiment, partici-

pants in the sleep condition completed a sleep control session for

around 90 min (103.30 ± 2.66, mean ± SEM), which did not immedi-

ately follow a spatial learning experience. The sequence of the two

sleep sessions was not counterbalanced to keep subjects blinded to

the experimental conditions at the test session. Using a similar task

design, Genzel, Bäurle, et al. (2014) and Genzel et al., (2012) obtained

comparable nap durations. However, here, participants slept signifi-

cantly longer in the sleep control session than in the sleep test session

(Wilcoxon Sign-Rank Test, z = �2.68, p = .01). This session effect

hints at a habituation to the sleep laboratory. The difference to previ-

ous studies may be due to the use of a different laboratory setting, for

Genzel, Bäurle, et al. (2014); Genzel et al., 2012) the sleep laboratory

(Max Planck Institute of Psychiatry) was designated as such, while the

sleep laboratory at the Donders Institute is the EEG lab (and therefore

less “homely”).

3.2 | Sleep properties at test and control session

Spatiotemporal mechanisms during NREM sleep have been shown to

consolidate experiences encoded during prior wakefulness (Maingret
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et al., 2016). At the systems level, experiences are thought to be

reactivated in the hippocampo-thalamo-cortical network during sleep

to form long-term representations of these experiences. Various oscil-

lations involved in memory consolidation may coordinate the commu-

nication between these brain structures (Genzel, 2020; Genzel,

Bäurle, et al., 2014). We were interested in slow oscillations, as well

as slow spindles (9–12.5 Hz) and fast spindles (12.5–16 Hz) during

NREM sleep, which may play a distinct role in the process of memory

consolidation (Genzel & Robertson, 2015). In line with the previously

reported topography of these sleep oscillations in human EEG

(Adamczyk et al., 2015), we focused our analyses on frontal slow oscil-

lations and slow spindles (i.e., channel Fz) and central fast spindles

(i.e., channel Cz; see Figure S3 for coupling topography). To capture

specific influences of the spatial learning experience on the sleep

architecture of the sleep test session, we compared sleep descriptives

as well as spindle and slow oscillation properties (see Table S1)

between the sleep test and control sessions.

We found that participants slept significantly longer in the control

session compared with the test session. In comparison to the test ses-

sion, also fast spindle duration was significantly higher in the control

session (Wilcoxon Sign-Rank Test, z = �2.91, p < .01). We further

evaluated whether the significant difference in TST between test and

control sessions could predict this difference in fast spindle duration,

controlling for WASO. However, there was no significant effect of

TST on fast spindle amplitude differences across sleep sessions (multi-

ple linear regression, TST: β = 0.53, p = .61). The increase in fast spin-

dle amplitude, similar to the increase in TST, could be due to an

uncontrolled habituation effect of the sleep laboratory. Nevertheless,
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F IGURE 1 Experimental procedure, task design and memory performance. (a) A 2 � 2 full-factorial design with four groups: Sleep–allocentric
(n = 15), sleep–egocentric (n = 15), wake–allocentric (n = 15), wake–egocentric (n = 18). Subjects participated in two fMRI sessions in which
they learned and retrieved a spatial memory task, either in the egocentric or allocentric condition. In both sessions, resting-state fMRI was
measured for 9 min before and after task performance. In between the learning and retrieval session, participants were further divided into the

sleep or wake control condition, in which they took a nap or watched a movie for 90 min. These measurements were acquired on the same day.
Participants who were in the sleep condition returned for a nap control session of 90 min after �14 days. (b) Learning-retrieval task
configuration. Green arrows indicate the starting locations on different trials. In the egocentric condition participants started from the same island
locations on every learning trial. In contrast, in the allocentric condition, the starting location changed for every learning trial. The target location
was marked with a treasure box during the learning period but the box was absent in the retrieval session. (c) Behavioral results obtained at test.
Participants in the egocentric condition (purple bar contours) showed a significantly better memory performance compared with participants in
the allocentric condition (green bar contours). Lower latency scores indicate better performance. Participants who took a nap (black bar fillings)
performed significantly better compared with those that stayed awake (white bar fillings). Error bars = SEM.
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we hypothesized the temporal relationship of sleep oscillations to be

crucial for memory consolidation. In this respect, we did not observe

any differences between sessions, as will be presented in the

following.

3.3 | Spindle–slow oscillation coupling at test and
control session

The coupling between sharp wave-ripples, spindles and slow oscilla-

tions may set a crucial time window for consolidating a learning expe-

rience (Genzel, Kroes, et al., 2014). Therefore, we focused on the

temporal relationship between spindles and slow oscillations to fur-

ther explore a difference in sleep microarchitecture between sleep

test and control sessions. First, we computed the number of spindles'

maximum troughs (in %) occurring in one cycle (interval of ±1.2 s)

around the center of the identified slow oscillations (Figure 2a). In

both sessions we detected similar number of fast spindles coupled to

slow oscillations (Wilcoxon Sign-Rank Test, z = �1.14, p = .26) and

slow spindles coupled to slow oscillations (Wilcoxon Sign-Rank Test,

z = �0.75, p = .45). Reversely, roughly equal number of slow oscilla-

tions were coupled to fast spindles (Wilcoxon Sign-Rank Test,

z = 1.02, p = .31) and slow spindles (Wilcoxon Sign-Rank Test,

z = 1.10, p = .27) following learning and at sleep control. These find-

ings suggest that spindles and slow oscillations are equally bound to

each other. Generally, we detected a consistent spindle–slow oscilla-

tion coupling across both sleep sessions independent of the spatial

learning experience conducted immediately before the sleep test

session.

Successful memory consolidation may depend on a coupling pre-

cision of tens or even hundreds of ms (Maingret et al., 2016;

Muehlroth et al., 2019). Thus, we analyzed the precise spindle–slow

oscillation coordination using PETHs (Figure 2b). The PETHs show the

likelihood of maximum spindle-troughs occurring in the ±1.2 s time-

window around the slow oscillation events within 100-ms time bins.

Fast spindles co-occurred immediately before and at the slow oscilla-

tion peak following the slow-oscillation trough (cluster-based permu-

tations: sign. cluster: 400–700 ms at test, p < .001; 500–800 ms at

control, p < .001). On the other hand, slow spindles coincided in

transition to and with the slow oscillation trough (cluster-based per-

mutations: both sign. clusters at �300 to 100 ms, p < .001). The

robustness of this effect was tested against a reference distribution

obtained by randomly shuffling the time stamps of the spindle tro-

ughs. The temporal specificity of spindle–slow oscillation coupling did

not differ across the two sleep sessions, again suggesting the pres-

ence of a general coupling mechanism independent of a spatial learn-

ing experience.

Previous findings have demonstrated higher spindle–slow oscilla-

tion coupling strength for young compared with old adults, and fol-

lowing gross motor learning (Cross et al., 2020 [preprint]; Helfrich

et al., 2018). We were interested in elucidating this consistency in

phase relationship in the context of spatial learning. Polar plots in

Figure 2b show the coupling phase for one example subject and the

whole sample, computed as the instantaneous slow oscillation phase

(0.3–1.25 Hz) at the time of the maximum spindle amplitude over

channel Fz for slow spindles (9–12.5 Hz) and channel Cz for fast spin-

dles (12.5–16 Hz). Already at the single-subject level, a precise

spindle–slow oscillation coupling can be seen, which is different for

fast spindles and slow spindles but relatively consistent across sleep

sessions (see polar histograms, Figure 2b). At the group level, most

fast spindles occurred between 5.76 and 6.28 radians of the slow

oscillation (Test: 6.03 ± 0.56, Control: 6.07 ± 0.33, circular mean

± SD), whereas slow spindles occurred between 1.57 and 2.62 radians

of the slow oscillation (Test: 1.89 ± 0.79, Control: 1.87 ± 0.71, circular

mean ± SD; Figure 2e). These findings match the temporal coordina-

tion between spindles and slow oscillations shown in the PETHs.

To estimate the consistency of these phase relationships we cal-

culated pairwise phase consistency (PPC; cf. “Methods and Mate-

rials”). The maximum PPC values neither differed for fast spindles nor

for slow spindles between the two sleep sessions (Wilcoxon Sign-

Rank Tests, fast spindle max PPC: z = 0.451, p = .65, slow spindle:

max PPC: z = �0.067, p = .95). Additionally, we observed noticeable

individual differences in PPC (Figure 2c). We were interested whether

this variability in PPC was related to the participant's general sleep

quality (measured with PSQI), which was not significant (linear

correlation, fast spindles: ρ = 0.30, p = .14, slow spindles:

ρ = 0.15, p = .46).

In summary, spindles were consistently coupled to slow oscilla-

tions with a specific phase relationship that supports previous findings

in the time domain. The overall coupling results presented so far did

not differ across the two sleep sessions. As described earlier, we

observed a longer total sleep time in the sleep control than the sleep

test session, which might have had compensatory effects on the sleep

architecture behind which a difference in coupling was hidden. Thus,

we present the following results for the sleep test session only.

3.4 | Spindle–slow oscillation power is associated
with memory performance

Having established general time and phase dynamics of spindle–slow

oscillation coupling across sleep sessions, we proceeded our analysis

with a focus on the two memory conditions (allo vs. ego) during the

sleep test session as sleep may have a distinct effect on allocentric

versus egocentric spatial memories. Possible differences between the

groups were tested for %-coupling and PPC (Figure 2a,f). Neither the

amount of spindle–slow oscillation coupling nor the consistency in

spindle–slow oscillation phase was significantly different between

groups (Mann–Whitney U Test, % fast spindle: z = �1.12, p = .27, %

slow spindles: z = 0.09, p = .93; max. PPC fast spindles: z = 1.742,

p = .08, max. PPC slow spindles: z = 0.083, p = .94). We further pro-

bed this pattern by comparing the oscillatory power in the spindle fre-

quency range for time segments with and without slow oscillations

(cf. “Materials and Methods”). Slow oscillation trials were constructed

by epoching ±1.2 s around randomly selected slow oscillations. In

these trials, the power in the spindle frequency range indeed differed
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significantly from randomly selected intervals without slow oscilla-

tions (for all t-value clusters: p < .001, Figure 3a). This effect was

equally present in both memory conditions as the difference map did

not contain any significant modulation clusters (Figure 3a). To con-

clude, none of the metrics of spindle–slow oscillation coupling dif-

fered between memory conditions. The results were also in line with

the nonsignificant interaction between training type and sleep for the

behavioral analysis (see Figure 1c). Thus, we decided to collapse over

the two memory conditions to increase statistical power for further

testing.

Considering the whole sample at the test session, we first

checked whether the amount of spindle–slow oscillation coupling was

merely a random byproduct of the occurrence of spindle and slow

oscillation events. The obtained amount of coupling differed signifi-

cantly from a random sampling distribution in 60% of the sample

(Figure 3b, permutation tests: p < .05, 1000 iterations per participant).

Nevertheless, to avoid a loss of statistical power and a regression

toward the mean we computed the spectral power modulations dur-

ing slow oscillation trials for the whole sample (Figure 3c). We found

that power modulations during the slow oscillation trials differed sig-

nificantly from matched control trials in the spindle frequency ranges

and the previously established time intervals (see PETHs, Figure 2b).

Next, we performed correlational analyses between slow oscillation–

control power differences (expressed in t-values) and memory perfor-

mance separately for each time–frequency point in the respective

spindle cluster extracted from the t-map (Figure 3c). We found signifi-

cant associations by testing against a bootstrapped reference distribu-

tion of the EEG–behavior correlations. In this way, we could identify

significant correlation clusters representing the relation between

memory performance and a specific pattern of EEG activity modu-

lated during the slow oscillation up-state (cf. “Materials and

Methods”). A significant negative correlation cluster was identified for

fast spindles (cluster p < .01, max r = �.41, p < .01, Figure 3c top).

Similarly, we identified another significant negative correlation cluster

for slow spindles (cluster p = .02, max r = �.38, p = .02, Figure 3c

bottom): more fast-spindle power and slow-spindle power during the

slow oscillation period was associated with better memory perfor-

mance (i.e., lower response latency). These effects were specific for

the sleep test session as it could not be observed for the fast spindle

or slow spindle cluster in the sleep control session (Figure S4). We

also performed this correlation analysis for the egocentric and

allocentric groups separately (Figure S6). In the allocentric group, nei-

ther fast-spindle nor slow-spindle power modulations correlated sig-

nificantly with memory performance. The findings for the egocentric

group closely resembled those observed for the whole sample. Inter-

estingly, the slow-spindle power modulations showed opposite trends

in the two groups. Better memory performance hinted at a negative

association with slow-spindle power modulations for the allocentric

group (cluster = 0.07, max. r = .50, p = .06, Figure S6 bottom left).

This association was significantly positive for the egocentric group

(cluster p = .03, max. r = �.61, p = .02, Figure S6 bottom right). How-

ever, we did not investigate this trend further as no significant results

could be obtained for the allocentric group.

To conclude, we found evidence for an association between the

coordination of slow oscillations and spindles with memory perfor-

mance that was specific for sleep after learning in contrast to a control

sleep session. The slow-spindle power modulations might have been

driven primarily by the egocentric group.

3.5 | Functional resting-state networks change
across sessions

After sleep-EEG analysis, we next focused on resting-state func-

tional connectivity before and after learning, consolidation, and

retrieval of the memory task to investigate memory consolidation

at the network level across resting states. For this, we included

fMRI data of the four resting-state sessions (i.e., 1 = baseline,

2 = post-learning, 3 = post-break, 4 = post-retrieval) into the anal-

ysis. We were specifically interested in the right executive control

F IGURE 2 Spindle–slow oscillation coupling across sleep test and control sessions. SO, Slow oscillation; sSP, Slow spindle; fSP, Fast spindle;
test, Sleep test session; control, Sleep control session. (a) %-coupling of spindles to slow oscillations and vice versa. Fast and slow spindles
coincide with slow oscillations in both sleep sessions. About onefourth of all fast spindles (orange) and slow spindles (blue) occur within an
interval of ±1.2 s around the slow oscillation trough. Approximately an equal amount of slow oscillations is coupled to the occurrence of spindles
(grey) in the same interval. Violin plots show the median (white dot), mean (dotted line), IQR and sample distributions. c.t., “coupled to.”
(b) Specific time and phase relationship between spindles and slow oscillations. PETHs of slow and fast spindles co-occurring with frontal slow
oscillations are depicted for both sleep sessions. The reference distribution obtained after randomization of the data is shown by horizontal
dashed line. Asterisks indicate significantly increased spindle occurrence contrasted with the reference distribution (cluster-based permutation
test, cluster α < 0.05, positive clusters only). Vertical dashed lines mark the slow oscillation trough. Average slow-oscillation ERPs are shown for
each session. In both sessions, frontal slow spindles peak at the up- to down-state transition before the trough (significant positive cluster: �300
to 100 ms). Central fast spindles prominently peak during the slow oscillation peak (test: significant positive cluster: 400–700 ms, control:

significant positive cluster: 500–800 ms). Error bars of 100-ms time bins = SEM. Polar plots show spindle–slow oscillation coupling for one
example subject (top) and group level results (bottom). Top: Polar histograms display maximum spindle amplitude per slow oscillation phase. Note
the peak in the right lower quadrant for fast spindles (i.e., 3π/2 – 2π) and the left upper quadrant for slow spindles (i.e., π/2 – π). Mean slow
oscillation phase with sleep spindle power peaks. Bottom: Dots depict individual subjects and the black line the average of the sample results.
(c) Consistency in phase relationship between spindles and slow oscillations. Ridge-line plots of fast spindle–PPCs (orange) and slow spindles-
PPCs (blue) for all subjects across sleep sessions. PPC values are expressed by color and height of the ridgelines. Slow oscillation frequencies
(0.3–1.25 Hz) are outlined with black dotted line.
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network, the default mode network, and the hippocampal network.

Task-fMRI analyses of this dataset by Samanta et al. (2021) rev-

ealed that regions of these networks changed activation across the

consolidation period when participants took a nap but not when

they stayed awake. Thus, we obtained the three resting-state net-

works with GraphICA (Ribeiro de Paula et al., 2017), a tool for

F IGURE 3 Spindle–slow oscillation coupling at sleep test session and its association with memory performance. (a) Power modulations in the
two memory conditions at sleep test session. Differences in power for slow oscillation trials (trough ±1.2 s) compared with baseline trials without
slow oscillations are depicted (in t-score units) for the allo and ego group separately. The t-map ego was subtracted from t-map allo to obtain the
difference map. The average frontal slow oscillation for each memory group is overlaid in black. In both groups, EEG activity is modulated as a
function of the slow oscillation phase but there is no difference between the two groups. Significant clusters are outlined in black (cluster-based
permutation test, cluster α < 0.05). (b) Bar graphs including sample distribution of coupling count for fast spindles (top) and slow spindles (bottom)
at sleep test session. Colored dots mark the subjects whose spindle–slow oscillation coupling was significantly above chance level (permutation
test, α < 0.05). Error bars = SEM. (c) Correlation of spindle–slow oscillation power modulations and memory performance. Middle: The t-map as
outlined in (a) but including all subjects (slow spindles and fast spindle reference windows for later analyses highlighted by dashed black line). Top
left: Fast spindle window with significant correlation clusters between slow oscillation-specific EEG activity and memory performance obtained by
contrasting the correlation for each time–frequency point against a reference distribution of bootstrapped EEG–behavior correlations. Significant
correlation cluster is outlined in white. Top right: Maximum correlation pixel extracted from the fast spindle cluster contrasting t-statistics against
response latency in the memory task. Bottom left: Slow spindle window with correlation values between slow oscillation-specific EEG activity and
memory performance obtained as for fast spindle window. Bottom right: Same as top right but for slow spindles related t-statistics.
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resting-state network analysis. For the purpose of dimensionality

reduction, we computed the primary modes of variance for each

network using a SVD (cf. “Methods and Materials”). Finally, we

tested the effects of session, sleep conditions, and memory condi-

tions on each participants' score on the previously identified mode.

With this approach we could determine (1) how many functional

subnetworks were contained within each network and (2) how the

functional connectivity of the networks changed for any of our

experimental variables.

For the right executive control network, we extracted a pri-

mary subnetwork that was centered on the right inferior parietal

sulcus, right inferior parietal lobe, and right dorsolateral prefrontal

cortex. In this subnetwork, we found an increase in functional con-

nectivity across task performance in the learning and retrieval ses-

sions (Figure 4a; linear mixed-effects model, sleep/wake:

t62 = �0.747, p = .46 allo/ego: t62 = �0.477, p = .64, pre-break/

post-break: t193 = 1.676, p = .10, pre-task/post-task: t193 = 2.808,

p = .01). This increase was driven by change from post-break to

post-retrieval (t193 = 2.468, p = .02). In contrast, the primary

default mode subnetwork with main involvement of the posterior

cingulate cortex generally decreased in connectivity from pre- to

post-task performance and its connectivity was generally higher for

the sleep compared with the wake condition (Figure 4b; linear

mixed-effects model, sleep/wake: t62 = �2.616, p = .01 allo/ego:

t62 = 0.427, p = .67, pre-break/post-break: t193 = 1.726, p = .08,

pre-task/post-task: t193 = �2.126, p = .04). The decrease in func-

tional connectivity can be explained by a significant change from

post-break to post-retrieval (t193 = �2.451, p = .017). However,

the sleep main effect cannot be explained by any of the experi-

mental manipulations and may have arisen by chance (Figure S5).

Notably, the primary hippocampal subnetwork which mainly

involved the hippocampus and the bilateral parahippocampal cortex

F IGURE 4 Changes in primary modes of the resting-state networks across sessions. ECN1, primary executive control network; DMN1,
primary default mode network; HN1, primary hippocampal network. (a) Left: Sagittal and axial representation of the primary mode in the right
executive control network. The degree of each one of the 832 regions is represented by the node's size. Middle: Results of a linear mixed-effects
model with session as within-subject factor, sleep and memory as between-subjects, all two- and three-way interaction terms between those
factors, and subject * session as random factor. Functional connectivity increased pre- to post-task performance. Right: Results shown as
difference from previous session to next session. Only post-break to post-test showed changes greater than 0. (b) Left: Same as in (a) but for the
default mode network. Middle: Same model as in (a). In contrast, the results show that the functional connectivity decreased pre- to post-task
performance. Right: Results shown as difference from previous session to next session. Only post-break to post-test showed changes greater

than 0 (c), left: Same as in (a,b) but for the hippocampal network. Middle: Same analysis as in (a,b). Note that the functional connectivity increased
pre- to post-task performance and pre- to post-break. Right: Results shown as difference from previous session to next session. Both baseline to
post-training and post-break to post-test showed changes greater than 0. Error bars = SEM.
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showed similar connectivity changes as the right executive control

network. In this case, we not only detected a pre- to post-task

increase but also a pre- to post-break increase in functional connectiv-

ity (Figure 4c; linear mixed-effects model, sleep/wake: t62 = �0.143,

p = .89 allo/ego: t62 = 0.702, p = .49, pre-break/post-break:

t193 = 3.749, p < .001, pre-task/post-task: t193 = 4.535, p < .001).

This was reflected by a significant difference between baseline and

post learning (t193 = 3.586, p < .001) as well as post-break and post-

retrieval (t193 = 3.338, p < .001). Lastly, we tested whether the post-

break to post-retrieval change in functional connectivity observed in

all networks was associated with memory performance at retrieval.

This effect was not significant for the right executive control sub-

network (linear regression, β = 0.016, p = .90), the default mode sub-

network (linear regression, β = 0.655, p = .43) or the hippocampal

subnetwork (linear regression, β = 0.596, p = .44).

Overall, we consistently obtained a pre- to post-task effect in

all three subnetworks, with an increase in the executive control and

hippocampal network and a decrease in the default mode network.

Only the hippocampal subnetwork increased connectivity pre- to

post-break and a sleep main effect was observed for the default

mode network. As was shown for our sleep analysis, the factor

memory (allo vs. ego) did not impact the changes in the resting-

state networks.

3.6 | A sleep-dependent hippocampal subnetwork
and fast spindle–slow oscillation coupling

From the analysis performed by Samanta et al. (2021), it is evident

that activation of the precuneus/retrosplenial cortex decreases after

sleep but not when participants stayed awake during the consolida-

tion period. Similarly, we extracted a second functional subnetwork of

the hippocampal network centered on the bilateral retrosplenial cor-

tex and the bilateral amygdala (Figure 5a top). We identified this

F IGURE 5 Sleep-related changes in the second hippocampal subnetwork and its association with spindle–slow oscillation coupling. (a) HN2,
second hippocampal network. Top: Graphical representation of the second mode in the hippocampal network. The degree of each one of the
832 regions is represented by the node's size. Bottom: Results of a linear mixed-effects model with session as within-subject factor, sleep and
memory as between-subjects factor and subject * session as random factor. Functional connectivity decreased significantly in this hippocampal
subnetwork across sessions in the sleep condition but remained largely stable in the wake condition. On the right the difference scores are
presented. Only for sleep but not wake was there a significant change across the break period. Error bars and shadings = SEM. (b) Middle: T-map
as outlined in Figure 3c (slow spindle and fast spindle reference windows for later analyses highlighted by dashed black line). Top left: Fast spindle
window with significant correlation clusters between SO-specific EEG activity and post-learning to post-break change in the hippocampal
subnetwork obtained by contrasting the correlation for each time–frequency point against a reference distribution of bootstrapped EEG–
behavior correlations. Significant correlation clusters are outlined in white. Top right: Maximum correlation pixel extracted from the fast spindle
cluster contrasting t-statistics against change in second hippocampal mode score. Bottom left: Same as top left but for slow spindle cluster.
Bottom right: Same as top right but for slow spindle related t-statistics
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subnetwork based on the SVD factorization, using a singular value

spectrum criterion (cf. “Methods and Materials”). Here, we also inves-

tigated how session, sleep conditions, and memory conditions

affected the participants' scores on this second mode. In contrast to

the task and break main effects detected for the other networks, we

now observed an interaction between session and sleep conditions

(linear mixed-effects model, session * sleep interaction t191 = 2.086,

p = .04). The subnetwork's functional connectivity seemed to

decreased only for participants who took a nap during the consolida-

tion period. This effect remained when comparing a change from

post-learning to post-break sessions only (paired-sample t-test,

t95 = 2.3971, p = .02). Thus, we also computed difference values from

one session to the next and tested if these were significantly different

from 0. A significant change only occurred for the sleep group from

post-training to post-break (t26 = �3.17, p = .01), this was not seen

for the wake group (t38 = �1.363, p = .18).

Therefore, we were interested in whether this decrease in con-

nectivity between post-learning and post-break sessions in the sleep

condition was related to the spindle–slow oscillation coupling

described previously (see Figure 3c). Again, correlational analyses

were performed—but this time for slow oscillation-control power

differences (expressed in t-values) and the change score on the hip-

pocampal subnetwork between the post-learning and post-break

session. The correlations were computed for each time–frequency

point in the respective spindle clusters extracted from the t-map. A

significant negative correlation clusters was identified for fast spin-

dles (cluster: p < .001, max pixel: ρ = �0.38, p < .01; Figure 5b, top)

and for slow spindles (cluster: p = .02, ρ = �0.30, p = .03): higher

spindle power during the slow oscillation up-state was associated

with a larger decrease in functional connectivity of the hippocampal

subnetwork across sleep. The clusters partially overlapped with the

significant response correlation clusters presented earlier (see

Figure 3c). These findings provide evidence for a relation between

the coordination of slow oscillations and spindles and connectivity

decrease in the hippocampal subnetwork. They parallel the results

obtained for spindle–slow oscillation coupling power and behavior.

Therefore, we aimed to establish a triad relationship between change

score in this hippocampal subnetwork, spindle–slow oscillation cou-

pling, and memory performance. We regressed the networks' change

score across sleep on memory performance at retrieval. However, the

connectivity decrease in the hippocampal subnetwork did not signifi-

cantly predict behavior (linear regression, β = 0.01, p = .94).

In summary, we found a hippocampal subnetwork that decreased

in functional connectivity across resting-state sessions for participants

who took a nap. The functional connectivity remained largely stable

for those participants who stayed awake. This effect did not differ

between the two memory conditions. The decrease in functional con-

nectivity from post-learning to post-break was positively related to

spindle–slow oscillation coupling during sleep. We thus anticipated

that this connectivity change would be a correlate of memory consoli-

dation. However, unlike the spindle–slow oscillation coupling power

(see Figure 3c), the sleep-dependent connectivity decrease in the sec-

ond hippocampal subnetwork did not predict memory performance at

retrieval.

4 | DISCUSSION

This study used resting-state fMRI and sleep EEG data to investigate

spatial memory consolidation during a nap or the same period spend

awake. Subjects learned a goal location in a virtual watermaze with

either different starting locations (allocentric group) or with the same

starting location (egocentric group). The sleep-EEG analysis was focused

on the spindle–slow oscillation coupling, separating spindles into fast

and slow subtypes. Resting-state fMRI was focused on changes in con-

nectivity within previously defined networks. We could show that

spindle–slow oscillation coupling correlated positively with memory per-

formance after a nap and also with a decrease in connectivity in a func-

tional hippocampal network including the retrosplenial cortex. This

decrease in connectivity was not seen in the group that stayed awake.

Task-related increases in connectivity were observed in the executive

control network and the other hippocampal network, while a decrease

was found in the default mode network. These changes were not spe-

cific to the sleep group but seen across all participants.

We replicated previous oscillation coupling findings, showing that

slow spindles are nested in the transition period from slow oscillation

up- to down-state, and fast spindles frequently occur immediately

before and within the slow oscillation up-state. We found no differ-

ence in spindle–slow oscillation coupling between allocentric and ego-

centric training groups. The precise coordination between spindles

and slow oscillations was consistently observed across the time,

phase, and time-frequency domains. Surprisingly, these effects did not

differ between the sleep test session, that immediately followed the

spatial learning experience, and the sleep control session, where there

was no explicit learning beforehand. The fact that we did not observe

a difference between sleep sessions is most likely due to methodolog-

ical limitations of the study design—the control nap was always the

second nap—since also a difference in total sleep time was observed.

The resting-state fMRI analysis was centered on the hippocampal

network, default mode network, and right executive control network.

These networks were defined and later divided into subnetworks

using a data-driven approach. We found brain-wide changes across

resting-state sessions that matched our previous findings in the activ-

ity analysis (Samanta et al., 2021). Task-related changes in connectiv-

ity in the default mode network (decrease in connectivity) opposed

changes in the right executive-control network (increase in connectiv-

ity). Interestingly, the hippocampal network could be divided into two

subnetworks: a primary functional subnetwork centered on the hippo-

campus and the parahippocampal cortex, and a second functional sub-

network with the retrosplenial cortex as hub region. Functional

connectivity in the primary hippocampal subnetwork increased pre- to

post-task and pre- to post-break. Functional connectivity in the sec-

ond hippocampal subnetwork decreased across the four resting-state

sessions—most prominently across the sleep break—only for partici-

pants who slept during the break but not those that stayed awake.

Like our behavior and sleep analysis results, the memory conditions

(allo vs. ego) did not affect changes in any of these networks. Our

findings suggest task-related and consolidation-related connectivity

changes in the functional networks which may be related to memory

reactivations.
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Finally, we aimed to relate our sleep EEG results to the changes

in resting-state connectivity and memory performance. Spindle–slow

oscillation coupling was positively related to sleep-dependent changes

in the second hippocampal subnetwork and to memory performance.

This was specific for sleep after learning and not seen in the control

sleep session. Taken together, precise spindle–slow oscillation cou-

pling seems to have behavioral relevance and potentially has func-

tional significance in memory consolidation. This coupling may be a

mechanism by which functional connectivity in the hippocampal net-

work is modulated during memory consolidation.

4.1 | Connectivity changes in resting state
networks

Generally, it has been shown that tasks can affect post-task resting-

state brain activity (Lewis et al., 2009). For instance, modulation of

learning-dependent spontaneous brain activity after the task has been

observed for cognitive tasks involving working memory, emotion, and

motor training (Lewis et al., 2009). Such modulation of brain regions

associated with a preceding task can be understood as a form of

resting-state consolidation, possibly involving similar mechanisms as

sleep-related memory consolidation (Tambini & Davachi, 2019).

Resting-state connectivity analysis is based on the correlation of dif-

ferent voxels within a network. Neuronal memory reactivations and

strengthening of memory networks should lead to increased

coactivation of the memory network, which therefore could poten-

tially increase intra-network connectivity as we measure here. Thus,

one could interpret our results as changes of reactivations that are

occurring during the resting-state.

We show opposite changes of the executive control and main

hippocampal network in contrast to the default mode network pre- to

post-task performance. The executive control and hippocampal net-

work increased, whereas the default mode network decreased in

functional connectivity. If these connectivity changes are induced by

occurring reactivations, the results would indicate that after a task

one has more reactivations in both the executive control network and

the hippocampus. We also showed a sleep-specific decrease in con-

nectivity in a second hippocampal network including the retrosplenial

cortex. Potentially this network could be the link between the hippo-

campus and downstream areas such as parietal cortex, which is part

of the executive control network (Genzel, 2020). A decrease in con-

nectivity in this network would therefore indicate that reactivations

occurring in the executive control network and the hippocampus are

more independent from each other after sleep. In contrast, after wake

when there is no such decrease in connectivity reactivations in the

cortex and hippocampus would still be linked.

It has previously been proposed that once consolidation from hip-

pocampus to cortex has progressed, reactivation in the cortex occur

independently from hippocampus reactivations. Our results could

potentially support this idea. However, the measure of resting-state,

within-network connectivity is very indirect and therefore this finding

should be confirmed with more direct measures, such as simultaneous

hippocampal and cortical neuronal recordings in rodents.

4.2 | Task-related changes in the right executive
control and default mode network

Our findings align with the task analysis of this data set performed by

Samanta et al. (2021). When measuring changes in BOLD activity

across learning and retrieval sessions while participants performed the

task, we observed a sleep-related increase in executive control

regions and a decrease in default mode regions. In the current analy-

sis, we observed increases of within-network connectivity for the

executive control network and decreases in the default mode network

over the different resting state session. Of note, the current results,

are not specific for the sleep condition in contrast to the activity anal-

ysis results from Samanta et al. This discrepancy may be due to differ-

ent analysis approaches. Samanta et al. (2021) investigated changes in

BOLD response, but not functional connectivity, for the two networks

separately. Their functional connectivity analysis was built on a seed-

based approach which tested the interactions between a pre-defined

hub of the executive control network and the rest of the brain. In con-

trast, we used independent component analysis to define our net-

works without a priori assumptions and assessed functional

connectivity changes only within each of these networks. These

methodological differences may have contributed to the different

results of the two analyses.

The executive control network is thought to allocate attention

between visuospatial tasks and is involved in goal-directed behaviors

and navigation. Specifically, the posterior parietal cortex serves as a

cortical integration site for hippocampally generated allocentric spatial

information and egocentric spatial orientation to guide goal-directed

navigation (Nitz, 2012; Whitlock et al., 2008). Additionally, there is

evidence on the sequential replay or patterned reactivation of brain

regions at post-task rest involved in encoding a prior experience

(Hoffman & McNaughton, 2002; Staresina et al., 2013). Taken

together, the evidence on the central role of the parietal cortex in spa-

tial navigation and replay at post-task rest in task-relevant brain

regions aligns with our findings. We observed increased functional

connectivity in the right executive control network centered on the

inferior posterior parietal lobe and sulcus at the resting state from

pre- to post-task performance.

Early neuroimaging studies defined the default mode network as

a task-negative network that decreases in functional connectivity dur-

ing task performance compared with the resting state (Buckner

et al., 2008). However, using graph theory measures, Lin et al. (2017)

provided a temporally resolved view on the default mode network

dynamics during pre-task rest, task performance, and post-task rest.

They found a decrease in efficiency, a measure of functional integra-

tion, in the default mode network at post-task rest compared with

pre-task rest. Global efficiency decreased in the whole network, and

local efficiency decreased specifically in the posterior cingulate cortex.

Our results also demonstrate that the default mode network, with the

considerable influence of the posterior cingulate cortex, decreases in

functional connectivity from pre- to post-task rest. It should be

pointed out that, as a result of the independent component analysis

(ICA) and the template-matching procedure, the posterior cingulate

cortex, the prefrontal cortex, and the lateral posterior parietal cortex
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contributed most strongly to the default mode network connectivity.

Previous studies, including Samanta et al. (2021), also considered the

hippocampus and the retrosplenial cortex functional hubs in this net-

work (Greicius et al., 2003; Vincent et al., 2006). Together, all these

regions have been proposed to form a memory network in which

information is relayed from the hippocampus via the prefrontal and

retrosplenial cortex to downstream parietal regions during consolida-

tion (Genzel, 2020). However, in our study, the hippocampus and ret-

rosplenial cortex were primarily part of a separate hippocampal

network. Thus, several findings in our study that have previously been

assigned to the default mode network are here discussed separately

for the hippocampal network, including the hippocampus, temporal

lobe regions, and the retrosplenial cortex.

Our fMRI processing pipeline was based on an ICA that created

maximally independent spatial networks. Thus, we were not able to

test interactions between the functional resting-state networks. Nev-

ertheless, the opposite trends in the right executive control and

default mode networks' functional connectivity hint in the same direc-

tion as previous research. It has been shown that opposite shifts

between the default mode network and the executive control net-

work facilitate the transfer between resting and focusing attention

(Goulden et al., 2014; Menon & Uddin, 2010). This transfer involves

the re-allocation of resources within the brain to support stimulus-

related cognitive processing. Based on our observations, the antago-

nism in functional connectivity between the two networks may not

only be present from rest to task transitions but persists even at post-

task rest and could thus reflect offline coordination of relevant areas

to strengthen the encoded experience.

4.3 | The role of the hippocampal network in
memory consolidation

Through the SVD, we were able to identify two functionally relevant

subnetworks within the hippocampal network, one hippocampal sub-

network centered on the hippocampus and parahippocampal cortex

and a second hippocampal subnetwork primarily involving the retro-

splenial cortex. These subnetworks showed distinct functional con-

nectivity changes across the four resting-state fMRI sessions.

The primary hippocampal subnetwork increased in functional

connectivity after task performance in the learning and retrieval ses-

sions. This finding may underlie a similar resting-state consolidation as

described for the executive control network. The hippocampus as ini-

tial memory storage site, has often been shown to produce rea-

ctivations that led to better memory performance after rest (Dupret

et al., 2010). We also observed an increase in functional connectivity

after the 90 min break for this subnetwork. At first glance, this

increase across the consolidation period seems counterintuitive to the

proposed mechanisms of systems consolidation (Squire et al., 2015).

One would instead expect decreased involvement of the hippocam-

pus after a consolidation period. However, one should keep in mind

that the current measure is not activity per se but instead within-

network connectivity and our consolidation period was confined to

90 min.

The second hippocampal subnetwork primarily involved the ret-

rosplenial cortex but also medial temporal regions. In the literature,

the hippocampus, temporal lobe regions, and the retrosplenial cortex

are often regarded as part of the default mode network because

they show strong coherence during rest (Greicius et al., 2003;

Vincent et al., 2006). However, recently a “medial temporal” sub-

network has been identified, whose decrease in connectivity over

sleep was associated with increased spatial memory performance

(Barnett et al., 2021; van Buuren et al., 2019). Core regions of this

network include the medial temporal lobe and the retrosplenial cor-

tex. These structures correspond to our second hippocampal sub-

network. Consequently, our second hippocampal subnetwork may

play a unique role in memory consolidation (de Sousa et al., 2019;

van Buuren et al., 2019).

Functionally, the second hippocampal subnetwork decreased in

connectivity across the four resting-state sessions but only for partici-

pants in the sleep condition. The medial temporal lobe and retro-

splenial cortex have been termed relevant for spatial navigation in

humans and rodent models (Epstein et al., 2017; Peigneux

et al., 2004). These regions are functionally modulated by sleep, with

a gradual decoupling during deep sleep (Spoormaker et al., 2010).

Thus, the second hippocampal subnetwork may be coordinating the

brain-wide consolidation mechanisms involving spindle–slow oscilla-

tion activity during sleep (Cowan et al., 2020; Navarro-Lobato &

Genzel, 2020). Indeed, we show that our second hippocampal sub-

network centered on the retrosplenial cortex is significantly modu-

lated by sleep and positively relates to spindle–slow oscillation

coupling power, which also predicted memory performance. The cou-

pling of ripples, spindles, and slow oscillations may be a mechanism by

which memories are consolidated during sleep from the initial hippo-

campal storage to downstream areas, such as the posterior parietal

cortex—via the retrosplenial cortex (Genzel, 2020; Hennies

et al., 2016). Our second hippocampal subnetwork may be the neural

substrate through which sleep exerts its beneficial effects on memory

consolidation, in addition to a general form of consolidation in the pri-

mary hippocampal subnetwork discussed earlier.

In summary, we show that functional connectivity patterns in

the brain underlying the consolidation of memories may not simply

be confined to the established resting-state networks. Using a

data-driven approach, we identified variance-based subnetworks.

Specifically, we differentiated the hippocampal network into a

hippocampus-centered sleep-independent component and a

retrosplenial-centered sleep-dependent component. Both of these

networks may be involved in spatial memory consolidation. None-

theless, only the second hippocampal subnetwork may underlie the

beneficial effects of sleep on memory formation, as is shown by its

association with spindle–slow oscillation coupling power that

predicted memory performance. Our findings provide a more

refined view on the hippocampal network in memory consolidation,

in which its resting-state functional connectivity differentially
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changes across learning, consolidation, and retrieval of a spatial

memory task in a 1-day paradigm.

4.4 | The role of precise spindle–slow oscillation
coupling in memory consolidation

In the framework of systems memory consolidation, the interplay

between sharp wave-ripples, spindles, and slow oscillations has been

identified as a pivotal mechanism to regulate the communication

between the hippocampus and task-relevant neocortical regions dur-

ing sleep. Sleep oscillation coupling may gradually redistribute the

connectivity between these areas and strengthen the encoded experi-

ence in extra-hippocampal, predominantly neocortical networks

(Genzel, 2020; Genzel, Kroes, et al., 2014). In line with previous find-

ings, we highlight that centro-parietal fast spindles preferentially occur

during the slow oscillation's up-state (i.e., depolarized state) and fron-

tal slow spindles synchronize mostly in the transition to the slow oscil-

lation's down-state (i.e., hyperpolarized state; Muehlroth et al., 2019).

The exact timing and consistency of the triple coupling between rip-

ples, spindles, and slow oscillations has been suggested to be crucial

for successful memory consolidation (Maingret et al., 2016). There-

fore, spindles coinciding with hippocampal sharp wave-ripples during

the slow oscillation up-state might represent a mechanism that facili-

tates the transfer of memory-related information from the hippocam-

pus to the neocortex (Siapas & Wilson, 1998). Indeed, among others

(Barakat et al., 2011), our results suggest that spindle–slow oscillation

coupling in humans is positively associated with memory perfor-

mance. Specifically, higher spindle–slow oscillation coupling power

was related to better memory performance.

It has also been suggested that spindle slow-oscillation cou-

pling may be more pronounced when sleep immediately follows a

learning experience (Schmidt et al., 2006). However, we did not

observe a difference in spindle–slow oscillation coupling between

the sleep test session immediately after learning and the sleep

control session 2 weeks later with no explicit learning task before-

hand. There are several reasons for the lack of differences

between the sleep test and control sessions. First, in previous

studies participants slept a whole night. In this period, more data

can be acquired compared with our relatively short nap of 90 min,

consisting of roughly one sleep cycle. The amount of data may

have increased the statistical power to detect even small effects in

spindle–oscillation coupling related to learning. Next, we did not

control for unspecific effects of learning on the day of the sleep

control session. Thus, subjects possibly consolidated other learning

experiences during the nap. These experiences could have evoked

similar patterns of spindle–slow oscillation coupling during the

sleep control and test sessions. Finally, and most probably, our

sequence of the two sleep sessions was not counterbalanced. This

was initially done to keep subjects blinded to the experimental

condition at the test session. However, this also led to participants

being more familiar with the sleep laboratory at the sleep control

session when they encountered the setting a second time.

Therefore, participants may have slept longer and better, as is indi-

cated by higher total sleep time and fast spindle amplitude in the

sleep control session.

In summary, we observed a temporally specific association

between spindles and slow oscillations. Moreover, higher spindle–

slow oscillation coupling power was related to better memory

performance as well as decrease in functional connectivity in the

second hippocampal network. Even though the coupling did not

differ between sleep test and control sessions, the relation

between spindle–slow oscillation coupling power and memory per-

formance was only established for the sleep test session but not

the sleep control session. Therefore, in the following, we will

interpret our sleep-EEG results and their relation to the resting-

state fMRI results with respect to the spatial memory task at the

test day.

4.5 | Brain-wide offline consolidation across
memory conditions

The traditional view on spatial memory consolidation divides memo-

ries into hippocampus-dependent and “non-hippocampus-dependent”
subtypes. Accordingly, allocentric spatial memories have been pro-

posed to depend on the hippocampus and their consolidation may

profit from sleep. However, egocentric spatial memories rely on the

striatum and should therefore be less sleep-dependent. Previous

research provided evidence for this dissociation (Albouy et al., 2015;

Hagewoud et al., 2010). There was no significant interaction between

sleep and allocentric versus egocentric groups, and we also found no

differences in the sleep-EEG or resting-state fMRI results. In the anal-

ysis of our dataset during task performance, Samanta et al. (2021)

found a change in activity across multiple brain regions after sleep in

humans and rats. Interestingly, this change was also the same for

allocentric and egocentric training conditions. Irrespective of the

learning strategy, task-related activity increased in areas of the execu-

tive control network and decreased in the default mode network (incl.

the hippocampus) over sleep in humans. These findings argue against

a strict separation into hippocampus-dependent and “non-hippocam-

pus-dependent” memories.

Recent evidence supports the involvement of the hippocampus in

non-hippocampus-dependent memories. A rodent study tested the

effects of sleep on novel-object recognition memory. The encoding

and retrieval of these tasks essentially relied on the perirhinal cortex

and not the hippocampus (Sawangjit et al., 2018). Importantly, sleep-

specific enhancement of object-recognition memory required hippo-

campal activity during post-encoding sleep, but the hippocampus was

not involved during remote recall. Another study could show the same

in human subjects (Schapiro et al., 2019). Furthermore, Ekstrom

et al. (2017) outlined a network model of human spatial navigation in

which several largely overlapping brain regions encode allocentric and

egocentric information. Considering this network perspective,

resulting memory representations of the two reference frames seem

to be intertwined as well. It has been shown that the ventral striatum
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integrates inputs from the hippocampus, prefrontal cortex, and related

subcortical structures to perform goal-directed behavior. Later mem-

ory reactivations in the striatum were temporally close to hippocam-

pal ripples (Pennartz et al., 2004; Pennartz et al., 2011). Together,

these findings suggest that interactions in allocentric and egocentric

memory networks are more complex than originally thought. Perhaps,

consolidation mechanisms at sleep and rest are even independent of

the learning strategy. This domain generality in memory consolidation

could enable flexibility and adaptability for information access, use,

and reconsolidation.

5 | CONCLUSION

This study aimed to detect representations of spatial memory consoli-

dation at different brain states (sleep and rest). We quantified memory

consolidation mechanisms during sleep using spindle–slow oscillation

coupling and observed changes in resting-state functional connectiv-

ity across learning, consolidation, and retrieval in the executive control

network, the default mode network, and the hippocampal network. A

data-driven analysis allowed us to further divide the hippocampal net-

work into a sleep-independent and a sleep-dependent subnetwork.

The sleep-dependent network was centered on the retrosplenial cor-

tex rather than the hippocampus. We showed that spindle–slow oscil-

lation coupling power was associated with deceased functional

connectivity in this sleep-dependent hippocampal subnetwork and

better memory performance.
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